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Balancing a bipedal robot movement against external perturbations is considered a challenging and complex 
topic. This paper discusses how the vibration caused by external disturbance has been tackled by a Linear 
Quadratic Regulator, which aims to provide optimal control to the system. A simulation was conducted on 
MATLAB in order to prove the concept. Results have shown that the linear quadratic regulator was successful 
in stabilizing the system efficiently.  
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1. Introduction  
 
 Keeping the balance of a walking bi-legged robot is a challenging and complex task. A successful 
walking gait of a robot is to go from the start point to the destination point without falling. A Bi-Legged robot 
should have a smooth design close to human beings in order to have balance while standing. However, there 
are some issues such as the slope or the nature of the ground. The environment eventually causes friction and 
external disturbances that may suddenly act on the robot. It is therefore important to balance the bipedal robot 
statically and dynamically in order to make sure that it will not fall. 
 Researchers have tackled the control of sudden external perturbations applied to a bipedal robot by 
balancing strategy is such as ankle, hip and stepping strategies [1-4] by using the torque in order to balance the 
bipedal robot back to stability. In recent papers as well, it has been proposed to tackle this issue by capture 
point [5-6]. In our experiment at the laboratory of Tallinn University of Technology, the problem of the static 
and dynamic balance was tackled by keeping the Zero-Moment Point and the Ground projection of center of 
mass in the support polygon, during the single support phase and the double support phase, controlled by the 
model predictive controller [7-10]. 
 There are various proposed types of control over vibration caused by sudden external perturbations to 
the system. Roose et al. [12] used fuzzy logic with a PID controller since PID stabilizes only linear systems. 
Fuzzy logic uses linguistic variables and their membership functions as rule-base to get the proper output. 
Performance of the fuzzy logic controller for balancing the vibration of the inverted pendulum was successful 
in providing better settling time and lowest overshoot. Abut et al. [13] defined fuzzy logic as an approach 
which uses approximate thinking instead of thinking based on exact values which is suitable for systems with 
a difficult mathematical model. It was concluded from the experiment of the PID- type fuzzy logic that the 
system had the lowest amplitude while reaching stability position and best performance for settling time. In a 
recent research, Hazem et al. [14] proved that combining fuzzy logic with the linear quadratic regulator 
improved the settling time, the peak overshoot, steady state error and the total root mean square error by high 
percentage if the model was applied on a double inverted pendulum.  
 In this article, it will be proposed to use a linear quadratic regulator on an inverted pendulum on cart 
in order to tackle the vibration caused by external perturbations applied on the robot pelvis laterally. 
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 In Section 2, the chosen model and derivation of the equation of motion using the Lagrange equations 
is discussed. Section 3 illustrates the results obtained in our simulation. And finally, in section 4 simulation 
results and conclusions are presented. 
 
2. Proposed model and controller 
 
2.1. Inverted pendulum on cart 
 
 Simplification is a common method when starting to investigate any technical or scientific problem. It 
was therefore decided to choose an inverted pendulum on cart as the model since it is considered a benchmark 
tool for testing control techniques.  
 

 
 

Fig.1. Inverted pendulum on cart. 
 
 The cart moves in a horizontal way in the x direction with a mass M, while the inverted pendulum right 
on top of the cart is attached to the cart with a massless rigid rod (Fig.1, [11]). The pendulum has a mass m 
and rod length l. The gravity forces are mg for the pendulum and Mg for the cart respectively, where g is the 
acceleration of gravity. It is assumed that there is no friction on the ground. The external force F is applied to 
the cart in the x-axis direction. The pendulum is rotating from the vertical by angle θ . It is important to 
understand the inverted pendulum in order to make it stable in the upright position. 
 Let us choose the fixed axes of coordinates x and y, assuming that the axis Oy passes through the initial 
position of the center of gravity C of the system shown in Fig.1. The position of the system relative to the fixed 
axes xOy is determined by the coordinate of the center of gravity of the cart x and the angle of rotation of the 
pendulum θ  relative to the vertical. That is, the given system has two degrees of freedom. 
 Let us take the coordinate x and angle θ  as generalized coordinates. Then the dependence of the 
coordinates center of gravity of the inverted pendulum x1 and y1 on the generalized coordinates x and θ  will 
have the form: 
  
    – sin1x x l= ⋅ θ , (2.1) 
 
  cos1y l= ⋅ θ . (2.2) 
 
 Looking to the velocity direction, it can be calculated as the first derivate of 1x  and 1y  in respect to 
time as: 
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    cos1x x l= − ⋅ θ ⋅ θ   (2.3) 
 
    sin1y l= − ⋅ θ ⋅ θ  (2.4) 
 
 So, in order to find the equation of motion, the derivation of the Lagrange equations is based on the 
kinetic energy and potential energy. The potential energy of the pendulum is expressed as: 
  
      cos1V m g y m g l= ⋅ ⋅ = ⋅ ⋅ ⋅ θ . (2.5) 
  
The kinetic energy of the cart can be expressed as: 
  

          2 2
cart

1 1T M v M x
2 2

= ⋅ = ⋅   (2.6) 

 
The kinetic energy of the pendulum is expressed as: 
 

  ( )        2 2 2
pend 1 1 1

1 1T m v m x y
2 2

= ⋅ = ⋅ +   (2.7) 

 
Taking into account expressions (2.3) and (2.4), we obtain the kinetic energy of the entire system: 
 

  
( )
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    

  
 (2.8) 

 
The kinetic (generalized) potential of the system will be: 
 

  ( )–  cos    cos2 2 21 1L T V M m x m l x m l m g l
2 2

= = + ⋅ − ⋅ ⋅ ⋅ θ ⋅ θ + ⋅ ⋅ θ − ⋅ ⋅ ⋅ θ   . (2.9) 

 
The Lagrange equations have the form: 
 

  ( )      x
d L L Q F t
dt x x

∂ ∂   − = =   ∂ ∂   
, (2.10) 

 

        d L L Q 0
dt θ

∂ ∂   − = =   ∂θ∂θ    , (2.11) 

 
xQ  and Qθ   are generalized forces which indicate the external forces at the (generalized) coordinates x and .θ  

 The first equation of motion will be in the x direction taking into account the kinetic (generalized) 
potential (2.9). According to the Lagrange equation (2.10), we will get 
  
  ( ) ( )cos  sin  2M m x m l m l F t+ ⋅ − ⋅ ⋅ θ ⋅ θ + ⋅ ⋅ θ ⋅ θ=  . (2.12) 
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 The second equation of motion will be according to the Lagrange equation (2.11). Taking into account 
the kinetic (generalized) potential (2.9), we will obtain: 
 
  cos   sin   l x g 0⋅ θ − ⋅ θ− ⋅ θ=   (2.13) 
 
 After deriving the Lagrange equations of motion, the next step is to derive the state space of the 
inverted pendulum on cart in order to get the matrices A and B that will be used as input in the linear quadratic 
regulator matrix calculations. 
  
2.2. Linear quadratic regulator 
 
 The Linear Quadratic Regulator (LQR) aims to optimize the cost function in a system when it is in a 
nonlinear state. It is used as a state feedback gain. Unlike the PIDs, the LQR studies the system behavior 
through the state space form. Using a trial and error procedure, the linear quadratic regulator matrices Q and 
R which are the state weighting matrix and control weighting matrix, respectively, should be tuned in order to 
get the optimal control over the external perturbations and minimize the overshooting and settling time. 
 After deriving the equation of motion of the inverted pendulum on cart and linearizing it, it is needed 
to get the state space which is expressed as follows: 
 
      x Ax Bu= +  (2.14) 
 
      y Cx Du= +  (2.15) 
 
x is the vector state, u is the control input which is the force, A is the system matrix, B is the input matrix, C is 
the output matrix and y is the output vector. 
 The linear quadratic regulator that was used in the model in order to control the inverted pendulum on 
cart is depending on Q and R weight matrices to get the most optimal response with the purpose of regulating 
the system to make the output y be zero with minimum input. The LQR gives the full state vector, which is x 
derived from the state space in Eq. (2.14) and multiplies it by the matrix gain K and subtracts it from the scaled 
reference gain in order to get the optimal output. The purpose is to get the optimal K by choosing the optimal 
characteristics through performance and effort. The LQR problem is as follows: 
 

  ( ) ( ) ( ) ( )  [    ]T T

0

j x t Qx t u t Ru t
∞

= +  (2.16) 

 
Q is the performance weight matrix and R is the energy control. The feedback control law that can minimize 
the value of cost is: 
 
    u Kx=−  (2.17) 
 
The optimal gain of feedback K can be expressed as: 
 
    1 TK R B P−=  (2.18) 
 
P is found by solving Riccati equation: 
 
         T 1 TA P PA PBR B P Q 0−+ − + =  (2.19) 
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2.3. Simulation results 
 
 In MATLAB simulation of vibration control of the inverted pendulum, it is necessary to apply the trial 
and error procedurein order to find the optimal control to the system while receiving external perturbation. In 
this simulation, it had to compromise between the performance Q and the actuator effort, which is R in order 
to have the optimal gain K. In that case, it has given equal priority to linear displacement of the cart 1q , same 
as the velocity of the cart 1q , same as the angular displacement link 2q , same as angular velocity of the link 

2q . So, the obtained results are based on penalizing all these important factors the same way in the matrix 
giving them the same priority. The identity matrix (eye) set is as follows: 
 

  eye=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 
 
 
 

 (3.1) 

 
Table 1 shows different variables of the inverted pendulum on cart that were used in the simulation.  
 
Table 1. Inverted pendulum on cart specifications. 
 

Pendulum specification 
Variable Value 

CartM   .  1 5 kg   

Pendm   .  0 5 kg   

Rodl   1 m   
 
Table 2. The different K gains results 
 

No K1 K2 K3 K4 Q R 
1 -14.14 171.88 – 25.27 54.75 1 * eye 1 
2 – 0.99 53.46 – 2.81 15.38 1 * eye 1 
3 – 1.00 53.46 – 2.81 15.38 10 * eye 10 
4 – 1.00 53.46 – 2.81 15.38 10 * eye 10 

 
 As a trial and error of tuning Q and R in the simulation as shown above, those were the different gain 
Ks to minimize the peak overshoot and settling time of the curve. 
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Fig.2. Linear displacement of the cart. 
 
 As a result, the optimal control for the cart linear displacement, as shown in Fig.2, has a small peak 
overshoot and the time the cart took to settle and stabilize was 6.7 seconds. The optimal control to make the 
link of the pendulum angular displacement go back to zero was 9.3 seconds (Fig.3). 
 

 
 

Fig.3. Angular displacement of the link. 
 
3. Conclusions  
 
 Tackling the vibration caused by external perturbations on the system is quite important to stabilize 
the system while moving on uneven terrain or slope. With all the complexity and unstable nature of the inverted 
pendulum on cart, the linear quadratic regulator controller was successful in controlling the vibration caused 
by sudden external disturbance to the system. 
 After deriving the Lagrange equation of motion of the proposed model and linearization, the LQR 
could stabilize the system on MATLAB simulation with small overshoot and minimal settling time. This 
research aims at getting a much smaller peak overshoot and settling time. Further studies will be conducted 
using the method of a fuzzy linear quadratic regulator. 
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Nomenclature 
 
 A − system matrix 
 B − input matrix 
 C − output matrix 
 D − direct feedthrough matrix 
 F − external force 
 K − matrix gain 
 L − kinetic potential of the system 
 M − cart mass 
 P − positive definite symmetric solution 
 Q − state weighting matrix 
 Qx, Qθ − generalized forces 
 R − control weighting matrix 
 Tcart − kinetic energy of the cart 
 Tpend − kinetic energy of the pendulum 
 V − potential energy of the pendulum 
 g − gravity acceleration 
 l − rod length 
 m − pendulum mass 
 u − control input 
 v − velocity of the cart 
 v1 − velocity of the pendulum 
 x − state vector 
 x1 − coordinate of the gravity center of the inverted pendulum 
 y − output vector 
 y1 − coordinate of the gravity center of the inverted pendulum 
 θ  − angle of pendulum rotation 
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