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Abstract: Hall currents are used to investigate MHD unsteady two fluid flows and heat transport of plasma 
along a straight channel of conducting plates. In the two liquid zones, the velocity and temperature fields for the 
case of conducting side plates are obtained by solving the governing equations using a two-term series under the 
specified conditions. The distribution profiles are graphically resolved and examined. The distributions are 
thought to be dependent on the electron-to-total pressure ratio. The flow and heat transfer factors are also 
influenced by other parameters such as the Hartmann number, Hall parameter, rotation parameter, thermal 
conductivity and viscosity ratio.  
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1. Introduction 
 
 The study of MHD flow models in a variety of conditions and geometrical approach has been an 
important focus of research for decades in a variety of domains. It is interesting to examine the amount of 
heat flow and the temperature distribution pattern that heat transfer produces in channels when moving in an 
unsteady or steady motion, used for diverse applications in mechanical, electrical, chemical and biochemical 
engineering, geothermal energy extraction, and industrial problems. Oscillatory flows are also frequently 
employed to improve heat transfer rates in a variety of industrial processes, resulting in a significant 
technical shift toward efficiency. A number of scholars successfully addressed such problems using single 
fluid models [1-13]. The use of liquid metals as heat transfer agents and working fluids in MHD power 
generator and nuclear reactor technology has sparked an increased awareness in the behavior of liquid metal 
flows, thermal processes occurring at extremely high temperatures, and to be specific, the interaction with 
ionized fluids and electro-magnetic fields in a rotating environment. 
 The impact of the rotating component on a range of technical and industrial operations, such as 
channel flow and heat transfer, is important. Because the introduction of Coriolis forces in a flow field can 
change the entire dynamics of the flow process, it has the potential to change the mainstream flow. The 
presence of magneto hydrodynamic forces and Hall currents has been proven in the literature to have a 
significant impact on MHD channel flows in a rotating framework. Many astrophysical and geophysical 
problems rely on Hall currents, such as plasma flows into MHD power generator, plasma jets, and hall 
accelerators. Several studies on the issue have been reported in the literature due to their applications in a 
variety of industrial and technological sectors [14-24]. 

Furthermore, it is well understood that in a realistic state of affairs, fluid flows in general are 
unsteady/transient. This unsteadiness is responsible for a number of practical issues that emerge when 
working with immiscible fluids. Multi-fluid/ 2-liquid flow regimes are a significant matter of concern in 
the petroleum industry, geophysics, plasma physics, magneto-fluid dynamics, and other fields. In a 
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number of practical applications, it is useful to consider both immiscible fluids to be electrically 
conducting, especially when one is a better electric conductor than the other. Fluids having low electrical 
conductivity are significant for reducing power consumption while pumping fluid in MHD pumps and 
flow meters. Due to the significance of such studies, several investigations were extensively made and 
published in the literature [25-32]. 
 Mitra [33] considered the flow of two electrically conducting liquids among two rigid parallel plates 
in an unsteady motion. Hasnain et at. [34] considered the statistical features of a three-dimensional 2-liquid 
plasma flow model. Umavathi et al.[35] solved an oscillatory Hartmann 2- liquid heat transfer flow through 
horizontal channel. L.Raju and S.Dhar investigated the unsteady two liquid heat transfer flow of conductive 
liquids within a channel under the influence of a magnetic field [36]. An MHD 2-layer unsteady heat transfer 
flow in a horizontal channel among parallel plates in a rotating frame of reference was investigated by 
L.Raju and Valli [37]. An MHD two liquid heat transfer flow across a horizontal tube was investigated by 
Sharma and Sharma [38]. Gireesha et al. [39] investigated Hall effects on a dusty nano fluid two-phase 
transient flow via a stretching sheet using the KVL model. Sivakamini and Govindarajan [40] explored the 
unsteady MHD flow of 2-immiscible liquids through a horizontal channel with chemical reaction. 
AbdElmaboud et al. [41] investigated the immiscible liquids electromagnetic flow. The influence of Hall 
current on an unsteady MHD 2- ionised fluid heat transfer flow inside a channel was studied by L.Raju and 
Gowri [42]. For the situation of non-conducting (insulating) plates, L.Raju and Venkat [43] examined an 
unsteady EMHD flow and heat transfer of 2 ionized liquids in a rotating system with Hall currents. 
 Therefore, it is important to have a look into just how Hall currents alter the outcomes of unsteady 
MHD two liquid plasma flows in channels /or ducts surrounded by conducting plates. Many astrophysical, 
geophysical problems, and laboratory environments, such as plasma flows in MHD power generators, 
plasma jets, and Hall accelerators, high-temperature thermal processes, and crystal growth, all rely heavily 
on Hall currents under the influence of an applied magnetic field. 
 So, Hall currents are used in this paper to investigate an MHD two liquid unsteady heat transfer flow 
of plasma into a straight channel in a rotating framework while the channels plates are composed of 
conductive materials. This theoretical research is anticipated to have some practical application in the 
development of the conceptual design of fusion reactors, control of hot moving liquid in metallurgical 
engineering applications, aerodynamic heating, plasma jets and liquid metal MHD rotating generators, MHD 
pumps and flow meters, Hall accelerators, etc. driven by Lorentz force, and geothermal energy extraction as 
well as aerospace science. 
 
2. Formulation of the problem 
 
 An unsteady magneto hydrodynamic 2- liquid flow of ionized gases in a parallel channel between 
two conducting plates extending along the x  and z directions, taking into account Hall currents, controlled 

by a uniform constant gradient p
x

∂− ∂  is studied. The fluids and plates are assumed to be rigidly rotating 

around the y axis normal to the plates at a uniform angular velocity Ω . The liquids are subjected to a 
constant magnetic field 0B  applied normal to the plates. The x axis is measured in the direction of the 
hydraulic pressure gradient in a plane parallel to the channel plates, not in the flow direction. Region-I and 
region-II refer to the upper and lower fluids in the regions: 10 y h≤ ≤ and 2h y 0− ≤ ≤ . Two immiscible 
electrically conducting incompressible fluids with distinct densities ,1 2ρ ρ , viscosities ,1 2μ μ , and electrical 
conductivities ,01 02σ σ , thermal conductivities 1K  and 2K  occupy in region-I and region-II. The two fluids 
thermal characteristics are considered stable. The channels plates are kept at the same temperature, so the 
temperature at the top plate is the same as that at bottom plate. Except for pressure, all physical quantities are 
functions of the variables y and t, with the two plates being infinitely long in the x  and z axes. The two 
immiscible fluids interface is assumed to be flat, stress-free, and undisturbed. It is assumed that the magnetic 
Reynolds number is low. These assumptions along with these of the studies [14, 28, 32 and 42] are used to 
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formulate the governing equations of motion, current, and energy. It is also considered that ( , , ),i i iV u 0 w=

( , , ),0B 0 B 0= ( , , ),0 0Ω = Ω ( , , ),i ix izJ J 0 J= (E , , ),i ix izE 0 E= ,i 1 2= in both the upper and lower regions 
when the plates are conducting. As a result, the following transformations are used to make the governing 
equations and conditions dimensionless. 
 

  

* * * • •, ; , , , , , ,

, , , , ,

, , , , ,

2 2
i i i i i2 2

i p i i 2
i i p p ii i

2 2 2ix iz ix iz 01
ix iz ix iz 0 1

0 p 0 p 0i 0 p 0i 0 p 1

2
2 011 1 1 2 12

0 1
1 2 1 02 11

y h t hu wpi 1 2 y u u w t
h x u u h

E E J Jm m I I M B h
B u B u B u B u

h hK h
h

  μ ω ρ∂= = = − = = = ω =  ∂ μ μρ 

 σ
= = = = =  σ σ μ 

σρ Ω μ σ= α = = σ = σ =
μ μ σ σ

( )

, ,

-, , , .
/

22 11
2 2

21 01

e i wi21
2 2

01 p 1 i

e

1

2
i

1
1 m

w T TKm m
K1 11 m u K

=

σ σσ = =
σ σ+

σ= = β =
σ  + μ+ τ τ 

θ

 (2.1) 

 
For the two liquids , :i 1 2=  the parameters M , m , K , h , α , 0σ ,β and iθ denote the Hartmann number, Hall 
parameter, Taylor number (or rotation parameter), height ratio, viscosity ratio, electrical-conductivity ratio, 
thermal conductivity ratio, and temperature distributions. In addition, eω  represents the electrons gyration 
frequency, and eτ τ represent the mean collision times between electron and ion and electron and neutral 
particles, and t represents the time variable. When eτ  approaches infinity, the expression for Hall parameter m 
in Eq.(2.1) holds true for partially ionized gas and the expression is consistent with fully ionized gas. 
 Additionally, when the plates are formed of a conducting material and are short-circuited by an 
outside conductor, the induced electric current flows out of the channel. At this stage, there is no electric 
potential between the side plates. Also  and ix izm 0 m 0= =  are obtained if we take 0 (zero) electric field in 
the x and z directions (see [14] and [32]). As a result, when the channels plates are comprised of a conducting 
material, the dimensionless controlling equations of motion, current, temperature, and conditions in the two 
zones are (by just overlooking the asterisks): 
 
Region-I (For motion at the upper zone)  
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(2.2) 
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and 2 2 2

1 1x 1zI I I= + . 
 
Region-II (For motion at the lower zone) 
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Conditions on the velocities are given by 
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  At   - , and2 2y 1 u 0 w 0= = = . (2.13) 
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The temperature conditions at the boundary and interface are determined by 
 
  at      and    at   - .1 20 y 1 0 y 1θ = = θ = =  (2.15) 
 

  At the interface    , we have and .         1 2
1 2

d d1y 0
dy h dy
θ θ= θ = θ =

β
 (2.16) 

 



T. Linga Raju and B. Venkata Rao  141 

Subscripts 1 and 2 in the preceding equations relate to liquid quantities in the upper and lower areas. The 
velocity components in the x  and z axes of the two liquids, ,  1 2u u , and ,  1 2w w , are referred to as main and 
secondary velocity distributions. ,ix izE E  and ,ix izJ J  are the components of the electric field and current 
densities in the x and z directions. The ratio of electron pressure to total pressure is indicated by the notation 

 / . 1s pe p T=  and 2T  denote the temperatures of the two fluids, Ω  is the angular velocity, piC  is the 
specific heat at constant pressure, and the symbols, 11σ , 12σ  and 21σ , 22σ  signify the modified 
conductivities parallel and perpendicular to the direction of the electric field. 
 
3. Solution method 
 
 With the aim of solving energy equations (2.4) and (2.9) using conditions (2.15-2.16), first of all the 
momentum equations (2.2, 2.3, 2.7 and 2.8) are solved for the velocity fields by conditions (2.12-2.14); 
thereby we obtained expressions for currents: ,  and ,  1x 1z 2 x 2 zI I I I . As a consequence, it is possible to 
determine the temperature distribution in the two locations ( ),1 2θ θ  as well as the rate of the heat transfer 
coefficient 1Nu  and 2Nu  at the conducting plates. This system of equations is impossible to solve in closed 
form because there are coupled partial differential equations. As a result, they can be determined utilizing the 
following pair series [Ref. 42 and 43]. 
 
  ( ) ( ), ( ) ( cos ) ( ) and , ( ) ( cos ) ( )1 01 11 1 01 11u y t u y t u y w y t w y t w y= + ε ω = + ε ω , (3.1) 
 
  ( ) ( ), ( ) ( cos ) ( )  and , ( ) ( cos ) ( )2 02 12 2 02 12u y t u y t u y w y t w y t w y= + ε ω = + ε ω , (3.2) 
 
  ( ) ( ), ( ) ( cos ) ( )  and  , ( ) ( cos ) ( )1 01 11 2 02 12y t y t y y t y t yθ = θ + ε ω θ θ = θ + ε ω θ  (3.3) 
 
where, for steady state , , , and ,01 02 01 02 01 02u u w w θ θ are the velocity and temperature components; while

, ,11 12u u ,11 12w w , and ,11 12θ θ  are the associated time dependent parts in the two fluid zones. The 
following differential equations are produced individually by putting the Eqs (3.1-3.3) into the Eqs (2.2, 2.3, 
2.4, 2.7, 2.8, and 2.9) and then separating the steady and transient time varying components. With the help of 
conditions (2.12-2.16), the resulting equations are solved analytically. The closed form solutions for both 
steady and transient time varied parts are obtained separately to obtain solutions to the issue of an unsteady 
motion in two liquid zones. 
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Region-II 
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Related conditions are given by  
Steady state: 
 
  at  , and  at ,01 02y 1 q 0 q 0 y 1= = = = −  (3.12) 
 

  ( ) ( )At the interface : , ,01 02
01 02

dq dq1y 0 q 0 q 0
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Transient time dependent part 
 
  ( ) ( ) and .11 12q 1 0 q 1 0= − =  (3.16) 
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  ( ) ( ) and at 11 12
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  ( ) ( ) and at the interface 11 12
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β
. (3.19) 

 
By solving the above set of equations from (3.4)-(3.11) with the help of conditions (3.12)-(3.19), the 

following expressions are acquired for the velocity, temperature and rates of heat transfer coefficients as: 
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where, some of the notations/symbols which are involved in the above solutions are represented by: 
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and the expressions for the remaining coefficients are not provided as they are too many. 
 
4. Results and discussion 
 
 For the case of conducing plates, the main equations of motion, current, and energy of an unsteady 
issue are described. The main and transverse velocity fields: , and ,1 2 1 2u u w w as well as the temperature fields 

and1 2θ θ in the two liquids are solved using the associated equations. The computational estimates for 
various sets of flow parameter values are resolved to and depicted in Figs.1 to 42. Solid lines represent 
unsteady flow patterns, while dash-spot lines represent steady flow motions. The effect of control parameters 
such as the Hartmann number M , Hall parameter m , rotation parameter K , viscosity ratio ,α height ratio 
h , also 0σ and β as the proportion of electrical and thermal conductivities on the flow and temperature fields 
is discussed for two situations, namely: s 0=  and s equal to half of its estimate. In the numerical 
calculations, we used . , . ,01 021 2 1 5σ = σ = Pr1 r2P 1= = . In contrast to non-conducting (insulating) plates, (c.f. 
study of L.Raju and Venkat [43]), the solutions of the present study are observed to rely on s  (electron 
pressure to total pressure ratio) if the plates are conducting in nature. The theoretical results of this study 
coincide with those of Raju [31] for a steady flow without the rotation component. 
 
In the case of electron-to-total pressure ratio :s 0=  
 

Figures 1-3, show the effect of changing the Hartman number M  on velocity and temperature. 
Figures 1 and 2 show that when M  increases, both the primary and secondary velocity distributions 
decrease. This is due to the Lorentz force, which opposes the flow and causes a decrease in velocity. The 
maximum primary and secondary velocity distributions of the channel begin to migrate below the channel 
centre line, towards region-II, as M  increases. Figure 3 shows that as the value of M  rises, the temperature 
distribution in both zones diminishes. The maximum temperature in the channel tends to shift above the 
channel centre line towards region-1 as M  augments while all of the remaining regulating parameters are 
fixed. 
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Fig.1. Primary velocity profiles ,1 2u u (unsteady 
flow), *, *1 2u u  (steady flow) for various M and 

,m 2= . ,0 9α = ,h 1= ,0 1σ = ,K 2= . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=

(Conducting plates) 

Fig.2. Secondary velocity profiles ,1 2w w (unsteady 
flow), *, *1 2w w (steady flow) for various M  and 

,m 2= . ,0 9α = ,h 1= ,K 2= ,0 1σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=  

(Conducting plates)
 

 
 

 
 

Fig.3. Temperature profiles ,1 2θ θ (unsteady flow), 
*, *1 2θ θ  (steady flow) for various M  and ,m 2=

. ,0 333α = . ,h 0 75= ,0 2σ = . ,1 1 2σ = . ,2 1 5σ =
,K 1= ,1β = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=

(Conducting plates) 

Fig.4. Primary velocity profiles ,1 2u u (unsteady 
flow), *, *1 2u u (steady flow) for various m  and 

,M 2= . ,0 9α = ,h 1= ,K 2= ,0 1σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=  

(Conducting plates)
 

The effect of increasing the Hall parameter m  on velocity and temperature fields in the two sites is 
shown in Figs 4-6. As m increases, the primary velocity distribution in both regions decreases, while the 
secondary velocity distribution in both regions increases, as seen in Figs 4-5. This could be due to the 
existence of magnetic damping and Coriolis forces in the flow field, with the Coriolis force causing the so-
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called secondary velocity. The maximum primary and secondary velocity distributions of the channel tend to 
migrate below the channel centre line, towards region-II, as m  increases. Figure 6 shows that as the value of 
m  grows, the temperature distribution in both zones decreases. The maximum temperature distribution in the 
channel tends to shift above the channel centre line, towards region-I, as the Hall parameter m  increases. 
 

 
 

 

Fig.5. Secondary velocity profiles ,1 2w w (unsteady 
flow), *, *1 2w w (steady flow) for various m  and 

,M 2= . ,0 9α = ,h 1= ,K 2= ,0 1σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=  

(Conducting plates) 

Fig.6. Temperature profiles ,1 2θ θ (unsteady flow), 
*, *1 2θ θ (steady flow) for various m  and ,M 4=

. ,0 333α = . ,h 0 75= ,0 2σ = . ,1 1 2σ = . ,2 1 5σ =
,K 1= ,1β = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=  

(Conducting plates) 
 

 
 

 
 

Fig.7. Primary velocity profiles ,1 2u u (unsteady 
flow), *, *1 2u u (steady flow) for various K  and 

,M 2= ,m 2= . ,0 9α = ,h 1= ,0 1σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=

(Conducting plates) 

Fig.8. Secondary velocity profiles ,1 2w w (unsteady 
flow), *, *1 2w w (steady flow) for various K  and 

,M 2= ,m 2= . ,0 9α = ,h 1= ,0 1σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=

(Conducting plates) 
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Figures 7-9 depict the effect of the Taylor number K  on the main and secondary velocity as well as 
temperature distributions. Increases in K  reduce primary velocity distribution in both zones, as shown in Fig.7. 
The secondary velocity distribution in both zones grows up to K 1=  and then declines, as seen in Fig.8. This 
may be due to the presence of Coriolis forces in the rotating framework and magnetic field. The highest 
secondary velocity dispersion of the channel began to drift above the channel centre line, towards region-I, as 
K  increased. Figure 9 depicts the effect of the Taylor number K  on the temperature distribution in two liquid 
zones. As the value of K  rises, the temperature dispersion between the two zones decreases. The maximum 
temperature in the channel tends to shift below the channel centre line toward region-II as the Taylor number 
K  grows. 
 

 
 

 
 

Fig.9. Temperature profiles ,1 2θ θ  (unsteady flow),
*, *1 2θ θ  (steady flow) for various K  and ,M 4=

,m 2= . ,0 333α = . ,h 0 75= ,0 2σ = . ,1 1 2σ =
. ,2 1 5σ = ,1β = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=  

(Conducting plates) 

Fig.10. Primary velocity profiles ,1 2u u  (unsteady 
flow), *, *1 2u u  (steady flow) for various α  and 

,M 2= ,m 2= ,h 1= ,K 2= ,0 1σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=

(Conducting plates)
 

The influence of the viscosity ratio α on the primary and secondary velocity distributions of the two 
fluids is shown in Figs 10-11. As seen in Figs 10 and 11, the primary velocity distribution in the two regions 
decreases as α grows, whereas the secondary velocity distribution increases. The maximum primary and 
secondary velocity distributions of the channel begin to shift above the channel center-line, towards region-I, 
as α increases. The influence of the viscosity ratio on temperature is depicted in Fig.12, which shows that 
increasing α decreases the temperature distribution until it reaches .0 5α = , at which point it grows in both 
zones. The temperature distribution in the channel continues to shift below the channel centre line, towards 
region-II, as α rises. 

The influence of the height ratio h  on the primary, secondary velocity and temperature distributions 
is shown in Figs 13-15. As h  grows, the primary velocity distribution in region-I diminishes, as illustrated in 
Fig.13. It rises in region-II until it reaches h 1=  and then falls. As seen in Fig.14, the secondary velocity 
distribution increases with increasing h  up to the value of h 1=  and then decreases in the region-I. In region-
II, increases in h  enhance the secondary velocity distribution. The maximum primary and secondary velocity 
distributions of the channel begin to migrate below the channel centre line, towards region-II, as h  increases. 
Figure 15 shows that increasing h  causes the temperature distribution to drop until it reaches .h 0 5= , at 
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which point it grows in region-I while decreases in region-II. The maximum temperature in the channel tends 
to migrate below the channel central axis as h  grows, towards region-II. 
 

 
 

 
 

Fig.11. Secondary velocity profiles ,1 2w w
(unsteady flow), *, *1 2w w (steady flow) for various 
α  and ,M 2= ,m 2= ,h 1= ,K 2= ,0 1σ =

. ,1 1 2σ = . ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω
s 0=  (Conducting plates) 

Fig.12. Temperature profiles ,1 2θ θ (unsteady flow), 
*, *1 2θ θ (steady flow) for various α  and ,M 4=

,m 2= . ,h 0 75= ,0 2σ = . ,1 1 2σ = . ,2 1 5σ = ,K 1=
,1β = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=  

(Conducting plates) 
 

 
 

 

Fig.13. Primary velocity profiles ,1 2u u  (unsteady 
flow), *, *1 2u u (steady flow) for various h  and 

,M 2= ,m 2= . ,0 9α = ,K 2= ,0 1σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=

(Conducting plates) 

Fig.14. Secondary velocity profiles ,1 2w w  
(unsteady flow), *, *1 2w w (steady flow) for various 
h  and ,M 2= ,m 2= . ,0 9α = ,K 2= ,0 1σ =

. ,1 1 2σ = . ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω
s 0= (Conducting plates) 
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Fig.15. Temperature profiles ,1 2θ θ  (unsteady 
flow), *, *1 2θ θ  (steady flow) for various h  and 

,M 4= ,m 2= . ,0 333α = ,0 2σ = . ,1 1 2σ =
. ,2 1 5σ = ,K 1= ,1β = . ,0 5ε = ,1ρ = ,1ω =

/ ,t = π ω s 0=  (Conducting plates) 

Fig.16. Primary velocity profiles ,1 2u u  (unsteady 
flow), *, *1 2u u (steady flow) for various 0σ  and 

,M 2= ,m 2= . ,0 9α = ,h 1= ,K 2= . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω s 0=  

(Conducting plates) 
 

 
 

 
 

Fig.17. Secondary velocity profiles ,1 2w w  
(unsteady flow), *, *1 2w w (steady flow) for various 

0σ  and ,M 2= ,m 2= . ,0 9α = ,h 1= ,K 2=
. ,1 1 2σ = . ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω

s 0=  (Conducting plates) 

Fig.18. Temperature profiles ,1 2θ θ  (unsteady 
flow), *, *1 2θ θ  (steady flow) for various 0σ  and 

,M 2= ,m 2= . ,0 333α = . ,h 0 75= . ,1 1 2σ =
. ,2 1 5σ = ,K 1= ,1β = . ,0 5ε = ,1ρ = ,1ω =

/ ,t = π ω s 0=  (Conducting plates) 
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Fig.19. Temperature profiles ,1 2θ θ  (unsteady 
flow), *, *1 2θ θ  (steady flow) for various β  and 

,M 4= ,m 2= . ,0 333α = . ,h 0 75= ,0 2σ =
. ,1 1 2σ = . ,2 1 5σ = ,K 1= . ,0 5ε = ,1ρ = ,1ω =

/ ,t = π ω s 0=  (Conducting plates) 

Fig.20. Nusselt Number 1Nu  for various M  and 
. ,0 333α = ,0 1σ = . ,1 1 2σ = . ,2 1 5σ = . ,h 0 75=
,1ρ = ,1β = ,K 1= . ,0 5ε = ,1ω = / ,t = π ω s 0=  

(Conducting plates) 

 

,  
 

 
 

Fig.21. Nusselt Number 2Nu  for various M  and 
. ,0 333α = ,0 1σ = . ,1 1 2σ = . ,2 1 5σ = . ,h 0 75=
,1ρ = ,1β = ,K 1= . ,0 5ε = ,1ω = / ,t s 0= π ω =  

(Conducting plates) 

Fig.22. Primary velocity profiles ,1 2u u  (unsteady 
flow), *, *1 2u u  (steady flow) for various M  and 

,m 2= . ,0 9α = ,h 1= ,0 1σ = ,K 2= . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω .s 0 5=  

(Conducting plates)
 

Figures 16-18 show how the electrical conductivity ratio 0σ affects the outcome on velocity and heat 
distribution. When 0σ grows, it is revealed that there is no significant variation in the primary and secondary 
velocity distributions. But maximum primary velocity distribution of the channel tends to move below the 
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channel centre line towards region-II as 0σ increases, whereas the maximum secondary velocity distribution 
tends to move above the channel centre line towards region-I. The temperature distribution in the two zones 
rises as the parameter 0σ rises. The maximum velocity distribution of the channel tends to shift above the 
channel centre line, towards region-I, as 0σ increases. 

Figure 19 depicts the impact of the thermal conductivity ratioβ on temperature distribution. It has 
been shown that when β rises, the temperature distribution rises until it reaches 1β = , at which time it begins 
to diminish in region-I while growing in region II. As β . increases, the channels maximum temperature 
tends to drop below the channel centre line, towards region-II. This means that increasing the thermal 
conductivity ratio β causes the temperature of the fluid to rise faster towards region-II. 
 Figures 20 and 21 show the rate of heat transfer coefficients versus Hartmann number M  for 
various Hall parameter values. When the remaining parameters are held constant, it is revealed that the rate 
of heat transfer coefficient increases as M  rises. It is also discovered that increasing the hall parameter m up 
to a specific esteem reduces the rate of heat transfer coefficient at the upper plate and increases past this 
esteem, while the rate of heat transfer coefficient increases at the lower plate as the hall parameter increases 
exactly when all the other governing parameters remain constant.  
 
In the case of electron-to-total pressure ratio /s 1 2= : 
 

The effects of the Hartmann number M  on the primary and secondary velocity, and temperature 
distributions of the two fluids are shown in Figs 22-24. The primary and secondary velocity distributions in 
both zones decrease as M  increases. The maximum primary and secondary velocity distributions of the 
channel begin to migrate above the channel centre line, towards region-I, as M  increases. The temperature 
distribution in both zones grows as M  increases up to M 4= , then drops as seen in Fig.24. As M  grows, 
the maximum temperature in the channel tends to go above the channel centre line towards region-I when all 
of the remaining controlling factors are fixed. 
 

 
 

 

Fig.23. Secondary velocity profiles ,1 2w w  
(unsteady flow), *, *1 2w w  (steady flow) for various 
M  and ,m 2= . ,0 9α = ,h 1= ,K 2= ,0 1σ =

. ,1 1 2σ = . ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω
.s 0 5=  (Conducting plates) 

Fig.24. Temperature profiles ,1 2θ θ  (unsteady 
flow), *, *1 2θ θ  (steady flow) for various M  and 

, . ,m 2 0 333= α = . ,h 0 75= ,0 2σ = . ,1 1 2σ =
. ,2 1 5σ = ,K 1= ,1β = . ,0 5ε = ,1ρ = ,1ω =

/ ,t = π ω .s 0 5=  (Conducting plates) 
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Fig.25. Primary velocity profiles ,1 2u u  (unsteady 
flow), *, *1 2u u (steady flow) for various m  and 

,M 2= . ,0 9α = ,h 1= ,K 2= ,0 1σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω .s 0 5=  

(Conducting plates) 

Fig.26. Secondary velocity profiles ,1 2w w  
(unsteady flow), *, *1 2w w (steady flow) for various 
m  and ,M 2= . ,0 9α = ,h 1= ,K 2= ,0 1σ =

. ,1 1 2σ = . ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω
.s 0 5= (Conducting plates) 

 

 
 

 

Fig.27. Temperature profiles ,1 2θ θ (unsteady flow), 
*, *1 2θ θ  (steady flow) for various m  and ,M 4=

. ,0 333α = . ,h 0 75= ,K 1= ,1β = ,0 2σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω .s 0 5=

(Conducting plates) 

Fig.28. Primary velocity profiles ,1 2u u  (unsteady 
flow), *, *1 2u u  (steady flow) for various K  and 

,M 2= ,m 2= . ,0 9α = ,h 1= ,0 1σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω . ,s 0 5=

(Conducting plates)
 

The effects of varying the Hall parameter m  on velocity and heat distributions in two sites are 
shown in Figs 25-27. The primary and secondary velocity distributions in the two zones are lower when m  
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is increased, as illustrated in Figs 23 and 24. The maximum primary and secondary velocity distributions of 
the channel tend to migrate below the channel centre line, toward region-II, as m  increases. As seen in 
Fig.27 that the temperature distribution in both zones diminishes as the value of m  rises. Furthermore, as the 
Hall parameter m  is increased, the maximum temperature distribution in the channel appears to move below 
the channel centre line towards region-II. 

The effect of the Taylor number K  on both the main and secondary velocity distributions is shown 
in Figs 28 and 29. The primary and secondary velocity distributions in the two zones both decrease as K  
increases. The channels maximum primary and secondary velocity distributions begin to migrate above the 
channel centre line, towards region-I, as K  increases. Figure 30 shows the effect of the Taylor number K  
on heat flow in two liquid areas. The temperature distribution in the two zones is reduced when K  is 
increased. The maximum temperature within the channel tends to shift above the channel centre line, towards 
region-I, as the Taylor number K  grows. 
 

 
 

 

Fig.29. Secondary velocity profiles ,1 2w w
(unsteady flow), *, *1 2w w  (steady flow) for various 
K  and ,M 2= ,m 2= . ,0 9α = ,h 1= ,0 1σ =

. ,1 1 2σ = . ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω
.s 0 5= (Conducting plates) 

Fig.30. Temperature profiles ,1 2θ θ (unsteady flow), 
*, *1 2θ θ  (steady flow) for various K  and ,M 4=

,m 2= . ,0 333α = . ,h 0 75= ,1β = ,0 2σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω .s 0 5=

(Conducting plates) 
 

The effect of the viscosity ratio α on the velocity and temperature is depicted in Figs 31-33. Increasing 
α  lowers the primary velocity distribution in region-I but reduces until the value reaches .0 9α = , then grows 
in area II as illustrated in Fig.31. In Figure 32, we can see that in α decreases the secondary distribution in 
region-I, whereas it drops until .0 9α =  in region-II, then grows. The temperature distribution in the two zones 
appears to be decreasing as it grows up to .0 333α = , then increasing as seen in Fig.33. The temperature 
distribution in the channel tends to migrate below the channel centre line, towards region-II, as the channel 
temperature rises. 

The effects of the height ratio h  on the primary and secondary velocities and temperature are shown 
in Figs 34-36. Figure 34 indicates that increasing h  boosts the primary velocity distribution up to .h 0 5= , 
then diminishes but beyond h 1=  increases in the two zones. Figure 35 demonstrates that when the value of 
h  increases, the secondary velocity distribution grows until it reaches .h 0 75= , at which point it descends 
into region-I. In region-II, as h  increases, the secondary velocity distribution grows, then drops as h 1= . 
The maximum primary and secondary velocity distributions of the channel tend to migrate below the channel 
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centre line, towards region-II, as h  increases. When h  is increased, the temperature distribution decreases 
until it reaches .h 0 5= , at which point it increases in region-I and decreases in region-II. As h  increases, the 
channels maximum temperature tends to fall below the channel centre line, towards region-II. 

 

Fig.31. Primary velocity profiles ,1 2u u (unsteady 
flow),  *, *1 2u u  (steady flow) for various α  and 

,M 2= ,m 2= ,h 1 K 2= = ,0 1σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω . ,s 0 5=

(Conducting plates) 

Fig.32. Secondary velocity profiles ,1 2w w
(unsteady flow),  *, *1 2w w  (steady flow) for 
various α  and ,M 2= ,m 2= ,h 1 K 2= = ,0 1σ =

. ,1 1 2σ = . ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω
. ,s 0 5= (Conducting plates) 

 

 
 

 

Fig.33. Temperature profiles ,1 2θ θ (unsteady flow), 
*, *1 2θ θ  (steady flow) for various α  and ,M 4=

,m 2= . ,h 0 75= , ,K 1 1= β = ,0 2σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω .s 0 5=

(Conducting plates) 

Fig.34 .Primary velocity profiles ,1 2u u (unsteady 
flow), *, *1 2u u  (steady flow) for various h  and 

,M 2= ,m 2= . ,0 9α = ,K 2= ,0 1σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω . ,s 0 5=

(Conducting plates)
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Fig.35. Secondary velocity profiles ,1 2w w
(unsteady flow), *, *1 2w w  (steady flow) for various 
h  and ,M 2= ,m 2= . ,0 9α = ,K 2= ,0 1σ =

. ,1 1 2σ = . ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω
. ,s 0 5= (Conducting plates) 

Fig.36. Temperature profiles ,1 2θ θ (unsteady flow), 
*, *1 2θ θ  (steady flow) for various h  and ,M 4=

,m 2= . ,0 333α = ,1 K 1β = = , ,0 2σ = . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω . ,s 0 5=  

(Conducting plates) 
 

 
 

 
 

Fig.37. Primary velocity profiles ,1 2u u (unsteady 
flow), *, *1 2u u  (steady flow) for various 0σ  and 

,M 2= ,m 2= . ,0 9α = ,h 1= ,K 2= . ,1 1 2σ =
. ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω . ,s 0 5=  

(Conducting plates) 

Fig.38. Secondary velocity profiles ,1 2w w
(unsteady flow), *, *1 2w w  (steady flow) for various 

0σ  and ,M 2= ,m 2= . ,0 9α = ,h 1= ,K 2=
. ,1 1 2σ = . ,2 1 5σ = . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω

. ,s 0 5= (Conducting plates) 
 

The electrical conductivity ratios influence is seen in Figs 37-39. The primary and secondary 
velocity distributions show no significant variation as 0σ increases. The maximum primary and secondary 
velocity distributions of the channel tend to shift below the channel centre line, towards region-II, as the 
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value of 0σ increases. The temperature distribution in the two zones increases as 0σ  rises. The maximum 
temperature tends to shift above the channel centre line, towards region-I, as 0σ grows. 

 

 
 

 

Fig.39. Temperature profiles ,1 2θ θ (unsteady flow), 
*, *1 2θ θ  (steady flow) for various 0σ and ,M 4=

,m 2= . ,0 333α = . ,h 0 75= ,1β = . ,1 1 2σ =
. ,2 1 5σ = ,K 1= . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω

.s 0 5= (Conducting plates) 

Fig.40. Temperature profiles ,1 2θ θ (unsteady flow), 
*, *1 2θ θ  (steady flow) for various β  and ,M 4=

,m 2= . ,0 333α = . ,h 0 75= ,0 2σ = . ,1 1 2σ =
. ,2 1 5σ = ,K 1= . ,0 5ε = ,1ρ = ,1ω = / ,t = π ω

.s 0 5= (Conducting plates) 
 

 
 

 
 

Fig.41. Nusselt Number 1Nu  for various M  and 
. ,0 333α = . ,h 0 75= ,0 1σ = . ,1 1 2σ = . ,2 1 5σ =
,K 1= . ,0 5ε = ,1ρ = ,1β = ,1ω = / ,t = π ω .s 0 5=

(Conducting plates) 

Fig.42. Nusselt Number 2Nu  for various M  and 
. ,0 333α = . ,h 0 75= ,0 1σ = . ,1 1 2σ = . ,2 1 5σ =
,K 1= . ,0 5ε = ,1ρ = ,1β = ,1ω = / ,t = π ω .s 0 5=

(Conducting plates)
 
The thermal conductivity ratios effect on the temperature distribution is seen in Fig.40. Rising β  

raises the temperature distribution up to β =1, after which the temperature distribution in region-I decreases 
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while the temperature distribution in region-II increases. The maximum temperature in the channel tends to 
fall somewhat below the channel centre line, towards region-II, as the value ofβ increases. 

Figures 41 and 42 show the rate of heat transfer coefficient against the Hartmann number for various 
Hall parametric values m . Increases in either the Hartmann number or the Hall parameter increase the rate of 
heat transfer coefficient at the two plates, as seen in Figs 41 and 42. 

In light of the foregoing points of discussion, it has been discovered that the controlling parameters 
such as the Hartmann number, Hall parameter, rotation parameter, thermal conductivity, and viscosity ratio 
have a significant impact on the flow and heat transfer factors, and thus the findings of this study may be 
applicable in a variety of engineering and industrial issues. 

 
5. Conclusion 
 
 When the side plates of a rotating system are formed of a conducting material, the impact of Hall 
currents on MHD two liquid unsteady flows of plasma along a straight channel surrounded by infinitely long 
plates is investigated. The solutions for velocity and temperature fields in the 2-liquid zones are found to 
dependent on the electron pressure to total pressure ratio only. The effects of the Hartmann number, Hall 
parameter, rotation parameter, and viscosities, densities, heights, electrical conductivities, and thermal 
conductivities ratio on the velocity and temperature distributions in two liquid zones are investigated using 
distribution profiles for two different cases where the ionization parameter is either zero or half. The main 
research findings are summarized in the following points for two cases: 
In the instance of electron-to-total pressure ratio s 0= : 

• A raise in the Hartmann number decreases both the velocity and temperature. 
• An increase in the Hall parameter diminishes the main flow and temperature while boosts the 

transverse velocity (secondary velocity component). 
• A rise in the Taylor number lessens the main flow and temperature in both regions, whereas the 

transverse velocity grows up to a specific estimate and thereafter drops. 
• A boost in the thermal conductivity ratio increases the temperature until it reaches a specific value 

after which it falls in region-I, while boosts in region-2. 
• As the Hartmann number grows, the rate of heat transfer coefficient at the two plates increases. 
• Increasing the Hall parameter up to a certain estimate lowers the rate of heat transfer coefficient at 

the upper plate and raises it beyond that estimate. 
• As the Hall parameter increases, the rate of heat transfer coefficient increases at the lower plate.  
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Nomenclature 
 
 , ,.. , ,..1 2 1 2B B b b  – coefficients /notations used for simplicity in the main equations and solutions 
 0B  – applied uniform magnetic field 

 ( ),
ipc i 1 2=  – specific heat at constant pressure in the two-fluid region 

 , , ( , )ix izE E i 1 2=  – applied electric fields in the x- and z- directions, where ( ), ,i ix izE E 0 E=  
 h  – ratio of the heights of the two regions 
 1h  – height of the channel in the upper region (region-I) 
 2h  – height of the channel in the lower region (region-II) 
 , ( , )ix izI I i 1 2=  – dimensionless current densities along x- and z- directions in region-I and region-II, that is, , ; ,1x 1z 2x 2zI I I I  
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 1I ; 2I ; – symbols for currents in two-fluids, where current density: 

 1 1x 1zI I iI= + ; 2 2x 2zI I iI= + ( ), , , ( , )i ix izJ J 0 J i 1 2= =  
 ,ix izJ J  – current densities along the x- and z- directions in the two fluid regions 
 1K , 2K  – thermal conductivities of the two fluids 

 K
2
1

1

h ρΩ=
μ

 – Taylor number (rotation parameter) 

 M  – Hartman number 2 2
01 0 1 1M B h= σ μ  

 m  – Hall parameter where e
e

1 1m
 

= ω + τ τ 
 

 , , ( , )ix izm m i 1 2=  – dimensionless electric fields for two fluids as , ,1x 1z 2xm m m  and 2zm  
 1M , 2M  – notations where ,1 1x 1z 2 2x 2zM m im M m im= + = +  
 1Nu , 2Nu  – rate of heat transfer coefficients at upper and lower plates 
 p  – pressure 
 ep  – electron pressure 
 (  , )riP i 1 2=  – Prandtl number of the two fluids 

 , , ,1 2 3 4P P P P  – notations used for: , , ,
2

0 01 0 02
1 2 3 42 2 2 2

mssm smP 1 P P 1 1 s P
1 m 1 m 1 m 1 m

σ σ −σ σ = − = − = − − = + + + + 
 

 , , ,01 02 11 12q q q q  – velocities in complex notation for steady and transient state in the two fluid regions: 
  , ,01 01 01 11 11 11q u iw q u iw= + = + ,02 02 02 12 12 12q u iw q u iw= + = +  
 ( ) ( ), , ,1 2y t y tq q  – solutions of velocity distributions for the two fluids in complex form: 

  ( ) ( ) ( ) ( ), cos . ( ), , cos . ( )1 01 11 2 02 12q y t q y t q y q y t q y t q y= + ε ω = + ε ω  

 eps
p

=  – ionization parameter (ratio of electron pressure to the total pressure) 

 t – time 
 ,( , ) :i 1 2T i 1 2 T T=  – temperatures of the fluids in region-I and region-II 
 , ( , ) :i 1u i 1 2 u= , 2u  – primary velocity distributions (velocity components along the x-direction) 

in region-Iand -II 
 ( ) ( ),01 02u y u y  – steady state primary velocities in the two fluid regions 

 ( ) ( ),11 12u y u y  – transient primary velocity components in the two fluid regions 
 ,1m 2mu u  – primary mean velocity distributions in the two fluid regions 

 pu  – ( )2
1 1

ph
x

∂= − μ
∂

characteristic velocity 

 iV  – fluid velocity 
 , ( , ) : ,i 1 2w i 1 2 w w=  – secondary velocity distributions (component of velocity field along the z-direction)  

in the two fluid regions 
 ( ) ( ),01 02w y w y  – steady state secondary velocity components in the two fluid regions 

 ( ) ( ),11 12w y w y  – transient secondary velocities in the two regions 

 ( ), ,x y z  – space co-ordinates in the rectangular Cartesian co-ordinate system 

 p
x

∂− ∂  – common constant pressure gradient 

 
Greek Symbols 
 
 α  – ,1 2= μ μ  ratio of the viscosities 

 β  – ,1
2

K
K

= thermal conductivity ratio 

 ( , ) : ,i 1 2i 1 2μ = μ μ  – viscosities of the two fluids 
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(i , ), ,0i 01 021 2σ = σ σ  – electrical conductivities of the two fluids 

 0σ  – ratio of electrical conductivities 01
0 02

σσ = σ  

 , , ,11 12 21 22σ σ σ σ  – modified conductivities parallel and normal to the direction of electric fields 

 ,1 2σ σ  – symbols for the ratios ,12 221 211 21
σ σσ = σ =σ σ  

 ,1 2ρ ρ  – densities of the two fluids 

 ρ  – 2

1

ρ
ρ

, density ratio of the two fluids  

 ,1 2θ θ  – dimensionless temperature distributions for the two-fluid regions 
 ( ) ( ),01 02y yθ θ  – steady state temperature distributions in the two fluid regions 

 ( ) ( ),11 12y yθ θ  – transient temperature distributions in the two fluid regions 
 , eτ τ  – mean collision time between electron and ion, electron and neutral particles 
 ε  – amplitude (a small constant quantity, 1ε << ) 
 ω  – frequency of oscillation 
 eω  – gyration frequency of electron 
 Ω  – angular velocity, where ( , , )0 0Ω = Ω  
 
 Subscripts 1,2 – refers to the quantities in the upper and lower fluid regions: region-I and region-II 
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