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In the present paper, an analytical solution for the static deformation of a two dimensional model consisting
of an infinite homogeneous isotropic elastic layer of uniform thickness placed over an irregular isotropic elastic
half-space due to movement of a long tensile fault has been obtained. The rectangular shaped irregularity is
assumed to be present in the lower half-space and assuming that the fault lies in the elastic layer at a finite depth
say ’h’ to the upper surface of the layer. For numerical computation, the expressions of displacements and
stresses are calculated by using Sneddon’s method and the effect of source depth and irregularity on the
displacements and stresses has been investigated graphically.

Key words: deformation, tensile fault, layered half-space, rectangular irregularity.
1. Introduction

The main objectives of theoretical seismology are the modelling of the dynamics of an earthquake in
the seismically active region of the earth. In this geological process, geologists have to indicate slow
aseismic changes of stress and strain in such a region. Earthquakes generate faults created due to various
types of movements and are different in geometrical shapes and sizes. A fault may be considered as a
dislocation created by the fracture of the rock material separating two rock masses.

To study earth deformation due to fault problems, a two dimensional model is considered. It is an
observational fact that the tensile fault model is the generalization of the shear fault model with the assumption
that the slip vector can be arbitrarily oriented with respect to the fault and is not constrained to lie within the fault
plane. Tensile earthquakes are dipping faults and occur in geothermal and volcanic areas which are rich in fluids.
Tensile fault representation has several important geophysical applications, such as modeling of the deformation
fields due to dyke injection in the volcanic region, mine collapse and fluid-driven cracks.

The static deformation of a layered or semi-infinite elastic media due to tensile and dip slip faults has
been studied by many researchers. Bonafede and Rivalta [2] provide analytical solutions for the elementary
tensile dislocation problem in an elastic medium composed of two welded half-spaces. Subsequently, Bonafede
and Rivalta [3] derive the solution for the elastic field produced by a vertical tensile crack, opening under the
effect of an assigned overpressure within it, in the proximity of the welded boundary between two half-spaces
characterized by different elastic parameters. Singh and Garg [4] obtained the Airy stress function for an
unbounded elastic medium. Using these results, Singh ez al. [5] studied a problem of a very long dip slip fault
in an isotropic elastic layer overlying a uniform isotropic elastic half-space and the integrals involved were
calculated approximately by replacing the integrand by a finite sum of exponential terms (Ben-Menahem and
Gillon, [1]). Singh and Singh [6] obtained the coseismic deformation of an elastic layer perfectly connected to a
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half-space that is elastic in dilation and viscoelastic in distortion caused by an infinitesimal thin long tensile
fault present in the layer. Kumar et al. [7] derived the closed form expressions for the Airy stress function due
to a long tensile fault of arbitrary dip source in two welded half-spaces. Bala and Rani [8] studied the
deformation of isotropic, homogeneous, perfectly elastic half-spaces in welded contact to an orthotropic elastic
half-space caused by a long buried dip-slip fault. Malik ez al. [9] and Malik et al. [10] studied the deformation
of isotropic, homogeneous, perfectly elastic half-spaces, respectively, in welded contact and smooth contact to
an orthotropic elastic half-space caused by a vertical tensile fault.

Elastic problems with irregular boundaries have gained much importance in geophysics due to
closeness to their natural environmental conditions. Their understanding leads to a better predictions for the
seismic behaviour at continental margins and mountain roots. Therefore, it is interesting to study the static
deformation in elastic models with irregular boundaries. A number of researchers have studied the problem
of irregular boundaries (Ray and Singh [11], Selim [12], Madan et al. [13] and Madan et al. [14]) who
studied static and quasi-static deformation on irregular interfacing boundary of two elastic half-space. Savita
et al. [16] obtained shearing stress components at a point in a monoclinic elastic layer overlying an irregular
monoclinic elastic half-space and gave the generalization of the results obtained in Savita et al. [15]. Both
papers resulted that different sizes of rectangular irregularity produce significant variation in shearing
stresses for different types of elastic materials.

In this paper, an attempt has been made to consider a crystal structure having a horizontal isotropic infinite
elastic layer connected to an irregular boundary of an isotropic elastic half-space and to determine the plane-strain
deformation due to a very long tensile fault of infinitesimal finite thickness that lies in elastic layer in the model. The
effect of irregularity and source depth on displacements and stresses has been illustrated graphically.

2. Formulation of the problem

We consider a two phase model consisting of a homogeneous isotropic elastic layer of uniform thickness
'Y" placed over an irregular isotropic elastic half-space having a rectangular-shaped irregularity on its boundary

surface. The origin of the (cartesian co-ordinate system (x,y,z) is placed at the free surface with the y-axis

vertically downward. Let A;, u;; i=1,2 be Lame’s constants for the elastic layer 0 <y <Y (Med.I) and elastic
half-space y >Y (Med.Il) respectively. Let there be a long and infinitesimal thin strip of thickness 'ds' (as a line), a

dislocation source parallel to the x-axis passing through the point (0,%,0) of the elastic layer (0 < y <Y (Fig.1).
X
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Fig.1. Layer of uniform thickness overlying an irregular elastic half-space with a line dislocation having
width 'ds' and infinite length parallel to x-axis passing through the point (0,4,0).
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We have a mathematical representation of the rectangular irregularity:

/() b :|Z|Sa Q.0
=¢f(z)= .
Y 0 :|>a
where
€= i <</,
2a
is the perturbation factor.
By applying the Fourier Transform technique to Eq.(2.1), we obtained
f(z)=sign(a—z)+sign(a+z). 2.2)
3. Airy stress functions
The Airy stress function U, for a line source, given by Singh and Garg [4] as
Uy = [[(4g + Bokly =) sin(ke) +(C, + Dy|y =) cos (ke) [k~ ak 3.1)
0

where the source coefficients 4, B,, C, and D, are independent of & .
For a long dislocation source parallel to the x-axis passing through the point (0,%,0) in the elastic layer

(0<y<Y), the Airy stress functions U', U for the elastic layer and half-space, respectively,
are of the form

u'=u, +T[(A1 + B ky)sin(kz)+(C, +D1ky)cos(kz)]k_le_kydk+
0
(3.2)

+]:{(A2 + Byky)sin(kz)+(C, +D2ky)cos(kz)]k_lekydk ,
0

u’ :T[(A3 + Bsky)sin(kz)+(C3 + Dsky ) cos (kz) |k~ ™ dk (3.3)
0

The unknowns 4, B, , etc. are to be determined by using the boundary conditions.

4. Stresses and displacements in terms of the Airy stress function

The stresses and displacements in the plane strain problem for an isotropic elastic medium can be
solved in terms of the Airy stress functions (Sokolnikoff, [17], Section 71)

; a2Un ) aZUn . aZUn
G33=—> > O3 = > O =7"
dy dzy oz

, 4.1
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ou" 1

20,u3 =_$+EI (01212 +<7'313)dy,
(cont.4.1)
n ou” 1 . .
ZMnuj :_?-FIJ(GZZ +G33)dZ ,
Sty 4.2)

o, = .
A, +2u, 2(I-0,)

In the above Eqs(4.1) and (4.2), n=1,1I and indicate the elastic layer and irregular elastic half-space
respectively, 'c' denotes the Poisson’s ratio.

4.1. For the elastic layer

Using Eq.(3.2) in Eq.(4.1) and Eq.(4.2) for n=I, we obtain the stresses and displacements for elastic layer as

o), =—kj[(A() +B(,k|y—h|)e_k‘y_h‘ +( 4, +Bky)e™ +(4, +B2ky)eky}sin(kz)dk+
0

—kT[(C(, + Dyk|y—H)e M4 () + D) e + (CZngy)e]W}cos(kz)dk, -
0
ol, =kT{i(A0 +B, (k|y—h|—1))e—k\y—h\ (4, + B, (ky—1))e™ +
0
(4, +B, (ky+1))e"y}cos(kz)dk+kT{;(co +Dy (k|y—H|~1))e P+ (4.4)
~(Cy+ Dy (ky=1))e™ +(C, + D, (ky0+ 1))e" }sin (kz)dk,
o =4l K32,
0
(4, +B, (ky+2))e"y}sin(kz)dk+k]o{(co + Dy (k|y—H|-2))e P4 (4.5)
0

+(Cp+ Dy (ky=2))e™ +(C, + Dy (ky+2)) e eos (kz) dk,

20 ub =T[i{/lo +B, [k|y—h|+i—ID+sin(kz)+(C0 +D, (k|y—h| +L—1Dx
0 o o
xcos (kz)be P +{[A] +B ka+ai—lj]sin(kz)+(q +D, [ky+ai—zn}e—ky + (4.6)

1 1

_{(AZ +B, (ky+é+]j}sin(kz)+(€2 +D, (lg/+ail+1Bcos(kz)}e@}dk,
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I 1
2u1u3=I —Ay+By| k|ly—h|—— | |cos(kz)+
0 %
+(co +D, [k| y—H —iDsm(kz)}e"‘y‘h +
o
! 4.7

+{—(A1 + B, (ky—ai]BCOS(kZ)JF(CJ +D1(
+{—(A2 +B, (ky+O%BCOS(kZ)+{C2 +D2(

4.2. For the elastic half-space

Of Dsin(kz)}e_ky+
Of Dsin(kz)}eky]dk.

Using Eq.(3.3) in Eq.(4.1) and Eq.(4.2) for n=I1I, we obtain the stresses and displacements for elastic half-space as

oo

ol =—[k[ (4 + Bsky)e™ sin(kz) +(C; + Dsky)e™ cos (k) | dk,

0

ot =Tk[(A3 + By (ky—1))e™ cos(ke) — (C; + Dy (ky 1)) sin (k) | dk
ol = Tk[(fg + By (ky—2))e™ sin (k) +(C3 + D (ky = 2)) e™ cos (kz) |k,

2uul = jHAj + B, (ky+OCL—IBe_ky sin (kz)dk +
0

1

a;

| €+ Dy kyt o1 ]| cos(k2) |dk,
(o g rremtes

2uull = T[—(@ +B; [ky —ai]Be"‘y cos(kz)+ (C3 - D, [

0

5. Boundary conditions

(4.8)

(4.9)

(4.10)

@.11)

De"‘y sin(kz)}dk. (4.12)

The upper surface of the elastic layer (i.e. y=0) is stress free and the mediums (I, II) are in welded

contact yields the conditions
1 u 1
03, =02,,03 =03 at y=¢f(z),

1 1 1 1

U, =u,, U3 =u3 at y=¢gf(z).

(5.1)
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The coefficients 4,, By, C,, D, have values A4, B~,C~, D™ for y<h and 4", B*,C", D" for y>h
respectively. Using the expressions for stresses and displacements from Egs (4.3) to (4.12) in Eq.(5.1), we obtained
two sets of equations (Appendix 1) and determined the twelve unknowns, namely 4;,B;,C;,D;;i=1,2,3.

6. Solution of the problem

Inserting values of the unknowns 4;,B;,C;,D; from (Appendix 1) in Eqs (4.3) to (4.7), we obtained
the following expressions for the stresses and displacements in the elastic layer for y =0

m,@:IH ]A [{262T,(2kef(z)+])(A+—B+kh)+

(LAY

H{1 4877 (400 (2 —1))B+}e_k(2€f(z)_h) {281, (A4 + B k) BT,B" e +
+ 287, (A+ —~ B+kh)e—k(48.f(2)—h) _ STZB‘e‘k(“f(Z)”’) N

+62T,{2(1—2kef(z))(A— + B kh)- ZB‘}e_k(zgf(Z)Jrh):'_ge‘kh}sin(kz) + (6.1)
1

+{;]A[{26T3 (¢ +D7kh)- 8T3D‘}e_kh +287,(C* —D+kh)e_k(48f (2)h)

_STZD—e—k(4ef(z)+h) +62T1 {2(1 —2k8f(z))(c_ + D_kh) _2D—}e—k(28f(z)+h) N
{287, (2kef (z)+1)(C” _D+kh)+(T4 +87T, (4k28f(z)z _]))D+}e—k(2s;f(z)—h):|+

—D—e_kh}cos(kz)]dk,

Qo

2uul = TH%IA ; [{26T3 (4= +B#h) —8T3B_}e_kh — 28T, {(A+ ~ B'kh) —B*}x
0

xe M) 57, g M) | g2, {2(1 + 2kef(z))(C‘ + D‘kh) +

—tkef (2) D} P L0827, (2kef (2) - 1) (4* - B k) +

+(T4 +&°T, (4k2£f(z)2 —4k8f(z)+I))B+}e_k(28f(z)_h)}+§—1e_kh}cos(kz)+
(6.2)

_{K]AH%Q (€™ +D7kh) 81,07 fe ™ - 28T, {C* — D* (kh+ 1)} T 4

7,07 IO 827, [0 (14 2kef (2))(C™ + Db ) ke (2) D™} 2T 4

+{282T, (2kef (2)1)(C* = D*kh) + (T, +8°T, (4k%¢f (=)’ —4kaf(z)+1))D+}><

oy

o H(2e/ (2)=h) } + Ze_kh}sin(kz):ldk.
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The upper surface ( y =0) of the elastic layer is stress free, so the stress components 052 and G§2 vanish

and o%; will be

ol = —THi—’;[{zsn (4 + B ki) -8T3B }e ™ +
0

28T, {( A* ~Bkh) - B+}e—k(48f(z)—h) +STyBe )

37T, {2(1+ 2kef (=) (4 + B kn) — ks (=) B e 12T 4

28T, (2kef ()~ 1)( A" = B k) + (7, + 8°T; (#K7ef (2)7 ~4kef (2)+1)) B | x
xe_k(ZEf(Z)—h)}+23_e_kh}sin(kz) + {%"[{2&3 (€™ +Dkh)-8T3D" e + (6.3)
281, {C* D" (kh+ 1)} M) 57, pre )

+62T,{2(1 + 2kef (2))(C™ + Dk~ 4kef (2) D‘}e‘k(28/'(z)+h) N

28T, (2kef ()= 1)(C* = D" kh )+ (T, + 8T, (4k%ef (2 — ke () +1)) D* | x

Xe"‘(ZSf(Z)—h)} +2D }cos(kz)ildk.

7. Deformation due to a tensile fault

Now, we consider two tensile dislocations; one is a vertical tensile fault and the other is a horizontal
tensile fault in the z-direction and y-direction, respectively.

7.1. Vertical tensile fault
The source coefficients will be

A =A4"=B =B* =0,
(7.1)
Otlu,]bods
T

C =C'=D =D"=

where 'b) is the displacement discontinuity in the direction of the normal to the fault having width 'ds'. By

substituting the source coefficients in Eqs (6.1) to (6.3), the expressions for the stresses and displacements
for an elastic layer are obtained as:

ub = byds {AL(STj (1+2kh)e ™ + 28°T, (kh — 2kef (z) - 2k2hef(z))e_k(2‘-‘f(z)+h) +
0 0

1287, (1—kh)e VT M) g e (2)4h) +[82T, (4k%ef (27 + 4kef (2) + (1.2)

4k hef (2) = 2kh+ 1)+ 7, | ) ) —e_kh}cos(kz)dk.
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bydst| 1 _ —k(2¢f (=
ul = g;HA—O(SQ(szh)e W4 287, (14 kh+ 20 e (2))e P ) 4
+[82T1 (4k%€f (2)? + 2hkh— 4k hef (2)~ 1)+ T4]e‘k(2€f (2)-1) 4 (1.3)

+8T,e ) 28T ke M7/ ()71) ) +eh }sin(kz)dk,

ohy = ——“’Z’ds I{Ai(sn (14 2k) ™ 4 28°T; (1+ b+ 2k hef (2) )79 M) 4
0 0
+[62T, (4k%ef (27 + 2k — 4k hef (2) - 1) +T4]e"‘(28f(z)‘h) + (7.4)

+8T26_k(48f(z)+h) + 25T2khe_k(4£f(z)_h) ) +e i }cos (kz)dk.

7.2. Horizontal tensile fault
The source coefficients will be

A =A"=B =BT =0

2

=t = Ltbds (7.5)
T
D =D =— 0‘1“1]30‘15.
T

On substituting the source coefficients in Eqs (6.1) to (6.3), the expressions for the stresses and
displacements for elastic half-space are obtained as

uy =—— {AL(SQ (3= 2kh)e™ + 28T, (1+ kh)e ")
0

+28°T, (2~ k= 2kef (2) + 2k2hef(z))e"‘(28f (2y+h) | 7.6

+| 877, (4kef (=) + 407 hef (=) + 2hh— 4K7ef ()’ +3) =T, |

oK ()h) 5]"26_k(48f(z)+h) ) +e }cos(kz)dk,
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ul =—b0dsj i(sa (3= 2kh)e ™ = 28T, (2+ k) e 1) 4
A AY

+282T] (I—kh +4k8f(z)—2k2h8f(z))e_k(28f(z)+h) + (7 7)
+| 877, (8kef (=) + 4k hef (=)~ 2kh— 4k%ef ()7 =3) T, |
oK (2)h) _ gTze_k(“f(Z)Jrh) ) —e_kh}sin(kz)dk,

(5§3 :—@I{%(S]} (3_2kh)e—kh —ZSTZ (2+kh)e—k(4sf(z)—h) +
0

28T, (1= K+ dhef (2) — 2 hef (2)) e P9 M) 4 738)
+[62T] (8kef (2) + 4k hef (2) — 2k~ 4Kef (2)° —3)—T4J

o K28/ (2)=h) _ 5T23_k(48/'(z)+h) ) —e }cos(kz)dk.

8. Special case

By substituting o; =a,, W; =W, in Eqs (7.2) to (7.3), we will obtain the expressions for the
displacement components of a uniform half-space due to a vertical tensile fault as follows

_ o _ 3
= bdsj(1+kh)e"‘hcos(ky)dk= bds| __ 2h =1, (8.1)
T : I (h2+22)
oo 3
u =%Ikhe—"hsin(ky)dk:@ Iz (8.2)
T T (2, .2)
0 (h +z )

Similarly, substituting o, =o,, W; =W, in Egs (7.6) to (7.7), the displacement components due to a
horizontal tensile fault for a uniform half-space are

_ e _ 2
Uy = bdsj(]—kh)e—’“”cos(kz)dkz bds| 2| (8.3)
T 0 T (h2+zz)
o 3
uy =25 (2—kh)e‘khsin(kz)dk:% 2z (8.4)

m oy T (thrZz)Z
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9. Numerical results and discussion

The expressions in Eqs (7.2-7.4) and Eqs (7.6-7.8) are of the form

| G oy (C?Skzjdk,
) Ay sin kz

9.1)
q=0,1,2;, G=-3T3; p=h, 2¢f(z)xh, 4£f(z)ih.

The presence of the factor L in the integrand makes integration difficult to solve analytically. So, for
0

numerical computation, we are evaluating approximately these integrands by replacing a finite sum of
exponential terms with the help of Sneddon’s method. Following Singh et al. [5], we use the approximation

%z I—(A+Bk2 (Ef(z))z)e_Zkgf(z) +(C+Oc'k" (af(z))n)e_ﬁ,kh 9.2)
where
2 A2 +D(A-1
u T80 p AL A D ),D:TZ/T3,n:1,2,3...; (9.3)
oT; T; 1+A+D

o/, B'(> 2) are chosen in such a way to ensure a best satisfactory fit in the least square sense. The constants o’,’
and 'n' are to be re-evaluated for each set of values of the parameters 6;, 6, and v . Using the approximation

Eq.(9.2), the integral Eq.(9.1) can be expressed as a linear combination of known integrals. Ben-Menahem and
Gillon [1] found that for idealistic earth models »n =2 yields a satisfactory result and also derived the values of

elastic parameters (v,G,, 0,,0’,") for two different earth crustal models shown in Tab.1.

Table 1. Parameters for two different earth crustal structures.

[ ’ /
V=— (¢) (¢} o B
U, ! ?
1.76 (oceanic) 0.27 0.27 0.438716 3.31986
2.22 (continental) 0.27 0.27 0.703604 3.22888

We study the effect of irregularity and source depths on the displacements (separately on horizontal and
vertical displacements) and stresses with the horizontal distance 'z', caused by a tensile (horizontal as well
as vertical) faults.

Figures 2 (a-d) and 3 (a-d) shows the variation of the dimensionless horizontal displacement (u3)

and vertical displacement (u, ), respectively, for an elastic layer overlying an irregular elastic half-space
with dimensionless horizontal distance 'z' due to a vertical tensile fault for rigidity ratio v=1.76 (oceanic
crustal model) and v=2.22 (continental earth crustal model) at three different source depths, i.e.
h=0.25, h=0.5, h=0.75. To compare the effect of rectangular irregularity on the displacement components, Figs

2(a, c¢) and 3(a, c¢) are plotted by assuming irregularity on the interaction boundary surface connecting elastic
layer to elastic half space while Figs 2(b, d) and 3(b, d) are plotted in the absence of irregularity. Irregularity
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presented in the lower half-space is of length '2a' and depth 'b'. Figures 2(b, d) and 3(b, d) plotted in the
absence of irregularity describe only the influence of source depth on the displacements field while Figs 2(a,
¢) and 3(a, c) describe the effect of variation in fault depth and rectangular irregularity simultaniously. From
the comparision of Figs 2(a, c) respectively with 2(b, d) and 3(a, c¢) respectively with 3(b, d), it can be
observed that the effect of irregularity makes a significant change on the displacement components 'u," and
'u;' for each different source depth. In Figures 2(b, d) and 3(b, d), displacement components 'u,' and 'u;'

for each different source depth 'A' are in same pattern and the magnitudes of horizontal and vertical
displacements decreases as fault depth increase while displacement components due to the presence of
irregularity have two points of discontinuity at z=—-0.5 and z=0.5 and changes its magnitudes on the
horizontal distance —0.5 <z <0.5 (as the length of rectangular irregularity) for each different fault depth.
Moreover, effect of irregularity on the displacement components are most influential for higher value of fault
depth #=0.75 and also changes the pattren of displacement curves on the irregular horizontal distance

—0.5<z<0.5. In Figures 2(a-d) we observe that, horizontal displacement (u3) is zero at z=0 for each
different source depth. All horizontal and vertical displacements tends to zero as z — oo

Figure 4 (a-d) shows the variation of dimensionless stress component (03;) for an elastic layer
overlying the irregular elastic half-space with dimensionless horizontal distance 'z' due to a vertical tensile
fault with two different rigidity ratios v=17.76 and v=2.22 at three different source depths, i.e.
h=0.25,0.5 and 0.75. Figures 4(a, c) displays stress component (03;) due to irregularity on the boundary
surface while Figs 4(b, d) in the absence of irregularity. In these figures we obsearve that stress component
O3; in the absence of irregularity decreases in magnitude as source depth increase. In Figures 4(a, c), due to
the effect of irregularity stress components (G3;) changes its magnitudes in the interval —0.5 <z <0.5 (length
of irregularity) for each different fault depth and having two points of discontinuity at z=—-0.5 and z=0.5
and for 'h=0.75" stress component decrease very rapidly at z=0 on the horizontal axis.

Figures 5 (a-d) and 6 (a-d) show the variation of the dimensionless horizontal displacement (u;)

and vertical displacement (uz); respectively, for an elastic layer overlying an irregular elastic half-space
with dimensionless horizontal distance 'z' due to a horizontal tensile fault. These figures are for the rigidity
ratio v=1.76 and v =2.22 for three different source depths, i.e. #=0.25, 0.5 and 0.75 . Figures 5(a, c) and
6(a, c) are plotted in the presence of irregularity while Figs 5(b, d) and 6(b, d) are in the absence of
irregularity. In these figures we observe that the source depth has a significant effect on the horizontal
displacement 'u;' and vertical displacement 'u,'. The magnitude of the displacement components decreases
as source depth increase. In Figures 5(a-d) horizontal displacement 'u;' for different source depth is zero at

z=0. Both horizontal and vertical displacements tends to zero as z — oo. Also, we observe that, the effect
of irregularity in Figs 5(a, ¢) and 6(a, c) is insignificant or a little influence are experienced in variations of
displacements on the horizontal distance 'z' within the range —0.5<z<0.5.

Figures 7 (a-d) shows the variation of the dimensionless stress component (63;) for an elastic layer

overlying an irregular elastic half-space with dimensionless horizontal distance 'z' caused by a horizontal
tensile fault with rigidity ratio v=1.76 and v =_2.22 at three different source depths. Variations of the stress
component G;; decrease as the source depth increases. Also, we observe that the effect of irregularity on
stress components due to a horizontal tensile fault, for each different source depths is insignificant. Figures
5-7 show the variations of displacements and stresses due to source dislocation situated in continental earth
model having higher frequency compared to dislocations situated in the oceanic earth model.
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a=0.5, b=0.25
—e—h=0.25
——h=0.5
——h=0.75
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Fig.2a. Variation of the dimensionless horizontal displacement (u3) for an elastic layer in the presence a of
irregularity for v=1.76 due to a vertical tensile fault at three different source depths.
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Fig.2b. Variation of the dimensionless horizontal displacement (u;) for an elastic layer in the absence of
irregularity for v=1.76 due to a vertical tensile fault at three different source depths.
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Fig.2c. Variation of the dimensionless horizontal displacement (u3) for an elastic layer in the presence of
irregularity for v=2.22 due to a vertical tensile fault at three different source depths.
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Fig.2d. Variation of the dimensionless horizontal displacement (u3) for an elastic layer in the absence of

irregularity for v=2.22 due to a vertical tensile fault at three different source depths.
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Fig.3a. Variation of the dimensionless vertical displacement (u,) for an elastic layer in the presence of
irregularity for v=1.76 due to a vertical tensile fault at three different source depths.
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Fig.3b. Variation of the dimensionless vertical displacement (u,) for an elastic layer in the absence of
irregularity for v=1.76 due to a vertical tensile fault at three different source depths.
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Fig.3c. Variation of the dimensionless vertical displacement (u,) for an elastic layer in the presence of
irregularity for v =2.22 due to a vertical tensile fault at three different source depths.

0210 Vertical tensile fault
k-
0.2
-0.4
s v=222
o~
2 without irregularity
- 08 —e—h=0.25
& ——h=0.5
(%]
@ - ——h=0.75
- 0.8
Nz
o
1
1.2
1.4 | 1 | | 1 | 1 | 1 |
T4 0.8 0.6 0.4 -0.2 ] 0.2 0.4 0.6 0.8 1

Horizontal Distance

Fig.3d. Variation of the dimensionless vertical displacement (u,) for an elastic layer in the absence of
irregularity for v=2.22 due to a vertical tensile fault at three different source depths.
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Fig.4a. Variation of the dimensionless stress component (G3;) for an elastic layer in the presence of
irregularity for v=1.76 due to a vertical tensile fault at three different source depths.
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Fig.4b. Variation of the dimensionless stress component (G3;) for an elastic layer in the absence of
irregularity for v=1.76 due to a vertical tensile fault at three different source depths.
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Fig.4c. Variation of the dimensionless stress component (G3;) for an elastic layer in the presence of
irregularity for v=2.22 due to a vertical tensile fault at three different source depths.
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Fig.4d. Variation of the dimensionless stress component (G3;) for an elastic layer in the absence of
irregularity for v=2.22 due to a vertical tensile fault at three different source depths.
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Fig.5a. Variation of the dimensionless horizontal displacement (u3) for an elastic layer in the presence of
irregularity for v=1.76 due to a horizontal tensile fault at three different source depths.
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Fig.5b. Variation of the dimensionless horizontal displacement (u3) for an elastic layer in the absence of
irregularity for v=1.76 due to a horizontal tensile fault at three different source depths.
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Fig.5c. Variation of the dimensionless horizontal displacement (u3) for an elastic layer in the presence of
irregularity for v =2.22 due to a horizontal tensile fault at three different source depths.
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Fig.5d. Variation of the dimensionless horizontal displacement (u3) for an elastic layer in the absence of
irregularity for v =2.22 due to a horizontal tensile fault at three different source depths.
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Fig.6a. Variation of the dimensionless vertical displacement (u,) for an elastic layer in the presence of
irregularity for v=1.76 due to a horizontal tensile fault at three different source depths.
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Fig.6b. Variation of the dimensionless vertical displacement (u,) for an elastic layer in the absence of
irregularity for v=1.76 due to a horizontal tensile fault at three different source depths.
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Fig.6¢c. Variation of the dimensionless vertical displacement (u,) for an elastic layer in the presence of
irregularity for v =2.22 due to a horizontal tensile fault at three different source depths.
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Fig.6d. Variation of the dimensionless vertical displacement (u,) for an elastic layer in the absence of
irregularity for v =2.22 due to a horizontal tensile fault at three different source depths.
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Fig.7a. Variation of the dimensionless stress component (G3;) for an elastic layer in the presence of

irregularity respectively for v=1.76 due to a horizontal tensile fault at three different source depths.
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Fig.7b. Variation of the dimensionless stress component (G3;) for an elastic layer in the absence of
irregularity for v=1.76 due to a horizontal tensile fault at three different source depths.
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Fig.7c. Variation of the dimensionless stress component (G3;) for an elastic layer in the presence of
irregularity for v =2.22 due to a horizontal tensile fault at three different source depths.
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Fig.7d. Variation of the dimensionless stress component (G3;) for an elastic layer in the absence of
irregularity for v =2.22 due to a horizontal tensile fault at three different source depths.
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Nomenclature

2a - length of irregularity
b - depth of irregularity
by — displacement discontinuity
ds —thickness of discontinuity

h  — depth of discontinuity to free surface along y-axis

(x,y,z) —co-ordinate axis

Appendix 1

Y — thickness of the elastic layer
€ —perturbation factor

A,

; — first Lame’s constants

U; —second Lame’s constants
v —rigidity ratio

O; —Poisson’s ratios

A+ Ay =—(4" + B kn)e ™,
Ay = Ay =B =By =(4"+ B (kh—1))e™™"

eiksf(z)Al —ekgf(z)Az - eikef(z)A3 + (ksf(z) - I)efksf(Z)Bl —(ksf(z) + I)ekef(z)BZ +

H{1kef ()78 = (47 4 B (k{er (2)=4) 1)) 1,
R E) 4+ ) g I C) g er (26 OB, 1 ke (2165 OB, +

—kef (2)e ™ ) = _(A+ + B k(ef (2) - h))e"“sf(Z)—h‘,

) g, ) 4, et g [’ - kgﬂz)je—ksf(z)B, - [1 ; ksf(z)]ekef%z ;
o o

+ B[kef(z)—lje_ksf'(z)33 =[A+ +Bt [—]+k(£f(z)—h)j]e_k€f(z)_h,

o) o

I E) g, ) g, ek (2) g, +(1 . kef(z)]e_kgf (), —[1 +kef () —Ije"gf g, +
o o

L% 129}

—B[kef(z) L Ije_kgf(z)b’3 = —(f +B* (1 +k(ef (z)—h)- zne"“’ﬂz)"’,

Cr+Cy=—(C"+Dkh)e ™,

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)
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Ci=Cy =Dy =Dy =(C+ D™ (kh—1))e ™, (1.8)
I E e, — M), — ey 1 (kef (2) - 1) D, — (kef (z)+ 1) DD, +

(1.9)
+(1-kef (2))e™ Dy =(C* 4 D* (k(ef (2)-h) - 1))e"“£f(z)"",
e_kef(z)C, +ek€f(z)C2 —e_kF’f(Z)Cj, +k8_/'(z)e_k€f(z)D] +k£f(z)ek8f(z)Dz + (L.10)
—kef ()¢ Dy = (4 Dk (ef ()~ h))e O, '
—eiksf(z)CI —ekef(z)Cz + Beﬁksf(z)C3 + [1— ksf(z)]eksf(z)DI —[1 + ksf(z)]eksf(z)Dz +
4 * (1.11)
+[3[k£f(z) -JJeksf Gp, = [c* +D* [—] +k(ef (2)- h)De‘“f(z)"’,
o> oy
e, MG, _ge T E)y 4 [1 —1+ ksf(z)]eksf )p, -[1 +kef (z) -je"sf Gp, +
o
(1.12)

where § = .
M2

—B[ksf(z) + Oci - Jjekgf(z)@ = —{CJ“ +D" (1 +k(ef (z)—h)- jjje‘kef(z)‘h

2 2%}

1|2 + ot 20,2 > ¥ T )
A= 8°T; (1+ 2kef (2))( 4" = B kh) + (28 T)kef | 2) -=t+t|B
0

2
) {52’@ (1=2kef (2)) (4™ + B7kh) + 28Tk (Z)Z e T;]B}

TN 81, (A7 + B k) e 4 87, (47 - B+kh)e_k(4£f(z)_h)},

B, = A—IOH(Q +8°T, (4k2£f(z)2 - stf(z)))B+ + 482T1ksf(z)(A+ —B+kh)}
o H2()h) {2877 (A7 + B ) -7, (1+ 2k8f(z))B_}e_k(28f(z)+h) +
8T (247 + B (2kh—1))e ™ + 87,8 (Z)‘h)},

1 2 + + 2 2 2 52T1 T4 +
C,:A—O 8 T1(1+2k£f(z))(C -D kh)+(26 Tk | 2 == t+ LD

| 2
k(e (2)-h) +{52T](1—2k8f(2))(c_ +D‘kh)+(2527"]k28f[z)2 _82T1+T24]D_}

TIN5, (€ + Dkh) e 4 8T (CF — D k) T,
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D;= L[{zszT, (C‘ + D—kh) =81 (1+ 2ksf(z))[)—}e*k(2€f(2)+h) N

Ay
+{[T4 +8°T; (4k28f(z)2 - 2kef(z))]D+ + 452T1k8f(z)(c* _ D+kh)}e—k(2€f(z)—h) .
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G = ALOH[SZT, (1+ 2kef (2))+48,k%ef (2)° Ty — 8,7, + TJ(C‘ +D7kh) +

—[2527}k28f(z)2 _iZTJ_i_ ?]D_}ek(kf(z)ﬂl) +

2
_{SZTJ (1+2k8f(z))(C+ —D+kh)+[282T]k28f(Z)2 _827}+7;4]D+}ek(2$f(2)h) +
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A3:1H[Z(S—VSI)+4(v—1)(]—2k£f(z))kef(z)J(A+_B+kh)+
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+{2(V +9) _ (T4 _SZTI)kef(Z)J(C_ +D‘kh)‘ I_stf(Z)’(Tz; —SZTI)D_}e_kh +

oV §v28%s, oy

.\ 2(v=1)(1-2kef (2)) (c— . D_kh) .\ [T4 ~8°T . 4(v=1)k’ef (2)° ]D_}ek(zgf(z)+h):|’
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A= —[6T3 + (T, + 87T+ 48%K %8/ (2T e (2) 4 sy~ (ﬂ,
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T =4(v=1)(vd,+1), T, =4(v—1)(v8, -3),
Ty =4(v+8) (v, +1), T, =4(v+8)(vd, - 5) ,
f(z) =sign(a—z)+sign(a+z).
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