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This study describes a very efficient and fast numerical solution method for the non-steady free convection 
flow with radiation of a viscous fluid between two infinite vertical parallel walls. The method of lines (MOL) is 
used together with the Runge-Kutta ODE Matlab solver to investigate this problem numerically. The presence of 
radiation adds more stiffness and numerical complexity to the problem. A complete derivation in dimensionless 
form of the governing equations for momentum and energy is also included. A constant heat flux condition is 
applied at the left wall and a transient numerical solution is obtained for different values of the radiation parameter 
( )R . The results are presented for dimensionless velocity, dimensionless temperature and Nusselt number for 

different values of the Prandtl number ( )Pr , Grashof number ( )Gr , and the radiation parameter ( )R . As 
expected, the results show that the convection heat transfer is high when the Nusselt number is high and the 
radiation parameter is low. It is also shown that the solution method used is simple and efficient and could be easily 
adopted to solve more complex problems. 
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1. Introduction 
 
 Natural convection flows are found in many engineering applications. For example, they are present 
in filtration processes, household heating, nuclear reactor cooling, solar energy collectors, etc. they involve 
temperature gradients that result due to the variation in fluid density, thus setting up a natural circulation of 
the fluid commonly known as the buoyancy effect. Several papers discuss in detail the physics of free 
convective flows. Interested readers may refer to references [1, 2] for gaining further insight into the flow 
mechanism. 

A closed form solution was presented in [3, 4] for the transient free convection flow of a viscous fluid 
between two infinite vertical parallel plates with radiation using the Rosseland approximation. The solution of 
the governing partial differential equations was obtained using the Laplace-transform technique [3]. The 
influences of the various parameters on the velocity field, temperature distribution, fluid concentration, shear 
stress, rates of heat and mass transfers were presented. It was also shown that the velocity and temperature fields 
decrease with an increase in the value of the radiation parameter. On the other hand, the rate of heat transfer at 
the end of the channel decreases with an increase in either the radiation parameter or Prandtl number [4]. 

An exact analysis of the natural convection in an unsteady Couette flow of a viscous incompressible 
fluid confined between two vertical parallel plates in the presence of thermal radiation was investigated in [5-7]. 
The Rosseland approximation was used to describe the radiative heat flux in the energy equation. The effect 
of different parameters such as the thermal radiation parameter, Grashof number, Prandtl number were 
discussed. The momentum and the thermal boundary layer thicknesses decreased due to an increase in the 
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value of the radiation parameter. An increase in the value of the Grashof number was found to increase the 
velocity of air and water while it decreased the skin-friction coefficient in these fluids. 

The radiation effects on natural convection in a vertical channel with an auxiliary plate was presented 
in [8]. The vertical channel in this article was symmetrically heated and a uniform heat flux along the principal 
walls of the channel was assumed. Comparisons between experimental data carried out from different positions 
of the auxiliary plate and two surface emissivity values were given in terms of heated wall temperatures and 
radiative heat transfer. Findings of this study showed that the lowest maximum channel wall temperatures 
could be attained for the auxiliary plate placed at the channel exit for high channel Rayleigh numbers and heat 
flux values. Correlations for the average Nusselt number, global average Nusselt number and dimensionless 
maximum wall temperature in terms of channel Rayleigh number and auxiliary plate-to-channel height ratio 
were presented in the study [8]. 

The natural convection flow in an asymmetrically heated vertical 2D plane channel was explored in 
the boundary layer regime for a range of modified Rayleigh numbers ( )Ra  by Hemmer et al. [9]. They 
investigated the influence of different spatial arrangements of the heat sources on both heat transfer and flow 
dynamics. The radiation energy was neglected since water was selected to be the working fluid. The study 
concluded that for constant heat input and exchange surface area, two distant heat sources were more efficient 
to put fluid into motion and to transfer heat. 

The influence of thermal stratification and surface radiation on a laminar airflow induced by natural 
convection in vertical, asymmetrically heated channels was investigated numerically by Ramalingom et al. 
[10]. The numerical solution was obtained by setting up the weak temperature gradient outside of the channel, 
and then the temperature at the bottom end of the channel was obtained as a function of time. Surface radiation 
was also included but it appeared to be less dominant than thermal stratification for the selected conditions. 
The study also observed that the local and the mean Nusselt numbers slowly increase for the investigated cases. 

Rachid et al. [11] presented experimentally and numerically a natural convection air flow coupled with 
surface radiation for a vertical open-ended channel with constant heat flux at the wall. They used the radiosity 
method to account for the surface radiation heat transfer. The study found that surface radiation played a 
significant role in the evolution of the dynamical and thermal behaviour of the natural convection flow inside 
the channel. Another numerical study on free convection in a symmetric open channel was carried out by 
Bouraoui et al. [12] using the Ansys Fluent CFD software. The influence of the secondary ventilation of the 
adiabatic channel wall on flow dynamics and the heat transfer was found to be affected by the position and 
size of the openings. 

A generalized model of the unsteady natural convection heat transfer as a nanofluid flows through a 
rectangular vertical channel was presented in [13]. The fractional constitutive equations for the shear stress 
and thermal flux defined with the time-fractional Caputo derivative were used to develop the generalized 
mathematical model with time-nonlocality. Analytical solutions in [13] for dimensionless velocity and 
temperature fields were obtained by using the Laplace transform coupled with the finite sine-cosine Fourier 
transform. It was found that the thermal history strongly influenced the thermal transport for small values of 
time. It was also demonstrated that the thermal transport would enhance if the thermal fractional parameter 
was lowered or the volume fraction of the nanoparticles was increased.  

The unsteady oscillatory Couette flow between vertical parallel plates with constant radiative heat flux 
was investigated in [14]. In this study, the mathematically formulated governing equations were simplified 
using dimensionless variables and coupled ordinary differential equations (ODEs) were obtained. The 
radiation energy was modelled using the Rosseland approximation and the perturbation method was used to 
solve the resulting governing equations for the velocity and temperature fields. 

The natural convection flow of a second grade fluid with thermal radiation was analytically 
investigated by Nisa et al. [15] using the Laplace transform for the temperature and velocity fields. The energy 
equation was fractionalized by means of the generalized Fourier's law. It was found that the thermal history 
strongly influenced the thermal transport for small values of time t . It was also found that the thermal transport 
could be enhanced when the thermal fractional parameter was decreased or increased. 

A spatially developing transitional flow in a vertical channel with one side heated uniformly and 
subjected to random velocity fluctuations at the inlet was studied experimentally and numerically in [16]. The 
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PIV experimental setup was used to obtain a completely two-dimensional velocity field in the streamwise flow 
direction. Numerical simulations were performed on the assumptions of a thermally stratified environment, 
subjected to an environmental noise, and for which the wall to wall radiations were considered. Different 
transition indicators were defined based on velocity and thermal quantities such as the wall temperature and 
velocity indicators that govern the transitional behaviour of the flow field. 

The Method of Lines (MOL) is a general numerical method that converts the initial boundary value 
problem into a system of ordinary differential equations (ODEs). Brastos [17] used this method to convert the 
nonlinear hyperbolic Boussinesq equation into a first-order, nonlinear, initial-value problem. This study can be 
considered as a base for the application of the MOL in engineering applications since it built the basis for 
analysing the local truncation errors, stability and convergence. Also, many recent studies found in the literature 
utilized this method as a numerical tool for solving many applied engineering problems. For example, a fourth 
order, forced beam vibration problem subjected to axial tension was investigated using the MOL in [18].  

To the best knowledge of the author, there are almost no studies in the literature that provide a 
numerical solution to the free convection heat transfer problems using the MOL. This study utilizes the MOL 
to solve the coupled non-linear thermal radiation and natural convection of the unsteady Couette flow in a 
channel of infinite vertical parallel walls. After this introduction, the remainder of this study is ordered as 
follows. The problem definition and objectives are introduced in Section 2. In Section 3, the principal 
governing equations and methodology are described in detail. The results and discussion are presented in 
Section 4, and finally, conclusions of this research work are drawn in Section 5. 
 
2. Problem definition and objectives 
 

The topic of free convection in vertical channels has been studied extensively in the literature due to 
its importance in many engineering applications such as cooling of electronic equipment, heat exchangers, 
nuclear reactors cooling, and geothermal systems, etc. Most of the studies in the literature does not include the 
effect of radiation and the Couette flow. Some studies did include the effect of radiation but with some 
simplified approximations such as the Rosseland approximation [19].  

This paper attempts to solve and analyse the unsteady natural convection and radiation problem of an 
incompressible viscous fluid that is confined in a vertical channel. The two vertical walls are subjected to 
different boundary conditions but with the exact representation of the radiation energy term. The results will 
be presented for different values of the radiation parameter ( )R , the Nusselt number ( )Nu , the Prandtl number 

( )Pr , and the Grashof number ( )Gr . These parameters will be defined in a subsequent section of the paper. 
Also, a low Prandtl number ( )Pr  fluid such as air is chosen to perform this study.  

The other objective of this paper is to prove that a fast and efficient numerical scheme based on the 
method of lines (MOL) can be effectively utilized to solve such problems. The MOL method is basically based 
on viewing a partial differential equation as a system of ordinary differential equations. The method is adopted 
along with the Runge Kutta method for solving the resulting discretized state space ordinary nonlinear coupled 
differential equations. This is essentially a two-step process: the spatial derivatives are approximated 
algebraically using the finite difference method, which will result in having a system of nonlinear ODEs in the 
initial value variable (typically time). It is then integrated by an initial value problem solver of the Matlab 
ODEs solvers. 
 
3. Governing equations and methodology 
 

In this paper, the incompressible unsteady viscous radiating Couette flow in a vertical channel with 
natural convection is considered. The flow in this problem is driven mainly by natural convection and radiating 
walls of the considered vertical channel. The channel has two infinite vertical walls separated by a distance L . 
Figure 1 shows the domain of the problem and the adopted boundary conditions of this problem. The flow 
field in the problem is only in the horizontal direction. Also, the model includes natural convection effects in 
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which the density of the fluid appears in both inertia (gravity and pressure), and body force (buoyancy force) 
terms. As a result, the Boussinesq approximation is used to relate these forces as a single component in the 
body force term which is related to the temperature field of the problem. The resulting governing x-momentum 
and energy equations of this problem are given as follows [20, 21]:  

 

x

L

u(x=0)= U
dT/dx(x=0)=- q’’/k

u(x=L)= 0
T(x=L)= TL

Δx

qr

qx qx+dx

x x+Δx

 
 

Fig.1. Vertical channel domain and boundary conditions. 
 

  ( )
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∂ ∂= β − + ν
∂ ∂

 (3.1) 

 
where u  is the fluid velocity, T  is the fluid temperature, LT  is the channel wall temperature at x L= , β  is 
the volume expansion coefficient, and g  the gravitational acceleration. 

The energy equation for the problem is derived as follows. If a control-volume (CV) of length xΔ  of 
the channel shown in Fig.1. is to be analysed, the energy equation for this CV may be written as: 

 

  ( ) cvdE A q x
dt

= − ′′  (3.2) 

 
where E  is the total energy change of the system, ( )q x′′  is rate of heat flux loss from the control 

volume per unit surface area, and A  is the total heat transfer area of the control surface of the channel. Using 
the definition of the specific heat for the energy term on the left hand side of Eq.(3.2) will give: 

 

         cvdE dT dTV c A x c
dt dt dt

= ρ = ρ Δ  (3.3) 

 
where V  is the volume of the channel, ρ  and c  are the density and the specific heat of the fluid in the channel. 
The energy balance with no heat generation for the control volume shown in Fig.1 can be written as: 
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  | |cv
cv in cv out

dE q q
dt

= −  (3.4) 

 
where  

 

  ( )|cv inq q x= ,       and      ( ) ( )|cv out r
dq x

q q x x q
dx

= + Δ + .  

 
The radiation term rq  is written as: 

 
  ( )( )    4 4

r Lq P T x T x= ε σ − Δ  (3.5) 

 
where P  is the perimeter of the channel, ( )T x  is the temperature in the channel space, LT  is the wall 
temperature at x L= , ε  is the surface emissivity, and σ  is the Stefan-Boltzmann constant. Substitution of rq  
into Eq.(3.4), will result in the following equation: 

 

  ( ) ( ) ( ) ( )( )          4 4
L

q xTA x c q x q x x P T x T x
t x

  ∂ ∂  ρ Δ = − + Δ + ε σ − Δ    ∂ ∂   
. (3.6) 

 

If xΔ  and ( )q x  are cancelled from the above equation and ( )dq x
dx

 term is substituted using the Fourier’s law 

( )   dTq x k A
dx

= − , then Eq.(3.6 ) becomes: 

 

  ( )( )       4 4
L

T TA c k A P T x T
t x x

∂ ∂ ∂ ρ = + ε σ − ∂ ∂ ∂ 
 (3.7) 

 
where k  is the thermal conductivity of the fluid in the channel.  

It is more convenient to represent Eqs (3.1) and (3.7) in dimensionless form by introducing the 
following definitions for dimensionless fluid velocity, dimensionless fluid temperature, dimensionless time, 

dimensionless x-coordinate respectively: ˆ uu
U

= , ( ) ,
/  

LT Tx t
Lq K′′

−θ = , ˆ
2
tt

L
α= , and ˆ xx

L
= . Substitution of 

these values of û , θ , t̂  and x̂  into Eq.(3.1), yields the following equations for the momentum equation: 
 

  
ˆ ˆ
ˆ ˆ

        
2

2 2 2
U u g L q U u

t kL L x
′α ∂ β ∂′ ν= θ +
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. (3.8) 

 
Simplifying this equation yields: 

 

         
 

ˆ ˆ
ˆ ˆ 

2 2 2

2 2
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′

α
′
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  (3.9) 

 
or 

 



204  Investigations of Couette flow unsteady radiative convective… 

     
ˆ ˆ
ˆ  

ˆ

2

2
u uGr Pr Pr
t x

∂ ∂= θ +
∂ ∂

  (3.10) 

 
where Gr  is the Grashof number ( )/3Gr g L q Uk′′= β ν , and Pr  is the Prandtl number ( )/Pr = ν α . 

The dimensionless form of the energy Eq.(3.7) is achieved by substituting the dimensionless 
parameters into Eq.(3.7) as follows: 

 

  /     
 ˆ  

 / ˆ

42
4
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

′ ′
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Simplifying this equation yields the following energy equation: 
 

  ( )ˆ   ˆ
ˆ ˆ

2 4 4
2 R

t x
∂θ ∂ θ  = + θ + θ − θ ∂  ∂

 (3.12) 

 
where θ̂  is the temperature ratio, and R  is the radiation parameter. Definitions of these parameters are as 
follows: 

  ˆ
/

LT
Lq k′′

θ = ,      and        /  
 

32L LqR
c k

′ε σ α  =  ρ  

′
. (3.13) 

 
The associated initial conditions for this study are û 0= θ =  at t̂ 0=  for ˆ0 x 1≤ ≤ , and boundary conditions 
the flow and temperature fields are as follows: 

 
   at   andˆ   atˆ ˆ  ˆ  u 1 x 0 u 0 x 1= = = = , (3.14) 

 

   at   and   atˆ   ˆ
ˆ

d 1 x 0 0 x 1
dx

θ = − = θ = = . (3.15) 

 
Equations (3.10) and (3.12) constitute a stiff nonlinear system, that needs to be solved numerically by 

an efficient algorithm such as the MOL. The MOL essentially is a two-step process as the spatial derivatives 
are approximated using the finite difference approximation, and the resulting system of ODEs in the initial 
value variable is then integrated by an initial value ODE solver such as the Runge-Kutta method which is 
embedded in the Matlab software [22]. The central differencing scheme is used for the spatial derivative. The 
discretized forms of the governing equations are as follows: 

 

  
( )

ˆ ˆ ˆ ˆ     ˆ ˆΔ
i i 1 i i 1

j 2
du u 2 u uGr Pr Pr
dt x

+ −− +
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Δ
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ˆ ˆ

4j j 1 j j 1 4
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d 2
R

dt x
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The temporal and spatial integrations are separated in the sense that they can be treated separately in 
the coding procedure which adds a very attractive degree of flexibility including the use of library routines of 
the Matlab software. It should be noted that there are two ODEs at each grid point ( ),i j , where: ,1 i j N< < . 
The number of grid points is N , which will consequently result in having 2N  simultaneous coupled ordinary 
nonlinear ODEs. This system of ODEs is represented in the Matlab software by a vector of size 2N . The 
boundary conditions are incorporated into the system of ODEs when , ,  and ,i j 1 i j N= =  for both the 
temperature and the flow field of the problem. On the other hand, the initial conditions are dealt with within 
the ODE solver. 

This system of ODEs (Eqs (3.16) and (3.17)) can be solved using the fourth order Runge-Kutta method 
embedded in the Matlab ODE solvers. The solution procedure is based on a normalized time t̂  that varies 
from 0 to 1. In this method, the local truncation error is of the order of ( )ˆΔ 4O x . The solution method is based 

on solving the energy equation first, then substituting the temperature field of Eq.(3.17) into Eq.(3.16) to solve 
the flow field problem. In this paper, the outline for stability of the solution is based on the unconditionally 
stable scheme presented by Causley et al. [23] for solving the wave equation. 
 
4. Results and discussion 
 

Results for dimensionless velocity, dimensionless temperature and the Nusselt number are presented 
for a channel with unit spacing and a fixed low value of the Prandtl number. Results are presented graphically 
for different dimensionless parameters that include: the radiation parameter ( )R , the Grashof number ( )Gr  
and the Nusselt number ( )Nu .  

 

 
 

Fig.2. The non-dimensional velocity, and non-dimensional temperature transient solution ( ).Pr 0 72= . 
 

It can be seen from Fig.2 that for fixed low values of R  and Gr  the non-dimensional velocity û  peaks 
(gets to a maximum value) in time before starting to decrease again. On the other hand, no such peak is observed 
for the non-dimensional temperature θ  which linearly decreases with the non-dimensional distance. It should be 
noted that in all the figures provided in this paper, the direction of the arrow represents increasing time. 

The results of this study are compared with other solutions in the literature. The current solution for 
the dimensionless temperature and flow field dimensionless velocity is found to be in full agreement with the 
exact solution presented in the study of reference [7]. This comparison is shown in Fig.3. The dimensionless 
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flow velocity û  is plotted for different values of the Grashof number in Fig.4. As the Grashof number increases 
the peak in the transient flow velocity becomes steeper with increasing time. The dimensionless velocity is 
maximum along the x-axis of the channel while the minimum values are near or at the right wall. In Fig.3, the 
radiation parameter value is chosen to be 0.6. This low value of the radiation parameter suggests that the heat 
transfer mechanism is driven purely by natural convection. 

 

 
 

Fig.3. Comparison of the current solution with some other solution [7]. 
 

 
 

Fig.4. The non-dimensional velocity transient solution for different values of the Grashof number 
( ).Pr 0 72= . 

 
The dimensionless temperature of the fluid is displayed in Fig.5 for different values of the radiation 

parameter. It can be concluded from this figure that the fluid temperature decreases with the increase in the 
radiation parameter ( )R  for a low Grashof number ( )Gr 10= . In Fig.5, both the Grashof ( )Gr  and Prandtl 

( )Pr  numbers are fixed while the radiation parameter ( )R  is made to vary. From the figure it can be observed 
that as the time advances the fluid temperature tends to increase until it achieves its maximum value at the left 
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wall of the channel when x 0= , then it falls smoothly to a zero value at the right wall of the channel at x 1= . 
Conversely, the dimensionless fluid temperature shows a slight increase in the same period of time as the 
radiation parameter is increased while keeping the Grashof number fixed to a high value as shown in Fig.6. It 
is further noticed that the temperature drop is non-linear, whereas in Fig.5 where the Grashof number is low, 
the temperature drop is non-linear for lower times and becomes linear for larger time. 

 

 
 

Fig.5. Effect of the radiation parameter on the non-dimensional temperature for a fixed Grashof number. 
 

 
 

Fig.6. Effect of the radiation parameter on the non-dimensional temperature for Gr 30= , and .Pr 0 72= . 
 

The variation of Nusselt number is shown in Fig.7 for different values of the radiation parameter ( )R  
and fixed Grashof number ( )Gr  and Prandtl number ( )Pr . The Nusselt number ( )Nu  is at maximum at each 
time step at the left wall of the channel, and decreases nearly exponentially until it reaches a zero value at the 
right end of the channel. As the radiation parameter ( )R  increases, the Nusselt number ( )Nu  decreases which 
indicates that the heat transfer is driven mainly by the radiation part of the energy. If the radiation number ( )R  
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is increased further, one can observe that the Nusselt number ( )Nu  is also increased as depicted in Fig.8 in 
the early stages of the transient solution. This suggests that the heat transfer mechanism is governed by both 
radiation and convection heat transfer for the case when the radiation parameter value is high.  

 

 
 

Fig.7. Effect of the radiation parameter on the Nusselt number for a fixed Grashof number. 
 

 
 

Fig.8. Effect of the radiation parameter on the Nusselt number for Gr 30= , and .Pr 0 72= . 
 
5. Conclusions 
 

The method of lines (MOL) is used in this study to investigate the unsteady natural convective Couette 
flow of a viscous incompressible fluid between two parallel walls of a vertical channel in the presence of 
thermal radiation. The governing partial differential equations are derived in dimensionless form, and 
discretized using the finite central difference scheme. The resulting discretized transient coupled differential 
equations were solved numerically at each grid point using the Matlab software’s ODE solvers. The solution 
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method is stable, fast and efficient, therefore, it can be utilized to solve more complicated domains and 
geometries. 

In this study, the effects of the radiation parameter and Grashof number on the flow and temperature fields 
have been investigated. It is shown that the radiation parameter ( )R  plays an essential role in the heat transfer 
mechanism of this problem. One of the important conclusions of this study is that when the Grashof number is 
increased the parabolic-shaped developing transient flow velocity profiles become more steep with time. 

Also, when the radiation parameter ( )R  is low, the velocity of the fluid increases with the increase in 
the Grashof number with time. Furthermore, the Nusselt number ( )Nu  generally at the left moving wall is 
always maximum due to the dominance of the convection heat transfer in that region. The analysis in this study 
can be further extended to investigate the thermodynamic behaviour of fluids with a high Prandtl number ( )Pr . 
Moreover, the analysis presented in this paper can be extended easily to solve multi-dimensional fluid 
flow/heat transfer problems. 
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Nomenclature 
 
 A  – total heat transfer area 2m 

    

 c  – specific heat [ / ]kJ kgK   
 E  – total energy change of the system in the control volume [ ]kJ   

 Gr  – Grashof number 

 K  – thermal conductivity [ ]/ 2W m K   

 L  – horizontal length between the vertical plates [ ]m   

 Pr  – Prandtl number 

 \ \q  – rate of heat flux / 2W m 
    

 R  – radiation parameter 
 T  – fluid temperature [ ]K   

 LT  – right end wall temperature [ ]K   

 t  – time [ ]sec   

 t̂  – non-dimensional time 
 U  – left end velocity [ ]/m s   

 u  – fluid velocity components in the 𝑥 direction [ ]/m s   

 û  – non-dimensional velocity 
Greek Symbols 

 α  – thermal diffusivity  [ ]/2m s   

 β  – volume expansion coefficient [ ]/1 K   

 ε  – emissivity factor 
 θ  – dimensionless temperature 
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 ν  – kinematic viscosity /2m s 
    

 ρ  – density [ ]/ 3kg m   

 σ  – Stefan-Boltzmann constant ( ).  / 2 45 67 10 8 W m K× −   
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