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In the present study, we have applied the reduced differential transform method to solve the thermoelastic 
problem which reduces the computational efforts. In the study, the temperature distribution in a two-dimensional 
rectangular plate follows the hyperbolic law of heat conduction. We have obtained the generalized solution for 
thermoelastic field and temperature field by considering non-homogeneous boundary conditions in the x and y 
direction. Using this method one can obtain a solution in series form. The special case is considered to show the 
effectiveness of the present method. And also, the results are shown numerically and graphically. The study shows 
that this method provides an analytical approximate solution in very easy steps and requires little computational 
work. 
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1. Introduction  

 
The study of thermal stresses in a solid has received considerable attention in the field of research. 

With the advancement in technological and engineering fields, the study of thermal behaviour of solids. The 
thermal stresses and temperature distribution plays an important role. In the literature, two types of heat 
conduction theory are available, namely, the Fourier heat conduction or parabolic heat conduction and non- 
Fourier heat conduction or hyperbolic heat conduction depending on the infinite or finite speed of heat 
propagation. Cattaneo [1] and Vernetto [2] proposed the first non-Fourier heat conduction system based on 
finite speed of heat propagation with phase lag in the heat flux. In the case of no phase lag in the heat flux, the 
hyperbolic heat conduction model is shifted into the classical Fourier heat conduction model. The hyperbolic 
heat conduction model is more appropriate in the case of a higher temperature gradient or very short time 
duration. 

In previous studies, most of the thermoelastic analyses for different materials have been done under 
the parabolic heat conduction model [3-10]. A few analyses of thermal stresses for a two-dimensional system 
have been made using the hyperbolic heat conduction model. Chen and Hu [11] studied the thermal stresses 
around a crack in a half-plane under the hyperbolic heat conduction model. They used an integral transform 
technique to find the solution of governing partial differential equations and also discussed a comparison 
between hyperbolic and parabolic heat conduction in the thermoelastic model. N. Sarkar [12] presented a 
model of thermoelasticity with non-local heat conduction based on generalized thermoelasticity to study the 
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transient response of the finite rod of one dimension. Al-Qahtani and Yilbas [13] determined the solution of 
the temperature field and thermal stresses using a one-dimensional hyperbolic heat conduction model in the 
Laplace transform domain. Mohamed and Gepreel [14] used a reduced differential transform method to solve 
the non linear Kadomtsev-Petviashvili hierarchy differential equation and showed that the result obtained using 
RDTM converges very rapidly to the exact solutions. Taghizadeh and Noori [15] obtained the solution of heat-
like and wave-like equations with variable coeffcients using RDTM. Recently, we [16] have found the solution 
to a thermoelastic problem in the context of hyperbolic heat conduction using the differential transform 
method. 

In a literature survey, we found that most of the work on thermoelasticity has been done under Fourier 
heat conduction. In this article, we have determined the temperature distribution using the hyperbolic heat 
conduction model in a finite two-dimensional rectangular plate by a reduced differential transform method. 
Also, we have investigated the thermal stresses and thermal displacement by using the thermal stress function. 
The governing partial differential equations have been solved in the reduced differential transform domain. 
This method gave an approximate solution in series form. The effectiveness of the present method is illustrated 
numerically and graphically for a special case.  
 
2. Mathematical problem formulation  
 

The present investigation concerns a finite thin rectangular plate, initially kept at zero temperature and 
subjected to non-homogeneous heat transfer in spatial direction. A plate of rectangular shape with dimensions 

,0 x a 0 y b≤ ≤ ≤ ≤ , has been taken into consideration. All material properties are assumed to be constant. As 
per CV theory, the unsteady state temperature distribution under the hyperbolic heat conduction in the plate 
with no internal heat generation is given as: 

 

   2 2 2

q 2 2 2
T T k T
t t x y

 ∂ ∂ ∂ ∂+ τ = +  ∂ ∂ ∂ ∂ 
 (2.1) 

 

where  k
c

λ=
ρ

, , , cρ λ  are the thermal diffusivity, mass density, specific heat capacity and thermal conductivity 

of the material, respectively, and qτ  is called phase lag in the heat flux. 
The plate subjected to boundary conditions, which are given as: 
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 (2.2) 

 
Consider the thermal stress function χ  defined as in Noda et al. [17], in the rectangular coordinate 

system for the plane thermoelastic problem. The fundamental equation is given as: 
 

   Γ
22 2 2 2

2 2 2 2E 0
x y x y

   ∂ ∂ ∂ ∂+ χ + α + =      ∂ ∂ ∂ ∂   
. (2.3) 
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The general solution of Eq.(2.3) may be expressed as a sum of the complementary function cχ  and 
the particular solution  pχ : 

 
  c pχ = χ + χ  (2.4) 
 
where cχ  and  pχ  are satisfied by the equations 
 

  , 
22 2

c2 2 0
x y

 ∂ ∂+ χ =  ∂ ∂ 
 (2.5) 

 

   Γ
2 2

p2 2 E
x y

 ∂ ∂+ χ = −α  ∂ ∂ 
 (2.6) 

 
where  0T TΓ = −  and , Eα  are the thermal expansion coefficient and Young’s modulus of the material 
respectively.  

Thermal stresses in terms of the stress function are given as follows: 
 

     , ,
2 2 2

xx yy xy2 2 x yy x
∂ χ ∂ χ ∂ χσ = σ = σ = −

∂ ∂∂ ∂
. (2.7) 

 
Also, the fundamental equation for the displacement function defined as in Noda et al. [17] for the 

plane problem in a rectangular coordinate is given as: 
 

  x
1 1U

2G x 1 y
 ∂χ ∂ψ= − + ∂ + ν ∂ 

, (2.8) 

 

  y
1 1U

2G y 1 x
 ∂χ ∂ψ= − + ∂ + ν ∂ 

 (2.9) 

 
where G  and ν  are the shear modulus of elasticity and Poisson’s ratio, and ψ  satisfies the following equation as: 
 

  Γ and
22 2 2 2

xx yy 2 2E 0
x y x y x y

 ∂ ψ ∂ ∂ ∂σ + σ + α ≡ + ψ =  ∂ ∂ ∂ ∂ ∂ ∂ 
. (2.10) 

 
3. Solution of the problem  
 
3.1. Solution of temperature field 
 

The solutions of the governing differential equations are obtained by using the reduced differential 
transform method [14]. 

If ( ), ,T x y t  is analytic and continuously differentiable function in , ,x y t  then the reduced differential 
transform function of ( ), ,T x y t  is defined as 
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  ( ) ( ), , ,
!

0

r

r r
t t

1T x y T x y t
r t =

 ∂=  
∂  

. (3.1) 

 
The inverse reduced differential function of ( ),rT x y  is given as 

 

  ( ) ( ) ( ), , , ,
!

0

r
r

0r
r 0 t t

1T x y t T x y t t t
r t

∞

= =

 ∂= − 
∂  

 . (3.2) 

 
Applying the reduced differential transform to Eq.(2.1) with respect to x  we get, 

 

  ( )( )  2 2
r r

r 2 q r2 2
T Tk r 1 r 2 T k T
t t y+

∂ ∂ ∂+ + = + τ −
∂ ∂ ∂

 (3.3) 

 
and using ( ) ( ), ,0 0T y t f y t a= =  and assuming, ( ),1 1T y t a=  in Eq.(3.3), we get: 
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,
          where  is odd 

!

r
r
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r

r 1
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a r
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a r
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 (3.4) 

 
where ( ) ( ) ( ) ,   , , .r q r 2 r 2 r 2tt t yya a a k a r 2 3 4− − −= τ + − = ……  

Applying the inverse reduced differential transform defined in Eq.(3.2), we get: 
 

  ( ) ( )( ), , , r
0 1 r

r 2
T x y t a a x T y t x

∞

=
= + + . (3.5) 

 
 Now applying other boundary conditions from Eq.(2.2), one can calculate the value of 1a  and 
substituting it back into Eq.(3.5) we obtain the required solution of temperature field. 
 
3.2. Determination of the thermal stress function 

 
 Assume the complementary function cχ  , which satisfies Eq.(2.5) as 

 

  
! ! !

2 3 r32 r
c 0 1

r 4

bb bb b x x x x
2 3 r

∞

=
χ = + + + +  (3.6) 

 
where  

  [ ] ( ) ( ) ( ) ( ),    ,       ,   
2 3

c c c
c 0 1 2 3x 0 2 3

x 0 x 0 x 0

b y b y b y b y
x x x=

= = =

   ∂χ ∂ χ ∂ χ χ = = = =    ∂ ∂ ∂        
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and 
 
  ( ) ( )r r 2 r 4yy yyyyb 2 b b− −

 = − +  , 

 
also the function pχ  , which satisfies Eq.(2.6) given by 
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E r 2 T y t h
h h x x

r

∞ −

=
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where 
 

  ( ) ( ), , ,p
p 0 1x 0

x 0

h y t h y t
x=

=

∂χ 
 χ = =   ∂ 

.  

 
From Eqs (2.4), (3.6), (3.7), we get 
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 (3.8) 

 
3.3. Determination of thermal stresses 
 

Now using Eq.(3.8) in Eq.(2.7) one can obtain the expression for thermal stresses as 
 

  ( ) ( )( ) ( )( )

'''' ''
'' ''
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'' ''

! ! !
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 (3.9) 
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  (3.11) 

3.4. Determination of displacement function 
 

 From Eqs (2.8)-(2.10), one can obtain the thermal displacement in the plate without rigid deformation as: 
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Equations (3.9)-(3.13) present the general solution of thermal stresses and thermal displacement for a finite 
rectangular plate. 

 
4. Special case for numerical and graphical representation 
 

For numerical purposes, we take 
 

  

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

, , , , ( , ) ,

( , ) , , ,

, , , .

2 2 2 2 2
0

2 2 2 6 3
2 3

0 1 0 0

2

1

f y t a y t g y t 2yt l x t x t

j x t 2yt 2bt b y 3y y b y 15y

b y b

2a

y h y t h y t 0 T 0

t= = = = −

= + = − − =

=

−

−

= = = =

 

 
From Eqs (3.3)-(3.5) we get,  
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( ), ,

.

q2 2 2 2 2

4 4 2 5 6
2 2 3

2

tT x y t y t 2xyt t x
k k

2 x 1 x y x y xx y x y
3 3 12 30 60k
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= + − + − × 

 
   

× + − + + −      
   

 (4.1) 

 
From Eqs (3.6) - (3.8) one can obtain the stress function as: 
 

  

.
! !
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 (4.2) 

 
From Eq.(2.7) we get the thermal stresses as 
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 (4.5) 

 
and from Eqs (2.8)-(2.10) we get the thermal displacement as 
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K.K. Chaudhari and C.S. Sutar  83 

  

( ) ( )

( )

.
!

2 2 5 3 2 4 3
y

7 4
6 5 3

3 2 4 5 6 7
q2 2

2

1 1 1U 1 6 x y 6 x y 45x y 2 10x y
2G 1 1

1 1 2y 45xy3 2x y 9x 2 y
1 1 7 2

x t t x y x 1 x y 4xE x yt
3 k k 6 30 180 7k

   = + + + − + +    + ν + ν   
    + + − − + + +     + ν + ν    

 τ      +α + + − + + +                

 (4.7) 

 
For all numerical calculations, physical properties of copper material were taken as in Sherief and 

Anwar [18]: 
 

  , . , . / ,
4 2

6 1 11 210 m17 10 k 1 1283 E 1 19 10 N m
s

−
− −α = × = × = ×℃   

  . , . 100 33 G 4 5 10ν = = ×  and .q 0 02sτ = . 
 

 
 

Fig.1. Temperature distribution versus x. 
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Fig.2(a). Thermal stress xxσ  versus x. 
 

Figure 1 shows the temperature distribution along the x-direction for .t 0 04=  and .t 0 06=  at 
. .y 0 005=  It is observed that initially, the temperature increases slowly till it reaches the middle of the plate 

and then starts decreasing and shows the minimum temperature at the boundary surface. It is also observed 
that the magnitude of the temperature decreases with time. 
 

 
 

Fig.2(b). Thermal stress yyσ  versus x. 
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Fig. 2(c). Thermal stress xyσ  versus x. 
 
Figure 2 describes the nature of thermal stress components ,xx yyσ σ  and xyσ  along the x-direction 

for different time intervals. Figure 2(a) shows the thermal stress xxσ  along the x-direction in the middle of the 
plane at . .y 0 005m=  It is clear from the graph that the compressive stress occurs from . .x 0 01=  The magnitude 
of this stress component is directly proportional to the time. Figure 2(b) describes the behaviour of thermal 
stress yyσ  along the x-direction in the middle plane at . .y 0 005m=  The figure shows that the plate experiences 
very little stress till the mid of the plate and then tensile stress occurs in the remaining part of the plate. The 
minimum stress occurs at .x 0 014=  and then increases between . . .0 014 x 0 02< <  The magnitude of yyσ  
decreases as time increases. Figure 2(c) gives the distribution of thermal stress xyσ  along the x-direction in the 
middle of the plane at . .y 0 005m=  The nature of the curve is similar to the nature of yyσ  along the x-direction. 
The large variation in stress  xyσ  was observed after .x 0 008=  and it reaches its maximum value at . .x 0 02=   

 
 

Fig.3(a). Displacement xU  versus x. 
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Fig.3(b). Displacement  yU versus x. 
 

 Figure 3 represents the nature of thermal displacement along the x-direction for different values of 
time. It is observed from Figure 3(a) that the nature of displacement xU  along the x-direction in the middle of 
the plate is similar to the temperature distribution along x-directions. There is a sudden variation in 
displacement after . .x 0 016=  It continuously decreases and shows the minimum value at the boundary 

. . x 0 02=  Figure 3(b) describes the nature of displacement yU  along the x-direction in the middle of the plate. 
The displacement yU  increases after .x 0 01=  and reaches its maximum value at the boundary surface. 

 
5. Conclusion 
 

In this study, we considered a thermoelastic model under the hyperbolic heat conduction theory for a 
thin rectangular plate. The reduced differential transform method has been used to obtain the temperature field, 
thermal stresses and displacement. The method is simple to apply and it gives a solution in series form. We 
have presented a general solution for this model assuming non- homogeneous boundary conditions along a 
spatial direction. Also, we have discussed special case to show the effectiveness of this method. All the 
numerical and graphical solutions are presented for the copper plate. From the study, it is observed that there 
is a large variation in the temperature, normal stress, shear stress and the displacement along the x-direction 
after .x 0 01= . The focus of the analysis is to present the solution of the hyperbolic heat conduction equation 
and thermal stresses using the reduced differential transform method. The results may be useful for different 
industrial and engineering applications related to the finite speed of heat propagation. It is also observed that 
the results obtained using the reduced differential transform method are more accurate and also reduce the 
computational work as compared to the differential transform method. 

 
Nomenclature 
 
 T  – temperature 
 t  – time  
 ,x y  – spatial coordinates 
 0T  – initial temperature 
 qτ  – relaxation time 
 k  – thermal diffusivity 
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  ρ  – mass density  
 c  – specific heat capacity 
 λ  – thermal conductivity 
 α  – thermal expansion coefficient   
 E  – Young’s modulus 
 G  – shear modulus of elasticity  
 ν  – Poisson’s ratio 
 r  – positive integer 
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