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In this paper, an exact analytical solution for the motion of fractionalized second grade fluid flows moving over 
accelerating plate under the influence of slip has been obtained. A coupled system of partial differential equations 
representing the equation of motion has been re-written in terms of fractional derivatives form by using the Caputo 
fractional operator. The Discrete Laplace transform method has been employed for computing the expressions for 

the velocity field ( , )u y t  and the corresponding shear stress ( , )y tτ . The obtained solutions for the velocity field 

and the shear stress have been written in terms of Wright generalized hypergeometric function p qψ  and are 
expressed as a sum of the slip contribution and the corresponding no-slip contribution. In addition, the solutions 
for a fractionalized, ordinary second grade fluid and Newtonian fluid in the absence of slip effect have also been 
obtained as special case. Finally, the effect of different physical parameters has been demonstrated through 
graphical illustrations. 
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1. Introduction 
 

Polymer solutions, blood and certain oils are non-Newtonian fluids. They play a very important role 
in modern technological applications and industries. The wide applications of these fluids in many areas of life 
attract researcher and scientist to study them and describe their behaviors. Generally, non-Newtonian fluids 
differ in rate, differential and integral types. The differential type non-Newtonian fluids are the second-grade 
fluids [1]. The exact solutions for the second grade fluid which is the sub-class of non-Newtonian fluids are 
also obtainable. For many reasons, the computations of exact solutions are very important. For example, in 
order to examine the accuracies of many approximate solutions for complex flow problems, exact solutions 
are essential. Thus, for describing the behavior of non-Newtonian fluids, close-form solutions are mandatory. 
The exact solutions of such systems are obtained by various researches; see for instance [2-7]. Nowadays, 
fractional calculus, the branch of mathematics deals with an arbitrary order of differentiation and integration, 
has become important owing to its vast range of use in engineering and science. Fractional differential 
equations are extensively employed to model the problems in fluid flow, relaxation, diffusion, reaction–
diffusion relaxation, oscillation and retardation processes in complex systems, dynamical processes and many 
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more physical and engineering processes [8, 9]. The merits of fractional differential equations in these 
applications are their non-local property. We are familiar that the integer order differential operator falls in the 
category of local operator, whereas the fractional order differential operator falls in the category of non-local 
operator; which indicates that the next state of a system not only depends on its current state but also on its 
future states [8,10]. For last few decades, the fractional calculus approach has extensively been employed to 
formulate and compute solution of fluid flows. The time derivative of integer order in the constitutive equation 
is replaced by the Reimann/Caputo operator. Specifically, it is proved to be a valuable tool for treating 
viscoelastic properties. Bagley [11], Friedrich [12], Junqi et al. [13], Guangyu et al. [14], Xu and Tan [15,16] 
and Tan et al. [17-22] have extensively developed the fractional calculus approach. The viscoelastic type 
studies are discussed in detail; see for instance [4,17,18,23-25]. In literature, most of the studies are focused 
on flow problems with no-slip condition, since no-slip condition is not valid for thin films problems. The 
problems including the multiple interfaces and the flow of rarefied fluids are brought under consideration. 
Experimentalists usually associate “spurt” with slip at the wall [26]. Slip conditions play a role in shear skin, 
hysteresis effects and spurt, whereas the insufficiency of the no-slip condition is quite visible in polymer melts 
which most often show microscopic wall slip. Much research has been done to study flow problems related to 
Newtonian and non-Newtonian fluids subject to no-slip condition [27-32]. Few investigations for the existence 
of slip at the solid boundary are discussed in [33,34]. In 1823, the possibility of fluid slip at the solid boundary 
was first time indicated by Navier as a general boundary condition. This boundary condition states that the 
tangential velocity of the fluid relative to the solid at a point on its surface is proportional to the tangential 
stress acting at that point [35]. 

This paper is structured as follows. In Section 2, the mathematical model with appropriate initial and 
boundary conditions is established. The exact analytic expressions for the velocity field and the corresponding 
shear stress have been computed in Section 3 and Section 4 respectively. In Section 5, some special cases have 
been discussed and expressions derived from obtained solutions by using different physical parameters. In 
Section 6, results and discussion have been presented and graphs have been drawn to analyse the effect of 
different parameters on the flow. Finally, in Section 7, some important conclusions have been presented. 

 

 
2. Mathematical model  
 
The mathematical formulations of the continuity and momentum equation describing the motion of 
incompressible fluid flow are presented as under: 
 

  ( ), .0
t

∂∇ ⋅ = ∇ ⋅ = ρ + ρ ∇
∂
VV T V V  (2.1) 

 
where the term ρ  represents the density of the fluid, the velocity of the fluid flow is denoted by V , t  represents 
the time variable and ∇  represents the Nabla operator and the Cauchy tensor T  for a second grade 
homogenous incompressible fluid flow is represented by the following equation [36-41]: 
 
  .2

1 1 2 2 1p= − + = μ + α + αT I S S A A A,      (2.2) 
 
where 1α  and 2α  represent normal stress moduli or material moduli, p  represents the hydrostatic pressure, 
unit tensor identity is represented by I , spherical stress is represented by p− I , and the extra-stress tensor and 
dynamic viscosity are represented by S  and μ , respectively. The functions 1A  and 2A  are the kinematic 
tensors and are presented as under:  
 

  ( ) ( ) ( ) ( ),T T1
1 2 1 1

d
dt

= ∇ + ∇ = + ∇ + ∇AA V V A A V V A .  (2.3) 
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In the present study the following form of velocity field is considered: 
 
  ( ) ( ) ( ), , , ,y t u y t y t= = =V V i S S  (2.4) 
 
where i  represents the unit vector in the x direction. The constraint of incompressibility is satisfied 
automatically for considered flows. Initially, there is no fluid flow, thus we have the following equations: 
 
  ( ) ( ), , , ,y 0 0 y 0 0= = = =V V S S  (2.5) 
 
By solving Eq.(2.1) to Eq.(2.5) and after long but elementary calculations, we get the following coupled system 
of partial differential equations:  
 

  

( ) ( )

( ) ( )

, ,
,

,
,

2

2

1

u y t u y t
v

t t y

u y t
y t

t y

∂ ∂∂ = + α  ∂ ∂ ∂ 


 ∂∂ τ = μ + α  ∂ ∂ 

 (2.6)  

 
where the velocity field and the shear stress are represented by ( , )u y t and ( ),y tτ , respectively. Furthermore, 
the kinematic viscosity and the viscoelastic parameter for the second grade fluid flow are represented by v and 
α respectively. The governing equations of motion given in Eqs (2.6) can be re-written in terms of fractional 
derivative by using the Caputo fractional operator: 
 

  

( ) ( ) ( )

( ) ( ) ( )

, ,
,

,
,

2

t 2

1 t

u y t u y t
v D

t y
u y t

y t D
y

β

β

∂ ∂
= + α

∂ ∂


∂τ = μ + α ∂

 (2.7)

   
where tDβ represents the Caputo fractional operator and is represented as: 
 

  ( ) ( )
( )

( )
( )

'
, ,

,

t

0
t

f1 d 0 1
1 tD f t

df t
1

dt

β
β

 τ
τ ≤ β <Γ − β − τ= 


β =


 (2.8) 

 
where ( )Γ •  represents the gamma function. The appropriate initial and the boundary conditions for the 
developed equation of motion are given below: 
 
  ( ), for ,u y 0 0 y 0= >   (2.9) 
 

   ( ) ( ) ( ) ( ),
, n

y 0

u y t
u 0 t UH t t H t

y =

∂
= + θ

∂
 (2.10) 
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where ( )H t  represents the Heaviside function and the slip effect parameter is denoted by θ . Furthermore, it 
has been assumed that there is no motion of fluid at infinity and no shear is taken in free stream, thus we have 
the following natural condition for the given problem: 
 
  ( ), , for ,u y t 0 t t 0= → ∞ > . (2.11) 
 
In the following section, we shall solve the coupled system of fractionalized partial differential equations given 
in Eq.(2.7) under appropriate initial and boundary conditions given in Eq.(2.9) to Eq.(2.11) by using the 
discrete Laplace transform [6,19-23,25,45-46].  
 

 
 

Fig.1. Fractionalized second grade fluid over an accelerating plate with slip effect. 
 
3. Computation of the velocity field 
 
 To compute the exact analytic expression for the velocity field ( , )u y t  we use the discreate Laplace 
transform to Eq.(2.7)1 on both sides and by considering the initial condition (2.9) it yields: 
 

  ( ),
2

2
q u y q 0

y v qβ

 ∂ − =  ∂ + α 
  (3.1) 

 
where ( ),u y q  is the Laplace transorm of the funciton of ( ),u y t  and q  represents the transform parameter. 
Furthermore, by taking the discrete Laplace of the boundary condition given in Eq.(2.10) and natural condition 
given in Eq.(2.11) we get 
 

  ( ) ( ),!, ,y 0n 1
u y qUnu 0 q

yq =+
∂

= + θ
∂

   (3.2) 

 
and  
 
  ( ),u y q 0→  as y → ∞ ,   (3.3) 
 
By setting Eq.(3.2) and Eq.(3.3) into Eq.(3.1) , we obtain: 
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  ( ) !, exp .

1
2

n 1

Un qu y q y
v qqq 1

v q

β
+

β

 
  = −     + α  + θ   + α  

 (3.4) 

 
For the sake of convience, we can re-wrtite the each term of Eq.(3.4) in terms of infinite series and by using 
the fact given in Eq.(3.5) 
 

  ( ) ( )
( )

( )
( )

,k m 1 k m
1

m k 1 m
Γ + Γ −

− =
Γ − + Γ −

  (3.5) 

 
after long calculations, we get Eq.(3.6): 
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∞ ∞ ∞
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 Γ + −θ −    = + +   α α    Γ 
 

+ Γ + −θ − −      +      + α α α      Γ 
 

 

  

 (3.6) 

 
In order to compute the expression for the velocity ( , )u y t  from Eq.(3.6), we apply the discrete inverse Laplace 
transform on both sides of Eq.(3.6), thus we obtain 
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   

 + − Γ +    α −θ −     +     + α α    Γ Γ β − 
 

 

 
( )

.
n 0 k n 1 1

2

∞

= + + β + + 
 



  (3.7) 

 
The expression in Eq.(3.7) represnts the excact analytic solution for the velocity field and can further be re-
written in terms of Wright generalized hypergeometric funciton which is denoted by p qΨ  and is defined as: 
 

  
( ) ( )

( ) ( )
( )
( )

, ,... ,

.
!

, ,... ,B

1 1 p p pn
j jj 1

p q q
n 0 j jj 1

1 1 q q

a A a A
z a A n

z
n b B n

b B b

∞
=

= =

 
  Π Γ +
 Ψ =
  Π Γ +
  

   (3.8) 

 
Equation (3.7) can further be re-written as below by using Eq.(3.8) 
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
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 (3.9) 

 
Thus Eq.(3.9) represents the expression for an exact analytical solution of fractionalized second grade fluid 
flows and is written in terms of Wright generalized hypergeometric function with sum of slip and 
corresponding no-slip contribution. 
 
4. Computation of the shear stress 
 
To compute the exact analytic expressions for the corresponding shear stress ( ), ,y tτ  for the fractionalized 
second grade fluid flow, we apply the discrete Laplace transform to Eq.(2.7)2, on both sides, and we get: 
 

  ( ) ( ) ( ),
, ,1

u y q
y q q

y
β ∂

τ = μ + α
∂

  (4.1) 

 

where ( ) ( ){ }, ,y q L y tτ = τ  and q  is the transform parameter. Using Eq.(3.4) into Eq.(4.1), we get 
 

  ( ) !
, exp .

1
2

n 1

qn U v q qy q y
v qqq 1

v q

β

β
+

β

 
 −ρ + α  τ = −     + α  + θ   + α  

  (4.2) 

 
In order to compute the inverse Laplace transform of Eq.(4.2), we first expand each term of Eq.(4.2) in terms 
of infinite series as: 
 

             ( )
( ) ( )

, !
!

!

n

k m

m k 11 n 1 1k 0 m 0 n 0 2

m k 1 vn
y 1 2y q n U

m m k 1n q
2

∞ ∞ ∞

+ − β− + β+ + = = =  

+ − −  Γ +  −θ −    α  τ = − αρ    α α    + − Γ 
 

   . (4.3) 

 
By applying the discrete inverse Laplace transform to Eq.(4.3) on both sides, we get  
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 


 (4.4) 

 
By using Eq.(3.8), we re-write the expression for the shear stress in terms of Wright generalized 
hypergeometric function as  
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 

 (4.5) 

 
Equation (4.5) represents the exact analytic expression for the shear stress for the fractionalized second grade 
fluid flow and is written in terms of Wright generalized hypergeometric function. 
 
5. Special cases 
 
5.1. Ordinary second grade fluid with slip effects 1β =  
 
By setting the fractional parameter 1β =  into Eq.(3.9) and Eq.(4.5), we obtain the expressions for the velocity 
field and the corresponding shear stress respectively, for an ordinary second grade fluid with slip effect. 
 
5.2. Fractionalized second grade fluid without slip effect for 0θ =  
 
 The exact analytic expressions for the velocity field and the corresponding shear stress can be obtained 
for the fractionalized second grade fluid flow without slip effect by setting the slip parameter 0θ =  in Eq.(3.9) 
and Eq.(4.5), respectively. The expressions are given below: 
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

 (5.1) 
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and corresponding shear stress  
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
 (5.2) 

 
5.3. Ordinary second grade fluid without slip effects 1β =   
 
The expressions for the velocity field and the corresponding shear stress for an ordinary second grade fluid 
flow without slip effect can be obtained by setting the fractional parameter 1β =  into Eq.(5.1) and Eq.(5.2), 
respectively. 
 
5.4. Newtonian fluid under influence of slip effect 0α =   
 
For computing the exact analytic solutions for a Newtonian fluid with slip effect, we set 0α = , Eq.(3.4) and 
we get: 
 

  ( ) !, exp .
n 1

Un qu y q y
vqq 1

v
+

   = −        + θ 
 

 (5.3) 

 
In order to find the inverse Laplace transform we can re-write each term of Eq.(5.3) in series form as under: 
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By applying the inverse Laplace transform on both sides of Eq.(5.4) we get: 
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  (5.5)  

 
The expression for a Newtonian fluid with slip effect as given in Eq.(5.5) can be re-written in terms of Wright 
function which is defined as under: 
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Thus we have the following expression of the exact analytic solution for a Newtonian fluid with slip effect: 
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   (5.7) 

 
Similarly, for computing the corresponding shear stress ( , )y tτ  for a Newtonian fluid under the influence of 
slip effect, we set 0α =  into Eq.(4.2). It yields following expression: 
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  (5.8) 

 
To obtain ( ){ } ( ), ,1L y q y t− τ = τ  easily, we expand each term of Eq.(5.8) in series form: 
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    (5.9) 

 
By applying the inverse Laplace transform to both sides of Eq.(5.9), we get the following expression for the 
shear stress for a Newtonian fluid: 
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   (5.10) 

 
The expression for a Newtonian fluid under the influence of slip effect as given in Eq.(5.10) can further be re-
written in terms of Wright function as follows: 
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5.5. Newtonian fluid without slip effect 0θ =  
 
By setting the slip parameter 0θ =  in Eq.(5.7) and Eq.(5.11), we obtained the exact analytic expressions for 
the velocity filed and shear stress, respectively, for Newtonian fluids without slips. 
 
6. Results and discussion 
 
 The close-form solutions for a fractionalized second grade fluid moving under the influence of slip 
effect over the accelerating plate have been obtained by the application of the discrete Laplace transform 
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method. These solutions are re-written in terms of Wright generalized hypergeometric function as a sum of 
slip and no-slip contribution. Furthermore, many special cases have also been discussed. Many graphs have 
been drawn to analyze the effect of different physical parameters on the motion of the fractionalized second 
grade fluid due to an accelerating plate. The graphical illustration for the velocity field ( , )u y t  and the 
corresponding shear stresses ( , )y tτ  are produced for different parameters by using Mathcad software. For 
simplicity, all diagrams are plotted by taking the values , . , , .  and .U 1 v 0 295 26 0 5 0 2= = μ = α = β = .  
In Fig.2, the graphs for the velocity field and the corresponding shear stress have been drawn for different time 
positions. It can easily be observed from these graphs that the velocity profile and the shear stress profile grow 
with respect to time t  and reduce with respect to the height y . In Fig.3, the effects of the material parameter 
α  on the velocity profile and the corresponding shear stress profile are shown. It can be seen in these graphs 
that both the velocity as well as shear stress are increasing functions with the growth of the material parameter. 
 

 
 
Fig.2. The velocity and shear stress profiles for U 1= , .0 295ν = , 26μ = , .0 5α = , .0 2β = , ,5θ =  n 2=  and 

different values of t. 
 

 
 
Fig.3. The velocity and shear stress profiles for U 1= , .0 295ν = , 26μ = , .0 2β = , 5θ = , ,n 2=  t 4s=  and 

different values of α . 
 
The effect of the kinematic viscosity ν  over the motion of the fractionalized second grade fluid is depicted in 
Fig.4. It is shown that the velocity and the shear stress grow as the parametric values of the kinematic viscosity 
are increasing. The effect of the fractional parameter β  on motion of the fluid flow is depicted in Fig.5. The 
velocity field ( , )u y t  and the corresponding shear stress ( , )y tτ  have opposite behavior for different fractional 
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parametric values. The velocity field increases and shear stress decreases with regard to the fractional 
parameterβ .  
 

 
 
Fig.4. The velocity and shear stress profiles for U 1= , 88ρ = , .0 5α = , .0 2β = , 5θ = , n 2= , t 4s=  and 

different values of ν . 
 

 
 

Fig.5. The velocity and shear stress profiles for U 1= , .0 295ν = , 26μ = , .0 5α = , 5θ = , n 2= , t 4s=  and 
different values of β . 

 

 
 

Fig.6. The velocity and shear stress profiles for U 1= , .0 295ν = , 26μ = , .0 5α = , .0 2β = , ,n 2=  t 5s=  
and different values of θ . 
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Fig.7. The velocity and shear stress profiles for U 1= , .0 295ν = , 26μ = , .0 5α = , .0 2β = , t 2s=  and 
different values of n . 

 

 
 
Fig.8. The velocity and shear stress profiles for U 1= , .0 295ν = , 26μ = , .0 5α = , .0 2β = , ,5θ =  n 2=  and 

different values of y . 
 

 
 
Fig.9. The velocity and shear stress profiles for U 1= , .0 295ν = , 26μ = , .0 5α = , . ,  . ,  ,0 2 0 5 1β =  5θ = , 

n 2=  and t 4s= . 
 
The effect of the slip parameter θ  over the motion of the fractionalized second grade fluid has been drawn in 
Fig.6. It can be seen in these graphs that the velocity and the corresponding shear stress are decreasing functions 
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with regard to the slip parameter. Figure 7 depicts the effect of power n  over the motion of the fluid. It can 
easily be seen that as the parametric values of power n  are increased, then both entities are increasing.  
 

 
 
Fig.10. The velocity and shear stress profiles for U 1= , .0 295ν = , 26μ = , .0 5α = , . ,  . ,  0 2 0 5 1β = , 5θ =  

and t 10s= . 
 
The velocity field and the corresponding shear stress decrease as we leave the plate. This phenomenon is 
clearly depicted in Fig.8. A comparison of the velocity profiles and the shear stress corresponding to the four 
models (fractionalized second grade fluid for . ,  .0 2 0 5β = , ordinary second grade ,1β =  Newtonian fluid) at 
two different values of  ,  t 4s 10s=  is shown in Figs 9 and 10. It can be seen from these diagrams that the 
fractionalized second grade fluids have largest values and for Newtonian fluids the values of both entities of 
interest are smallest. 
 
6. Conclusion  
 
In this paper, a fractionalized second grade fluid flow over an accelerating plate under the influence of slip 
effect has been studied by means of discrete Laplace transforms. The mathematical model representing the 
motion of the fluid has been re-written in terms of fractional derivative by using the Caputo fractional operator 
and appropriate initial and boundary conditions has been considered. The exact analytic solutions for the 
velocity field ( , )u y t  and the corresponding shear stress ( , )y tτ  have been obtained by applying the discrete 
Laplace transform and re-written in terms of Wright generalized hypergeometric function p qΨ  with sum of 
slip and no-slip contribution. A similar type of solutions for ordinary second grade and Newtonian fluids can 
easily be obtained as limiting cases of general solutions. Moreover, the solutions for a fractionalized and 
ordinary second grade fluid in the absence of slip effect are also obtained as special cases. In addition, the 
effects of the material parameter and fractional parameters on the motion of fractionalized second grade fluids 
have been discussed via graphical illustrations by using Mathcad software. The difference among 
fractionalized second, ordinary second grade and Newtonian fluid models is also emphasized. With respect to 
time, material parameter α  and kinematic viscosity ν  the velocity field and the shear stress are increasing 
functions. The fluid motion is strongly influenced by the fractional parameterβ , whereas the effects of the 
fractional parameter on velocity and shear stress profiles are shown to be opposite. The increasing values of 
the slip parameter θ  slow down the fluid motion. Fluid motion decreases by increasing the values of n , whereas 
increases by increasing the height y . The fractionalized second grade fluid is moving fast in comparison to 
ordinary second grade and Newtonian fluids. 
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Nomenclature 
 
 1A , 2A  − kinematic tensors 

 tDβ  − Caputo fractional operator 
 ( )H t  − Heaviside function 
 p  − hydrostatic pressure 
 p qΨ  − Wright generalized hypergeometric function 
 q  − transform parmater under Laplace 
 T   − Cauchy tensor  
 ( , )u y t  − velocity field 
 ( ),a bW z  − Wright function 
 ρ  − fluid density  
 α  − viscoelastic parameter 
 β  − fractional parameter 
 ( )Γ •  − gamma function 
 θ  − slip effect parameter 
 ( , )y tτ  − shear stress 
 v  − kinematic Viscosity  
 ∇  − Del or Nabla operator 
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