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In this paper, a methodology is presented for determining the stress and strain in structural concrete sections, 
also, for estimating the ultimate combination of axial forces and bending moments that produce failure. The 
structural concrete member may have a cross-section with an arbitrary configuration, the concrete region may 
consist of a set of subregions having different characteristics (i.e., different grades of concretes, or initially identical, 
but working with different stress-strain diagrams due to the effect of indirect reinforcement or the effect of 
confinement, etc.). This methodology is considering the tensile strain softening and tension stiffening of concrete 
in addition to the tension stiffening of steel bars due to the tensile resistance of the surrounding concrete layer. A 
comparison of experimental and numerical data indicates that the results, obtained based on this methodology, are 
highly reliable and highly informative. 
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1. Introduction 
 

The adopted assumptions for the analysis of reinforced, partially, and fully prestressed concrete 
flexural members, based on the normative approaches of the ACI 318-19 [1], AASHTO [2], IBC [3], Eurocode 
2 [4], BS-8110 [5], AS3600 [6], and CSA A23.3 [7] are identical and lead to fairly acceptable results for the 
ultimate steel stresses and the load-carrying capacity. These approaches use the no-slip bending theory and 
neglect the tensile resistance of concrete and bond-slip. These assumptions, however, yield an erroneous 
prediction of the member axial strain and curvatures at loading stages above the service load. 
 In 1908, Mörsch [8] explained that cracked concrete can decrease strain in steel due to tensile stresses 
in the concrete between cracks. This phenomenon was later called “tension stiffening”. As a result, the stiffness 
of the beam varies along its length even in a zone of constant bending moment. So, the stiffness is minimum 
at the crack positions, whilst it increases between cracks due to the contribution of the concrete in tension. 
 Accordingly, the actual behavior of the structural member is stiffer, due to the capability of concrete to 
transmit stresses in tension even after cracking begins. It is well known that neglecting the tensile resistance of 
concrete, usually adopted in ultimate load calculations, leads to a significant overestimation of the values of the 
strain vector components and as a result the displacements of the structural member. The degree of error depends 
on the steel percentage and increases as the steel percentage decreases. Beeby [9] reported that with beams having 
0.75% tension reinforcement, the error in the calculated deflections at working loads will be in the order of 100%. 
 To consider this stiffening, three different effective mechanisms should be accounted, namely, (1) the 
tensile strain-softening phenomenon of concrete, i.e., the fact that, after reaching the concrete strength limit, the 
tensile stress does not drop suddenly to zero but decreases gradually as the strain increases (Jenn-Chuan et al. [10]), 
(2) the tension stiffening phenomenon of steel bars due to the tensile resistance of concrete layer surrounding the 
bar, which is forced by bond stresses to extend simultaneously with the bar (i.e., the uncracked concrete which exits 
between cracks in the tension zone, contributes to the stiffness of the member) (Jenn-Chuan et al. [10]; Alameh and 
Harajli [11]), and (3) the tension stiffening phenomenon of concrete, i.e., the argument that, after cracking, the 
concrete tensile stresses below the neutral axis position above the tip of the crack are not zero as conventionally 
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assumed (Alameh and Harajli [11]). A summary of research carried on tension stiffening and cracking of structural 
concrete in direct tension is given by different works (ACI Committee 224 [12]; CEB [13]). 

There are two main reasons behind the fact that the phenomenon of the strain-softening should be 
considered, namely (1) the crack bridging achieved by pieces and fragments of aggregate that are still anchored at 
both sides of the crack surface, and (2) the cracks that initiate to appear at the concrete strength limit are 
discontinuous in nature and do not become continuous until the strain increases progressively and the stress gets 
declined to zero (Jenn-Chuan et al. [10]). While, the main reason behind the tension stiffening phenomenon is that 
the intact concrete in the tension zone of the section which is located between two adjacent cracks can still develop 
significant tensile stresses after cracking, due to the bond between steel bars and the surrounding concrete, to 
contribute to the flexural stiffness of the concrete beam. Such a tension stiffening effect in a flexural member is not 
quite the same as that in an axial member because the tensile stresses in a cracked flexural member are induced not 
only by the steel reinforcement–concrete bond but also by the curvature of the flexural member (Ng et al. [14]). 

The existing tension stiffening theory adopted the assumption which stated that the tensile stress of 
concrete falls suddenly to zero as soon as the concrete tensile ultimate strength is attained, and that continuous 
tension-free cracks, normal to the axis of the bar, appear immediately at a certain spacing as the principal 
tensile stress from restraint forces exceeds the tensile ultimate strength of concrete. It is worth mentioning that 
the continuous tension-free cracks can be expected to form only after a large increase of strain in the steel 
occurs because part of the bar force is assumed to be transmitted to the concrete between two adjacent cracks 
by bond stresses (and, conversely, the tensile resistance of concrete between these cracks restrains the tensile 
steel bar against axial elongation and increases its stiffness) (Jenn-Chuan et al. [10]). 

The evaluation of the stress, strain, curvature, and deflection before and after cracking and the estimation 
of the load-carrying capacity for the structural concrete members have been extensively treated by Nilson [15], 
Branson and Trost [16, 17], Tadros [18], Bazant and Oh [19], Tadros et al. [20], Kawakami et al. [21], Alameh 
and Harajli [11], Ghali [22], Kawakami and Ghali [23, 24], Mast [25], Bischoff [26, 27], and Bischoff and 
Scanlon [28]. None of the approaches proposed in those studies considered all the three mentioned above 
stiffening mechanisms. Failing to account for the three mechanisms in modeling the response of the structural 
concrete member will lead to incorrect and unrealistic results. However, the fully consistent methodology for the 
analysis of structural concrete members should take into account the three mechanisms together because an 
acceptable agreement with test results can be achieved only when all mechanisms are taken into account. 
 
2. Uniaxial stress-strain diagrams for materials 
 

Many different analytical expressions have been proposed that more or less accurately describe the 
deformation of concrete under compression, with or without the descending branch, as well as for mild and 
high strength steel (Scordelis [29]; Oukaili [30]). A review of the analytical constitutive relationships for 
concrete and steel reinforcement, with a detailed description of their competency, weaknesses, and powerful 
aspects, was given in the literature (Oukaili [30]; Popovics [31]; Naaman [32]; Karpenko et al. [33]).  
Relationships proposed by Karpenko et al. [33, 34], which were originally developed considering most of the 
deficiencies, became widespread in the 1990s. In this study, the short-term uniaxial stress-strain diagram 
adopted for the concrete and steel is based on these relationships. 

Let mf  denote stress, mε  – strain, mE  – initial modulus of elasticity, and  let m  denote the general index 
which describes the type of material under consideration. This index shows that the parameter or relationship to 
concrete or to steel, where ( ) ( ) or m c ct=  for concrete under uniaxial compression or uniaxial tension, 
respectively. While ( ) ( ) or m s ps=  for mild steel or high strength prestressed steel, respectively, under uniaxial 
tension or compression. Instead of mf  and mε , it is more convenient to operate with their levels, so 
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where ˆ
mf  and ˆmε  – are the stress at the vertex of the stress-strain diagram and its corresponding strain. 

At the beginning of the stress-strain diagram, (mainly for steel), a linear portion which extends up to the stress 
,m elf  and strain ,m elε  or their levels ,m elf  and ,m elε  can be distinguished. Nonlinear diagrams are most simply 

introduced into the elements of the stiffness matrix of the structural members if they are represented as follows: 
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where mE′  is the secant modulus of elasticity; and mϑ  is the coefficient of elasticity, (i.e., coefficient of 
changing of the secant modulus), which represents the ratio of elastic strain to the total strain. 
From the different types of stress-strain diagrams (Fig.1.), the coefficient of elasticity ( mϑ ) can be expressed 
in a uniform shape: 
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where mη  is the stress level ( )  m0 1≤η ≤ ; oϑ  is the value of the coefficient of elasticity mϑ  at the onset of 

the stress-strain diagram; ˆ
mϑ  is the value of the coefficient of elasticity mϑ  at the vertex of the stress-strain 

diagram; and me  is the diagram curvature parameter 
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From the condition of definability of Eq.(2.3), it follows that 2me ≤ . Also, the sign (+) corresponds to the 
ascending branch and the sign (-) to the descending branch of the stress-strain diagram.  
Based on Eqs.(2.1)-(2.2), mf  can be determined as follows: 
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As ,  m m elε >ε , the quadratic Eq.(2.3) can be transformed to take the following shape: 
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Thus, the determination of mϑ  through the strain level mε  also leads to the solution of a quadratic equation, 
the greater roots of Eq.(2.6) should be considered.  
 
2.1. Stress-strain diagrams for concrete 
 
 For concrete of different grades, parameters of the functions 𝜗 were determined based on the analysis 
of extensive experimental data (Karpenko et al. [33]).  
 

 

 
Fig.1. Stress–strain diagrams for concrete and steel. 

 
It has been established that Eq.(2.2) with Eq.(2.3) successfully simulate the experimental stress-strain diagram 
of normal-weight concrete under uniaxial compression or tension, when these parameters are considered as 
follows: 
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2.2. Stress-strain diagram for steel 
 
 To depict the stress-strain diagram for steel under uniaxial tension or compression, in addition to the 
above-mentioned characteristics ( sE , ,s elf , ŝf  and ˆ sε ), the physical or the proof stress .0 2f , its corresponding 
strain .0 2ε , and the elasticity coefficient .0 2ϑ  should be also used 
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where .0 2f  is the proof stress of high strength steel determined by 0.2% set method; .0 2ε  is the strain 
corresponding to the proof stress  .0 2f  of high strength steel; .0 2ϑ  is the coefficient of elasticity of steel 
corresponding to the stress .0 2f  and strain .0 2ε ; ,s elf  is the steel elastic limit ( ), .  s el el 0 2f f=β ; and elβ  is the 
coefficient of proportional limit. 
Based on these characteristics, the unknown parameter se  is determined from the following expression: 
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For the mild steel with physical yielding plateau, ŝf  and ˆ sε  are considered to be conditional. They are 
corresponding to the stress and strain at the end of the yielding plateau, which can be adopted as: 
 
  ( ) .. ~ .   / ; .  ; .ˆ ˆˆ;s y s s s y 0 2 y elf 1 01 1 03 f f E f 0 99 f 0 97= ε = + λ = β =   (2.14) 
 
where yf  is the yield strength of mild steel; and yλ  is the length of the yielding plateau that depends on the 
grade of steel (Karpenko et al. [33]). 
When the steel strain enters the strength hardening zone, it is recommended to use two paired diagrams. The 
first one, that is described above, terminates at the end of the yielding plateau, (with  ˆ s sf f=  and ˆs sε =ε ), and 

the second diagram – continues the first one and terminates at a point, (with *ˆ s sf f=  and *ˆs sε =ε ), that 
corresponds to the rupture of the steel. 
The second part of the stress-strain diagram of mild steels can also be described using Eqs.(2.2), (2.3), (2.6), 
and (2.12) taking into consideration the following: 
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Also, introduce to the second part of the stress-strain diagram of mild steel an additional point (c) with 
coordinates: 
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Additionally, the following terms in Eqs.(2.4), (2.11), and (2.13) should be replaced 
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3. Proposed methodology 
 
 The objective of the analysis may be formulated simply: given a general shape section which includes 
several subsections depending on the grades of concrete used, geometrical properties of concrete and steel (if 
the steel is available), prestressing history (if prestressing technique is implemented), main characteristic 
parameters to describe the actual short-term uniaxial stress-strain relationships for concrete and steel (grade, 
ultimate strength at compression and tension, elastic limit, ultimate strain, strain corresponding to the 
maximum stress, initial modulus of elasticity), initial strain in nonprestressed and prestressed steel, and the 
self-weight of the member; find the strain vector and the corresponding stress in concrete, nonprestressed, and 
prestressed steel at any stage of loading up to failure. 
The formulation of the proposed methodology is based on the following assumptions. 
1. The plane cross-sections remain plane after loading and the average strain increment at any point within 

the section region obeys a linear distribution law. 
2. It is believed that the structural concrete member is designed in such a way that the shear and bond failures 

are excluded. Also, the geometrical nonlinearity is neglected. 
3. Each discrete concrete area, steel bar, steel wire, and steel strand in the cross-section of the member is 

assumed to be under a state of uniaxial stresses. 
4. The work of concrete and steel in individual elements is modeled by the stress-strain diagrams, both under 

uniaxial compression and uniaxial tension, obtained during testing of concrete, (cylinders, cubes or prisms 
specimens), and steel samples, respectively, according to the required specifications. 

5. The total stresses are corresponding to the total strains in concrete and steel through the secant modulus of 
elasticity. Karpenko relationships will be used to determine its value. 

6.  The tensile stress in concrete does not drop suddenly to zero after reaching the strength limit but decreases 
gradually as the strain increases with the progress of loading. 
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7. The artificially uncracked section located between two adjacent cracks will be considered as the effective 
cross-section for strain analysis in a cracked member at all loading stages up to failure. While the effective 
cross-section for stress analysis will be adopted based on the actually cracked section. 

8. The prestrain which takes into account all losses in prestressing steel and the strain caused by the shrinkage 
and creep of concrete in nonprestressed steel is considered to be the initial strains in steel. While the strain 
due to the shrinkage and creep is considered to be the initial strain in concrete. 

 
3.1. Fundamental formulation of basic solution equations 
 
 Let there be some rod-shaped structural concrete member in a natural (not deformed) state, where its 
cross-section occupies the region Ω . Areas of the region Ω  are occupied by concrete cΩ , nonprestressed 
steel sΩ , and prestressed steel psΩ  (Fig.2.) 
 
     c s psΩ =Ω Ω Ω  .  (3.1) 
 
Regions cΩ , sΩ  and psΩ  may consist of subregions with different grades of concrete, nonprestressed, and 
prestressed steel, respectively 
  

   
kk

i
i 1=

Ω = Ω  (3.2) 

 
where ( ) , ..,i i 1 kkΩ = …  - are the subregions of the region Ω , occupied by sections of the individual 
elements (Fig.2.). 
Apply a system of Cartesian coordinates to the region Ω , the center of which will serve the point of intersection 
of the longitudinal axis of the member with the plane of the section (i.e., the arbitrary point O).  
 The global coordinate system xyz  is defined by a longitudinal reference axis z, which may not be the 
centroidal axis. The adopted positive sign direction for forces should satisfy positive tensile strain at points of 
the section region, including the point lying on the longitudinal reference axis of the element. Also, curvatures 
with a positive sign will be considered those which are orienting the axis of the element with convexity down 
and to the left (Fig.2.). 
 The applied load changes the configuration of the member and causes deformation, where the strain 
energy per unit length ( )U   equals: 
 

  ( )
  

              1 1U f ds ds
2 2

Ω Ω

= ε + τ γ    (3.3) 

 
where τ  is the  shear stress; and  γ  is the shear strain. 
The basic physical expression are represented as follows: 
 
   f E′= ε .  (3.4) 
 
In Eq.(3.4), the secant modulus of elasticity E′  takes the following form: 
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Fig.2. General section shape with positive sign convention. 

 

 
(a). Secant modulus of elasticity for concrete 
determined from the beginning of coordinates. 
 

(b). Secant modulus of elasticity for concrete determined 
from the attained stress stage. 

Fig.3. The change of the secant modulus of elasticity for concrete. 
 
Equation (3.5) represents the secant modulus of elasticity for materials, measured from the origin of 
coordinates of the stress-strain diagram for concrete under compression and tension (Fig.3a.), and for steel 
(Fig.4a. and Fig.4b.). The secant modulus of elasticity is, as is well known, variable it depends on the achieved 
stress level, see Fig.3b., Fig.4c., and Fig.4d. 
Substituting Eq.(3.4) in Eq.(3.3) and neglecting the second term of Eq.(3.3), Eq.(3.3) takes the following form: 
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(a). Secant modulus of elasticity for mild steel 
determined from the beginning of coordinates.  
 

(b). Secant modulus of elasticity for high strength  
steel determined from the beginning of coordinates. 

 
 
 
 

(c). Secant modulus of elasticity for mild steel 
determined from the attained stress stage.  
 

(d). Secant modulus of elasticity for high strength  
steel determined from the attained stress stage. 

Fig.4. The change of the secant modulus of elasticity for steel. 
 
The deformation state of the region Ω  can be described by the following expression: 
 
     ,    ,     T x yε = ∈ΩZ λ   (3.7) 
 
where λ  and Z  are the finite-dimensional vectors of geometric space, 
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T
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  ( ) ,T1 y x= − −Z   (3.9) 
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oε  is the axial strain at the reference point O; and xψ  and yψ  are the curvature of the member axis in the yz 
and xz planes, respectively.  
The strain vector λ  depends on the applied forces (loading level) and the geometric parameters of the cross-
section. Equation (3.7) expresses the relationship between the strain of the member reference axis z and the 
normal strains at any location in the section with coordinates x and y; it can be rewritten as follow: 
 
       .o x yy xε =ε −ψ −ψ   (3.10) 
 
Considering Eq.(3.7), Eq.(3.6) takes a new form: 
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The stiffness matrix of the section corresponding to the operator of a static-geometric function is 
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Analyzing Eq.(3.11), it could be concluded that the strain energy per unit length is a function of three variables 
– i.e., the components of the axial strain vector λ . The partial derivatives of the strain energy per unit length 
relative to these components will give the associated forces: 
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where 1C , 2C , and 3C  are respectively, generalized axial and flexural stiffness vectors of the section in two 
directions. 
The elements of the vector 1C  are the axial and the flexural-axial stiffness of the section in two directions 
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The elements of the vector 2C  are the flexural-axial, flexural stiffness, and stiffness which takes into account 
the mutual influence of moments in two directions 
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Vector 3C  has the following form: 
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Give Eq.(3.14) a more compacted form: 
 
  =F Cλ  (3.18) 
 
where F  is the force vector, and C  is the stiffness matrix of the section, which is a function of the geometrical 
and deformational parameters of the cross-section and the applied load 
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The direct integration for elements of the stiffness matrix is difficult because the secant modulus of elasticity 
depends on the strain level, and the gradient of the latter is generally non -zero. Accordingly, it is necessary to 
resort to elements of numerical integration. For this purpose, the region of the section is covered in the general 
case by a two-dimensional, more often orthogonal mesh, and, averaging the strains within the boundaries of 
each elementary area of the mesh, the integral summation is replaced by a finite summation, in which the upper 
limit is equal to the number of cells of the mesh (Fig.2.). 
The concrete cells in the adopted mesh are grouped into kk  units with areas  ; , , ciA i 1 2 kk= … . Also, the 
nonprestressed steel is grouped into mm  units with areas  ; , , sjA j 1 2 mm= … . While the prestressing steel is 
grouped into nn  units with areas pskA ; , , k 1 2 nn= … . Steel reinforcement can be grouped into individual 
layers in case the section is subjected to uniaxial bending, where the layer shall include steel of the same 
effective depth, physical-mechanical properties, and prestrain value or initial strain history 
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The stiffness matrix of the cross-section depends on the achieved deformation state, i.e.: 
 
  ( ) = εF C  λ . (3.27) 
 
Adding Eq.(3.27) to the Eq.(3.7), the basic solution equations for determining the strength capacity of the 
section can be obtained 
 

  
( ) ,

  .T

 = ε


 ε =

F C

Z   

λ

λ

 (3.28) 

 
Equation (3.28) can be given a more concise form 
 
  ( )=F C λ λ . (3.29) 
 
Thus, the system of the third-order nonlinear equations is considered as the tool for determining the stress and 
strain in structural concrete sections. Also, to estimate the ultimate combination of axial forces and bending 
moments that produce failure. 
 
3.2. Extinction of prestressing force 
 
In the proposed methodology the prestressing force will be considered as an external factor along with the 
forces from the external loads, on one hand, and, on the other hand, by shifting the reference point at the stress-
strain diagrams of the prestressing steel from the origin (i.e., the zero coordinates) to the point corresponding 
to the prestress value after all losses (Fig.4c. and Fig.4d.). 
In fully and partially prestressed concrete members a process of extinction of prestressing force is proceeding 
as the applied load is increased beyond a specific level. This is mainly due to the presence on the stress-strain 
diagram of the prestressing steel nonlinear portions that indicate its inelastic behavior. The process of 
extinction of prestressing force is a very complicated phenomenon and the present does not have sufficient 
treatment researches. 
To take this fact into account, the normative approaches of the ACI 318-19 [1], AASHTO [2], IBC [3], 
Eurocode 2 [4], BS-8110 [5], AS3600 [6] , and CSA A23.3 [7] suggest the following. 
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In the serviceability stage, from the point of view that the prestressing steel behaves elastic, the extinction of 
the prestressing force is not considered and the value of the prestressing force is considered to be a constant 
value calculated as a product of the effective prestress by the cross-sectional area of the prestressed steel. 
While, in the ultimate stage of performance, it is considered that there is a complete extinction of the 
prestressing force (i.e., the prestressing force is assumed to be zero). 
 In accordance with the proposed methodology, a gradual extinction process for the prestressing force is 
adopted, since the analysis is carried out by a uniform procedure without any separation between loading stages. 
Figure 5 illustrates the mechanism of the gradual extinction of the prestressing force adopted in this paper. 
 The adequate approach to account for the extinction phenomenon can be achieved as follows: 
The extinction of prestressing is considered as the "extinction" of the prestressing force, which is calculated, 
at any loading stage, as a product of the difference between the total stress and the increment of stress by the 
cross-sectional area of the prestressing steel. At the portion of the stress-strain diagram of the prestressing steel 
from the onset to the point corresponding to the proportionality limit ,ps elf , the difference between the total 
stress and the increment of stress is constant and equals the effective prestress ,ps ef . On the other part of the 

diagram from the point corresponding to the proportionality limit ,ps elf  to the vertex of the diagram ˆ
psf , this 

difference decreases gradually resulting in degradation of the effective prestressing force. Accordingly, the 
components of the force vector will be determined as follows: 
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 (3.30) 

 
Here the sign '=' means an assignment, not equality; pskfΔ  – is the increment of stress in prestressed steel due 
to the applied external load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Extinction process of the prestressing force. 
 

Since the second term on the right-hand side of Eq.(3.30) is a variable magnitude which depends on the 
achieved deformation state of the section, the force vector F  will depend on the strain vector λ  
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  ( )=F F λ . (3.32) 
 
Considering Eq.(3.31), Eq.(3.29) takes a new form: 
 
  ( ) ( ) =F Cλ λ λ . (3.33) 
 
It is worth mentioning that the axial strain and curvatures should be calculated by a step-by-step procedure. In 
each step, the increments of these variables and the corresponding strains and stresses in concrete and steel are 
determined based on the previous step. Successive iterations should be used to satisfy equilibrium relations. 
To solve the systems of nonlinear equations (3.29) and (3.32), an iterative secant method can be used (Douglas 
and Burden, [35]), the iteration process which has the following form: 
 

  
( ) 
               

, , , ,

i 1 i

0 0
i 1 2

− =
 =
 = … …

F C λ λ
λ  (3.33) 

 

  
( ) ( ) 

                           
, , , , , ,.

i 1 i 1 i

0 0
i 1 2

− − =
 =
 = … … … …

F Cλ λ λ
λ  (3.34) 

 
Here, Eq.(3.33) is used to determine the strength of conventional reinforced concrete sections, while the 
iterative system (3.34) is used for fully and partially prestressed concrete sections. 
 
3.3. Computer program and algorithm of analysis of the structural concrete members 
 
 The matrix nonlinear Eqs.(3.29) and (3.32) for the known external forces N , xM , and yM  and 
unknown strain components oε , xψ , and yψ  are solved by iterative Eqs.(3.33) or (3.34), depending on the 
type of the structural concrete member,  using the following algorithm which is realized in a computer program: 
1. By Eqs.(3.21)-(3.26), the elements of the stiffness matrix for the elastic (unloaded) state in the section are 

calculated for   ci sj psk 1ϑ = ϑ =ϑ =  (i.e., using '
ci ciE E= , '

sj sjE E= , and '
psk pskE E= , where ciE , sjE , 

and pskE  are the initial moduli of elasticity); 
2. Solve Eq.(3.29) or (3.32) to find the strain components oε , xψ , and yψ ; 
3. By Eq.(3.10) strains ciε , sjε , and pskε  are calculated in all elementary regions ciA , sjA , and pskA ; 

4. Based on analytical data of Eq.(2.2), the secant moduli of elasticity '
ciE , '

sjE , and '
pskE  are determined 

for all elementary regions; 
5. By Eqs.(3.21)-(3.26),  the elements of the stiffness matrix are adjusted; 
6. The solution is repeated from point 2. 
 During the process of these iterative calculations, at a given loading level of external forces N , xM , 
and ,yM  the values of strain components oε , xψ , and yψ  (as the elements of the stiffness matrix are 
corrected due to the development of inelastic strains in the cross-section) gradually increase, reaching some of 
their finite (stabilized) values. This is the case if the load-carrying capacity of the adopted cross-section is 
sufficient to withstand the given external forces. The iterative process, in this case, is considered complete if 
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the vector of error k 0→Z‖ ‖  when k → ∞ . If the load-carrying capacity of the inspected cross-section is not 
sufficient to withstand the given external forces, then the strain components oε , xψ , and yψ  of the iterative 
calculation process do not stabilize, i.e., these components grow unlimitedly, and consequently, the 
convergence conditions are not satisfied. 
 The proposed analysis methodology is extended to determine the load-carrying capacity using the 
bisection method (Douglas and Burden [35]). The core of this method consists in establishing the interval 
( ),1 2F F , in which the solution of the basic Eqs.(3.29) and (3.32) is located. Repeating the iterative process 
results in a sequence of intervals containing the required vector, where the length of each subsequent interval 
being half that of the previous one. The iterative process ends when the length of the newly obtained interval 
becomes less than a given tolerance and the middle of this interval is taken as the required vector. 
 A general computer program “SECTION” was written in FORTRAN language for this methodology. 
The program provides a capability for the material nonlinear analysis for general shape cross-sections of 
various reinforced, partially prestressed, and fully prestressed concrete members. The analysis is considering 
the tensile strain softening and tension stiffening mechanisms. The program can be used to satisfy the 
requirements for serviceability and ultimate strength designs. A copy of this program; can be made available 
for those interested by contacting the author. 
 
4. Verifications and comparison to experimental results 
 
 To verify the proposed methodology, numerous examples have been calculated. A massive 
comparative bank of information has been accumulated for experimental and numerical data of the strength of 
the section of various configurations, reinforcement, and types of loading (bending, eccentric compression, 
tension). To evaluate the proposed methodology, comparisons with three groups of static tests conducted by 
Oukaili [30], Dodonov et al. [36, 37], and Bajkov et al. [38, 39] on different structural concrete members have 
been mode. 
 
Table 1. Dimensions and materials mechanical properties of tested specimens [30, 36]. 
 

Be
am

 ID
 

Dimensions Concrete Prestressed steel Nonprestressed steel 

b  
mm 

h  
mm 

ĉf  
MPa 

cE  
MPa 

psA
mm2

psE  
MPa 

.0 2f  
MPa 

,ps ef
MPa 

sA  
mm2 

sE  
GPa 

.0 2f  ( yf ) 
MPa 

B1 212 302 44.62 32900 193 165350 1587 966 193 165350 1587 

B2 213 314 

45.29 35750 280 

178650 1293 

1069 

295 191400 998 
B3 215 303 1060 

B4 209 302 
39.4 32250 420 

1031 
907 198260 386 

B5 210 305 1033 

 
  



Nazar Oukaili  193 

Table 2. Predicted results of failure moments compared to experimental results [30, 36]. 
 

Beam 
ID 

Experimental 
failure moment 

Predicted failure moment according to 

ACI 318-19 [1] Proposed methodology 

exp
uM  

kN-m 

cal
uM  

kN-m 

cal
u
exp
u

M
M

 

(%) 

cal
uM  

kN-m 

cal
u
exp
u

M
M

 

(%) 
B1 128.53 125.88 0.979 125.40 0.976 
B2 153.86 151.60 0.985 152.60 0.992 

B3 143.81 143.92 1.001 143.80 1.000 

B4 181.17 177.26 0.978 172.42 0.952 
B5 173.70 181.89 1.047 174.95 1.007 

Average of ( /cal exp
u uM M ) 0.998 

 
0.985 

Standard of deviation 0.029 0.022 
Coefficient of variation 0.029 0.022 

 
 Experimental studies of the strength of partially prestressed concrete members in Oukaili [30] were 
carried out on beams 3300mm  long, with a rectangular cross-section of 200 x 300 mm designed dimensions in 
a simply supported scheme with an effective span of 3000mm . All specimens were loaded in four-point bending 
using two symmetrical concentrated loads applied at one-third of the span length. Seven wire strands were used 
as prestressed steel and different grades of steel reinforcement were used as nonprestressed steel. Table 1 shows 
the actual dimensions of the tested specimens and the mechanical properties of materials. The load-carrying 
capacity of the experimental beams was determined using ACI 318-19 [1] and the proposed methodology. Table 
2 summarizes the calculated failure moments and their comparisons to the experimental findings.  
 Results obtained based on this methodology well correlated with the experimental data and not 
exceeded %5   on average. The experimental values of the failure moments exceed the values calculated by 
the proposed methodology. 
 The methodology presented in this paper allows following the stress-strain state and the ( oNΔ −ε ), 

( ) x xMΔ −ψ , and ( )y yMΔ −ψ  diagrams of the section at all stages of loading up to failure. Figure 6 shows 
the stress and strain distribution across the section depth, the crack depth during progressive loading, and 
illustrates ( ) x xMΔ −ψ  diagram for specimen B3. 
As can be seen from Table 2, the scatter of the average ratios of the estimated failure moment according to the 
proposed methodology to the experimental data was 0.985 with a standard deviation of .0 022  and a coefficient 
of variation of .0 022 . 
The short column of 1500 mm in length in Dodonov et al. [37] with a square cross-section of 200x200 mm 
dimensions was under eccentric compression force and has the following characteristics: eccentricity of the 
applied axial force about the x-axis .  xe 117 2 mm= ; the concrete is with .ˆ  cf 47 6 MPa= , .  ,ĉtf 2 20 MPa=  

 ,cE 36000 MPa=  ˆcε =0.0020; the longitudinal steel reinforcement is four bars class AT-VII of  20 mm∅  
diameter with .  0 2f 1446 MPa= , ˆ  sf 1600 MPa= ,  sE 195000 MPa= . The section was divided into 9  strips 
in the horizontal direction. Figure 7 shows the calculated, based on this methodology, strain, and stress 
distribution diagrams in concrete and steel. According to the available experimental data, the ultimate axial 
force was exp

uN 860kN= , while the theoretical value  cal
uN 880 kN= . 

The rectangular cross-section in Bajkov et al. [38] was under skew bending moment and has the following 
characteristics: width b 162mm= , depth h 242mm= , concrete cover .a 23 5mm= ; the concrete is with 
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ˆ .cf 21 4MPa= , .ĉtf 1 58MPa= , cE 21000MPa= , .ˆc 0 0025ε = ; the main steel reinforcement is one bar class 

A-IIIB of   20 mm∅  diameter with yf 563MPa= , *
ŝf 656MPa= , sE 185500MPa= . 

 

 
Fig.6. Stress-strain distribution and moment-curvature at different loading stages for specimen B3 [30,36].
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Fig.7. The predicted strain and stress distribution diagrams in concrete and steel in a short column under the 

eccentric compression force at failure stage [37]. 
 

 
 
Fig.8. The experimental and calculated load-strain curves in the main steel reinforcement and the most stressed 

corner in compression zone of the concrete section under skew bending moment at all loading processes [38]. 
 
The section was covered by an orthogonal mesh of 154-elementary cells (11 in horizontal and 14 in vertical 
directions) to investigate the strain in each cell. Figure 8 shows the experimental and calculated load-strain 
curves in the main steel and the most stressed corner in the compression zone of the section at different loading 
levels. It is worth mentioning that the experimental ultimate moment was .exp

uM 36 65kNm= , while the 

theoretical value was  .  cal
uM 37 66 kNm= . 

𝜀 𝑓 
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Fig.9. The predicted stresses in the main steel reinforcement and all concrete cells in a short column under 

skew eccentric compression force at failure stage of loading [39]. 
 

 
 
Fig.10. The change of the concrete stress at the top and bottom right corners of the section in a short column 

under skew eccentric compression force at different stages of loading [39]. 
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 The short column of 1200mm  length in Bajkov et al. [39] with rectangular cross-section was under 
skew eccentric compression force and has the following characteristics: width b 120mm= , depth ,h 180 mm=  
eccentricities of the applied axial force about x-axis and y-axis are xe =17.8 mm and ye =33.2 mm, 

respectively; the concrete is with .ĉf 38 49MPa= , .ĉtf 2 46MPa= , cE 35700MPa= , ˆcε =0.0025; the 
longitudinal steel reinforcement is four bars class AT-V of  12 mm∅  diameter with .0 2f 1020MPa= , 

ŝf 1305MPa= , sE 190000MPa= . The section was covered by an orthogonal mesh of 96-elementary cells (8 
in horizontal and 12 in vertical directions) to investigate the stress in each cell. Figure 9 shows the calculated 
stresses in the main steel reinforcement and all concrete cells at the ultimate stage of loading. Meanwhile, 
Figure 10 illustrates the change of the concrete stress at the top and bottom right corners of the section at 
different loading stages to show the performance of concrete at the descending branch at the most stressed 
corner. It is worth mentioning that the experimental ultimate axial force was exp

uN 475kN= , while the 

theoretical value was   cal
uN 469 kN= , which was achieved after 36 iterations to get the convergence of the 

iterative process with an accuracy of .0 001 . All these facts indicate the reliability of the proposed approach. 
 
5. Conclusions 
 
 A unified methodology is presented for material nonlinear analysis of the arbitrary shape section of 
structural concrete rod-shaped members. The system of the third-order nonlinear equations is considered as 
the tool for determining the stress and strain in structural concrete sections. Also, to estimate the ultimate 
combination of axial forces and bending moments that produce failure. The stress and strain are determined 
by an iterative procedure taking into consideration the tensile strain softening and tension stiffening of concrete 
in addition to the tension stiffening of steel bars due to the tensile resistance of the surrounding concrete layer. 
The analysis of stress may be extended to determine the crack width and the deflection at any time up to failure. 
A comparison of the numerical results obtained from the proposed methodology with the experimental findings 
shows good agreement. 
 
Nomenclature 
 
 a  − concrete cover 
 ciA  − cross-sectional area of the i-th elementary cell of concrete 
 pskA  − cross-sectional area of the k-th strand, wire or bar of the prestressed steel 
 sjA  − cross-sectional area of the j-th nonprestressed steel bar  
 b  − width of the section 
 C  − stiffness matrix of the section 
 1C  − generalized axial stiffness vectors of the section 
 2C  − generalized flexural stiffness vectors of the section in the x-x direction  
 3C  − generalized flexural stiffness vectors of the section in the y-y direction  
 11C  − axial stiffness 
 12C  − flexural-axial stiffness to account for the mutual influence of N  and xM  
 13C  − flexural-axial stiffness to account for the mutual influence of N  and yM  
 22C  − flexural stiffness of the section when the member is bent in the yz plane 
 23C  − stiffness which takes into account the mutual influence of xM  and yM  
 33C  – flexural stiffness of the section when the member is bent in the xz plane 
 me  − diagram curvature parameter 
 E  – initial modulus of elasticity 
 ,c cE E′  − initial and secant modulus of elasticity of concrete, respectively 
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 ,ps psE E′  – initial and secant modulus of elasticity of prestressed steel, respectively 
 ,s sE E′  − initial and secant modulus of elasticity of nonprestressed steel, respectively 
 f  − stress 
 cf  − stress in concrete 
 sf  − stress in steel 
 yf  − yield strength of mild steel 
 .0 2f  − conditional yield strength of high strength steel determined by 0.2% set method 
 cif  − stress in the ith elementary cell of concrete 
 pskf  − stress in the kth strand, wire or bar of the prestressed steel 
 sjf  − stress in the jth nonprestressed steel bar 

 ĉf  − stress at the vertex of the stress-strain diagram of concrete under uniaxial compression 
 ŝf  − stress at the vertex of the stress-strain diagram of steel 
 ĉtf  − stress at the vertex of the stress-strain diagram of concrete under uniaxial tension 
 ,ps ef  − effective prestress 
 , ,,ps el s elf f  − proportionality limit of prestressed and nonprestressed steel, respectively 
 pskfΔ  − increment of stress in prestressed steel from external load 
 F  − force vector 
 h  − height of section 
 kk  − number of effective elementary cells of concrete in the section 
   − span length of the structural concrete member 
 mm  − number of nonprestressed steel bars in the section 
 ,x yM M  − bending moment in the yz and xz plane, respectively 
 ,x yM MΔ Δ  − increment of bending moment in the yz and xz plane, respectively 

 ,cal exp
u uM M  − theoretical and experimental ultimate moment, respectively 

 nn  − number of prestressed steel strands, wires, and bars in the section 
 N  − longitudinal (normal) force 
 NΔ  − increment of longitudinal force 
 ,cal exp

u uN N  − theoretical and experimental ultimate axial force, respectively 

 ( )U   − strain energy per unit length 
 Z  − vector of a geometric space 
 kZ  − vector of error  
 mϑ  − coefficient of elasticity for the material 
 oϑ  − coefficient of elasticity at the start of the stress-strain diagram of material 
 .0 2ϑ  − coefficient of elasticity of steel corresponding to the stress .f0 2  and strain .ε0 2  
 elβ  − coefficient of proportional limit, that is constant within the limits of reinforcement’s grade 
 γ  − shear strain 
 ε  − strain 
 cε̂  − strain corresponding to the stress at the vertex of the stress-strain diagram of concrete under 

uniaxial compression 
 ctε̂  − strain corresponding to the stress at the vertex of the stress-strain diagram of concrete under 

uniaxial tension 
 oε  − axial strain at the chosen reference point O 
 sε̂  − steel strain corresponding to the stress at the vertex of the stress-strain diagram 
 .ε0 2  − strain corresponding to the proof stress  .f0 2  of high strength steel 
 λ  − strain vector 
 i 1−λ  − strain vector at the (i-1)th iteration step 
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 iλ  − strain vector at the ith iteration step 
 yλ  − the length of the yielding plateau 
 τ  − shear stress 
 x yψ ,ψ  − curvature of the member longitudinal axis in the yz and xz plane, respectively 
 c ps s,Ω Ω ,Ω  − region occupied by concrete, prestressed steel, and nonprestressed steel, respectively 
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