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The reflection and refraction phenomenon of propagation of waves in couple stress micropolar thermoviscous
elastic solid media with independent viscoelastic and micropolar properties have been studied. The structure of the
model has been taken such that the plane interface is divides the given media into two half spaces in perfect contact.
Here, we find that there are five waves, one of them is propagating independently while others are set of two
coupled waves travelling with different speeds. Energy ratios, reflection and refraction coefficients relative to
numerous reflected and refracted waves have been investigated when set of two coupled longitudinal waves and
set of two coupled transverse waves strike at the interface through the solid medium. The inequality of energy
ratios, refraction coefficients and reflection coefficients are evaluated numerically and presented graphically under
three theories of thermoelasticity, namely, Green-Lindsay theory (GL), Lord- Shulman theory (LS), Coupled theory
(CT) versus angular frequency and angle of incidence.

Key words: micropolar, thermoviscous, phase speed, energy ratio, reflection coefficient, refraction coefficient,
couple stress.

1. Introduction

The micropolar theory developed by Eringen [1]. It is helpful in many structured materials like lattice
micropolar structure. This theory explains the variation of micropolar elastic materials from classic elastic
materials which are independent of translation. Eringen [2] and Nowacki [3] elaborated the micropolar
thermoelasticity theory. The generalized micropolar theory was introduced by Dost and Taborrok [4] by using
theory the Green and Lindsay theory [5]. Chandersekharaish [6] established the micropolar thermoelasticity
dependence on heat flux.

In the literature, there are three theories of thermoelasticity, namely, generalized theory, coupled theory
and uncoupled theory. The classical uncoupled theory is based on two drawbacks. The first drawback
corresponds to the propagation of wave with infinite speed in the uncoupled thermoelasticity theory and was
studied by many researchers like Chandrasekhariah [7], Ferkas and Szekeres [8], Szekers [9]. The second
drawback corresponds to the propagation of thermal wave with infinite speed. Biot [10] proposed the theory
of coupled thermoelasticity to eradicate the other drawback. Hetnarski and Ignaczak [11] investigated many
generalizations of the coupled theory and achieved a number of significant results. Concerning the Green-
Lindsay theory (GL), Lord-Shulman theory (LS) [12] and coupled theory (CT). Lord-Shulman determined the
theory of generalized thermoelasticity to replace Fourier law by a new law named Maxwell-Catteneo law with
one relaxation time. The emphasized theory confirmed the finite speed of propagation of elastic waves and
heat waves when heat equations are converted into wave equations. The basic equations and relations remained
same in this theory. In the Green-Lindsay theory is also recognized as the thermoelasticity theory depend on
temperature rate or thermoelasticity theory with two relaxation times. In this theory, the equations for entropy
and stress tensor are discussed with two relaxation times. Low temperature thermoelasticity theory is also
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called the coupled theory studied by Ignaczak and Hetnarski [13]. This representation is described by a system
of non-linear field equations. The thermoelasticity theory without energy dissipation in the third generalization
of the coupled theory was proposed by Green and Naghdi [14] in which the classical Fourier law replaced the
heat flux rate temperature gradient.

The problems of reflection and refraction of set of two coupled transverse waves and a set of two coupled
longitudinal waves at a plane interface dividing a given medium into two half-spaces which are useful in engineering
and geophysics areas. Many problems related to reflection and refraction of waves for a plane split into two media
have been discussed by Tomar and Khurana [15]-[17], Tomar and Gogna [18, 19], Parfitt and Eringen [20], Tomar
[21], Singh et al. [22], Zhang and coworkers [23]-[25], Achenbach [26], Sarkar and Tomar [27], Sahrawat et al.
[28] and Poonam et al. [29]. Sahrawat et al. [30] investigated the fundamental solution and plane wave propagation
in nonlocal couple stress micropolar thermoelastic solid without energy dissipation.

The main aim of the paper is to study the effect of three theories of thermoelasticity, namely, Green-
Lindsay theory (GL), Lord- Shulman theory (LS), Coupled theory (CT) on the propagation of a set of two
coupled transverse waves and a set of two coupled longitudinal waves in a couple stress micropolar
thermoviscous elastic solid medium. We study the reflection and refraction phenomenon of wave propagation
at an interface of two couple stress microplolar thermoviscous elastic solid half spaces. It is found that there
exist five waves, namely, longitudinal microrotational wave, a set of two coupled transverse waves and a set
of two coupled longitudinal waves travelling with different speeds. The inequality of Energy ratios and
reflection-refraction coefficients with respect to angle of incidence in both the half spaces has been studied
numerically and graphically under the three theories of thermoelasticity, that is, LS, GL, CT.

2. Basic relations and equations
Following Tomar et al. [31], the Egs for a couple stress micropolar thermoviscous elasticity are given by

t; =Nu, ,8; +K'e;, ¢ — 003, —ﬁtISkZGSij +K'*e,-j,d)r +A i, 8, +(W+K)u;; +

r,rYij 1 r,rYij i

" " . (2.1)
+(u +K )z’:j,l. +Way Wy,
m; = OC,¢r,r5,-j + Ocl*d)r,rsij + B’q%, ;T B*q% ;T Y,q)j,i + Y'*d)j,i > (2.2)
PoN = ﬁur,rsjj +a, (23)

where u denotes the displacement vector; ¢ denotes the microrotation vector; Dot (.) represents differentiation
with respect to time; comma (, ) represents the spatial derivative; V? denotes the Laplacian operator; A" and
u are Lame's constants; K, o, B’, Y, A", uv*, o, B'*, y'*, ¥, K, and a are material constants; f;
represents the stress tensor; m;; represents the couple stress tensor; M denotes entropy per unit mass; p,
denotes density of the medium; Y, is the heat flux vector; © denotes the change in temperature; 7, is the
ambient temperature and 8; denotes Kronecker's delta. Here #) and ¢, are the relaxation times and &

identifies the different theories of thermoelasticity. The case k& =1 corresponds to the LST and the case k=2
corresponds to the GLT. When both ¢, and ¢; vanish, it corresponds to the CT of thermoelasticity.
Now, we introduce the following dimensionless quantities:
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where ¢, and [, are the standard velocity and standard displacement, respectively.
With the help of these non-dimensional quantities, Eqs (2.1)-(2.4) become
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3. Wave propagation

By the Helmholtz decomposition theorem on vectors, we introduce

vector potential (U,IT), given by

u=Vo+VxU, V-.U=0, 06=VE+VxIl, V-II=

a scalar potential (0, &) and a

0. 3.1)

In the absence of body couples, body forces and heat equation, the Egs of motion are obtained by using

Eq.(3.1) in Egs (2.5)-(2.7) as
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—c’T+(h;+2u; +K;5)Vio -6 =0, (3.2)

(U3 +K;)VU+K;VxI-U =0, (3.3)

(003 +B3 +7v;) VIE-2K;5-§ =0, (3.4)

v,V I+ K,VXU - 2K, 11 -1 =0, (3.5)

K, VAT V26— T=0 (3.6)
where

7‘3:70"’7“;%, H3=H2+HZ%, K3:K2+K;%’ 0‘3—10‘2*'0‘;%,

B3Z§32 +B§%, Y3:§% +Y;%, 032:(191""3282/(%}

c}zz£f—3]+%%} c;2=(1+n151k%j.

Eq.(3.2) and Eq.(3.6) show that ¢ and 7' are coupled; Eq.(3.3) and Eq.(3.5) show that U and II are
coupled; But Eq.(3.4) shows & is uncoupled. The propagation of plane waves for Eqgs (3.2)-(3.6) in the linear

couple stress thermoviscous micropolar elasticity are given by

{c,E,U 11,T} ={a,,bI,A,B,cl}exp{Ll(n.r —St)}, 3.7)

travelling with speed S in Eqs (2.5)-(2.7), where a;,b,;,c;, A, B are scalars, '1' denotes the iota, n is the unit vector
and r is position vector. Putting the value of 6 and 7 from Eq.(3.7) in Eq.(3.2) and Eq.(3.6), we will obtain

X,8% + X,8° + X; =0. (3.8)

The roots of the Eq. (3.8) are given by

2
s? _ AV AN (3.9)

2 27,

where ¥ (s =1,2,3 ) are provided in Appendix 4;.

From Eq.(3.2), we will obtain the relation between a; and c;

—f?

o’ —12(C3 _w)C;)

a; = (&) (310)

where (; and C; are provided in Appendix 4;.
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Using Eq.(3.7) in Eq.(3.1), we will obtain the displacement vector as follows
u=1a;nexp{u(nr-St)}, (3.11)

which explains that the directions of # and n are same. The directions of the displacement of wave and travelling
of wave are same, so this is longitudinal in nature and known as longitudinal displacement wave. Also, the
direction of wave related to 7' is longitudinal in nature (using Eq.(3.10) and Eq.(3.11)) and known as longitudinal
thermal wave. Since, both the waves are coupled and hence, known as “coupled longitudinal waves”.

Putting the value of § from Eq. (3.7) into Eq. (3.4), we will obtain the longitudinal microrotational wave

C

I’ (3.12)

where C and (, are provided in Appendix 4;.
Using Eq.(3.7) in Eq.(3.3) and Eq.(3.5), we will obtain a quadratic equation in terms of S 2 such that

The roots of the Eq.(3.13) are given by

—X, + X, —4X, X
S5 =—t 2 L (3.14)
2X,

where X (s=1, 2, 3) are provided in Appendix 4;.
Using Eq.(3.7) in Eq.(3.1), we will obtain

nA=nB, (3.15)

A= Y, B (3.16)

(g~ 0) - |

where A and B lie in the same plane and mutually perpendicular to each other. From Eq.(3.16), we observe
that if 4=0, then B =0, making both U and II vanish. These two waves vanish together. Eq.(3.1) shows

that U and II are normal to each other and also both are normal to the direction of propagation » and known
as transverse waves. Since both the waves are coupled in nature and hence, known as “coupled transverse

waves”. {,, {; and Cj are provided in Appendix 4;.

4. Model

We consider two distinct couple stress micropolar thermoviscous elastic half-spaces, namely, M, and
M, , respectively, in perfect contact in the Cartesian co-ordinate system Ox;x,x; in which the plane interface

coincides with x;x; — plane. M, and M, occupy the region x; >0 and x; <0, respectively, as shown in
Fig.1. The elastic moduli corresponding to region M, are A,, l,, K,, 0Ly, B, Ys Ay, U3y K5, 05, By

: : ’ ’ ’ ’ ’ % e lal r* e gk
those corresponding to region M, are A, Wy, K3, 03, B, v5, Ay .05, K05, B5.75.
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Incidence Wave

B 2

Fig.1. The geometry of the problem.

5. Boundary conditions

Solving Eqs (2.1)-(2.4) and Eq.(3.1), we will obtain the components of stress tensor, couple stress

tensor, displacement and microrotation for mediums AM; and M, are given by
up=6;-U,3, uz=0;+U,;, ¢,=1,3-1I3,,
t33==C/'T+430 1 +(As + 205 + K3 )0 53 +( 205+ K3)Us g3,
t;3=(20;3 +K3)0 15+ 03U ;= (W3 + K3)Us 53k, ar =k T,
up =0, =Us;,  uy =c3+U5;, ¢ =11 ;-115,,
tis ==CP7T 40507+ (W5 +205 + K5 )ols; +(205 +K5 U35,
3 :(2H/3 +K; )0:13 +u3Ud —(H’3 +K; )U§,33k; R
qr =k T;c ., My =Y; ¢’2,3-

The boundary conditions at the interface of two half spaces are given by
t33 =133, 13y =t3, Mg =my, =g,

4 ’ ’ 4
up=up,  uz=uz,  0,=0;, T=T.

msy = Y3¢2,3,

(5.1)
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6. Incidence of coupled longitudinal waves

6.1. Incidence of longitudinal displacement wave

At the interface x; =0, let us consider a longitudinal wave of amplitude F, with speed S;,

propagating through the half space M; with wave number /;, and making an angle 6,.
The boundary conditions for the problem are given by:

Reflected waves in medium A/ : A set of two coupled longitudinal waves and a set of two coupled transverse

waves with amplitude P}, P,,P; and P, propagating with speeds §,,S,,S; and S, making an angle 6,,0,,0;

and 0, respectively with the normal.

Reflected waves in medium A/, : A set of two coupled longitudinal waves and a set of two coupled transverse

waves with amplitude P/, P, P; and P, propagating with speeds S7,5%,5% and S, making an angle 67,0,0/

and 0, respectively with the normal.

Equations (3.9) and Eq. (3.14) show the speeds $;,S,,5; and S,, respectively. The equations for

speeds S7,55,8% and S, are same as for S,,S,,S; and S, respectively, with the primes at significant places.

The total wave field is given by (Tomar et al. [19])

6 = Fyexp{u, (sinByx; —cosOyx;) — 11} +

+ Z P exp{1/, (sin®,x; + cos6,x;)—1w,},

r=I1,2

T =3¢y exp{u; (sin0yx; — cos0)x; ) — 1,1} +

+ Z s, P exp{u, (sin0,x; +cos0,x;) —1,},

r=I1,2

U= z P exp{u, (sin6,.x; +cos0,x;) 10,1},

r=3,4

= Z n, P, exp{ll,, (sin,x; +cos,x; ) — w)rt} ,

r=3,4

o' = z P, exp{u, (sin®,x; +cos®,x;) — 10,1},

r=1,2

T’ = z;{,’ P/ exp{u, (sin®,x, +cos6,x;) — 10,1},

r=1,2

U'= Z P/ exp{u, (sin®,x; +cos0,x;) -1},

r=3,4

=", P/ exp{u, (sinB,x, +cos6,x;) - 10,7}

r=3,4

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)
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where (/,, l'q) and (Sq,SCV]) are the wave numbers and phase speeds corresponding media M; and M,,
respectively. (03, =15, 0)‘, ZZ}SI') denotes the angular frequencies of the mediums M; and M,,

respectively. s, , and n; 4 are the coupling parameters obtained by the Eq.(3.11) and Eq.(3.16) respectively

w2—12(§3—w)C;) b :[IZ(C]—w)Cj)—wz} '

Hi2=

Using Eq. (5.1) in Egs (6.1) -(6.8), we will obtain

v -
G, +C5 008”0, + ;2%]:|112PO+ > {z;[, +0 00529,+%:|15Pr+
1 r=1,2 r

7

+ Y tssin6, cosh, [P P— > {z;:, +0; cos’ 0’ +V4,fr }1;2 P+ (6.9)
r=3,4 r=1,2 !

+ Z ¢ sin0’. cos®’. I’ P/ =0,
r=3,4

C5sin6, cos 60112}’0 - z C5sinb, cos Orlf P+
r=1,2

+Z {50820, +(;cos’ 0, — C;?’

}lfP, + (6.10)
3.4 r

- ZC’S sin®’. cos®’. I/° P! —Z{Cg cos 20+ cos’ 0. — SAL 7P =0,
34

r ’2
r=1,2 lr
> Eom, cos0,L. P+ ¢om, cos6,L. B =0, (6.11)
3.4 3,4
k¢ 080yl By — D kys, €080, Po— Y kj 32 cos6) Il P/ =0, (6.12)
r=1,2 r=1,2

sinByl; Py + Y. sin6,4, P— D" cos0,l, P— > sin6, [l P/= > cosb, [l P/=0,  (6.13)
r=1,2 r=3,4 r=1,2 r=3,4

cosByl; Py — D c0s0,l, P— > sinb,[, P,— D cosh [l P/+ D sinb L P/=0, (6.14)
r=1,2 r=3.4 r=1,2 r=3,4

N3Py APy -3 P -y Py =0, (6.15)

1B+ 3¢, P+ 5, P — 5] P — 5 Py =0. (6.16)
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Equations (6.9)-(6.16) in the matrix form can be written as

[H][0]=[Z] (6.17)

where [H]z[hl-j] is a §X§ square matrix, [Q]:[Q],Qz,Q3,Q4,Q5,Q6,Q7,Q8]‘ isa 8xI column matrix,

. P P .
‘dash’ denotes the transpose of the matrix. Q, = Fr(r =1,2,3,4) and Q, = ;34 (t=35,6,7,8) are the reflection
0 0

and refraction coefficients. All non-zero entries of the matrices [/ | and [Z] are defined in Appendix 4;.

6.2. Energy partitioning

In this problem, we must show the energy balance to establish the reflection and refraction coefficients.
The rate of transmission <0*> per unit area is (Achenbach [26])

The energy carried along the incident wave, reflected and refracted waves is denoted by <00>,<Ol-> and <Q>

respectively and the energy ratios (E;) (i=1,2....8) such that
(9,)
£ =% (6.19)

The energy ratios for the reflected and refracted waves are given in Appendix 4; .

When the coupled longitudinal wave of amplitude £, with S, and /, as the speed and wave number
propagating through medium M ; by making angle 0, then we follow the same process and obtain a matrix
similar to Eq.(6.17), with the modified values given in Appendix 4, . The matrix [Q] and [Z] remains same.
The expressions of Energy ratios are also given in Appendix 4, .

7. Incidence of coupled transverse waves

We examine a coupled transverse wave having amplitude P; travelling with speed S; for an angle 0,
at the interface of two half-spaces using boundary conditions as given in Eq.(5.1) The reflected and refracted
waves obtained in incidence of a set of two coupled longitudinal waves are same.

The total wave field equations in Medium M, are given by (Tomar et al. [19])

o= Z P exp{u, (sin6,x; +cos0,x;) 10,1} , (7.1)
r=1,2
T= Z s, P, exp{u, (sin,x; +cos,x;) —10,1], (7.2)

r=1,2
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U = Pyexp{1/; (sin0yx; +cos0,x;) — w5t} +

+ Z quzexz exp{zlq (sineqxl —coseqx3 ) —wng}, (7.3)
q=3.,4
IT=n; P exp{il; (sin0,x; +cosByx;) — 1wt} +
(7.4)

+ z (qu]ex] +0yxs€x; )exp{llq(sinﬁqx1 —coseqx3)—w)qt}.
q=3,4

The total wave field equations in medium M, are same as given in the case of a longitudinal displacement
wave. Using boundary conditions (5.1) in Eqs (6.5)-(6.8) and Eqs (7.1)-(7.4), we will obtain

r

—{5sinf, cos 0,15 B, + Z {C; +(;5c08” 0, +%}lﬁ P.+
r=1,2

C o Ve oo
+ ¢ssin, cos8, 2 P— > {z;4+z;5 cos’ 0, + ;T}Z P+ (1.5)

r=3,4 r=1,2 r

+ z f;j sin 6', cose;l;z Pr' =0,
r=3,4

{Q cos20, +C, cos’ 0, —%}5}’0 - z C5sinb, cosOrlf P.+

r r=1,2

+Z{C6 c0s20, +(,cos’ 0, — 2;172”" }lf P.— Z C5 sin®, cos0./” P+ (7.6)

3.4 r r=1,2

—Zliﬁlé cos 26', + C} cos’ 9; —%}lﬁ Pr' =0,

3.4 r

{om, cos0,l P — Zz;’gn, cos0,/. P.+ Z(;;n, cos0,/. P =0, (7.7)
3.4 3,4
— k3¢, c080,1, P— > k;3¢, cos0,1, P, =0, (7.8)
r=1,2 r=1,2
cosOyls Py + Y. sin6,, P.— > cos0,. P~ Y sin0, P, > cos0,l P, =0, (7.9)
r=1,2 r=3,4 r=1,2 r=3.4

sin®,/;F) — z cos0,/. P.— Z sin6,/. P.— Z cos0,l P+ z sin0,/. P, =0, (7.10)
r=1,2 r=3,4 r=1,2 r=3,4

3B+ 3P+, Py =3P -, Py =0, (7.11)
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P+ 5, Py — %IPI - %,2P2, =0. (7.12)
Equations (7.5)-(7.12) in the matrix form can be written as

[UlV]=[7] (7.13)

where [U]:[Ul-j] is a 8x8& square matrix, [V]:[I/I,VZ,I@,V4,I/5,V6,V7,V8]' is a 8xI column matrix.

Pl
v, :&(r=1,2,3,4) and V, =—=*
B 0

(t =5,6,7,8 ) are the reflection and refraction coefficients. All non-zero

entries of the matrices [U ] and [W] are provided in Appendix B;.
7.2. Energy partitioning

The logical expressions of the energy ratios E; (i 21,2.....8) in the medium M, and M, for the
coupled transverse waves are given in Appendix B;. When the coupled transverse wave of amplitude P, with
S, and /, as the speed and wave number propagating through medium M, by making angle 0,, then we
follow the same process and obtain a matrix similar to (7.13), with the modified values given in Appendix 5,.

The matrix [V] and [W] remains same. The expressions of Energy ratios are also given in Appendix B, .

8. Special cases

In this section, the speeds of propagating plane waves are reduced by using the conditions of different theories
of thermoviscous elasticity.

8.1. Lord-Shulman theory

If we take k =1, all the equations remain same except those which contain Kronecker's delta. Therefore, we have

7o, c;zz(f}] ﬁ;aJ 4_(1+n1aJ
T; T, Ot ot

Using these expressions, we can find the speeds of various waves in terms of the LS theory.
8.2. Green-Lindsay theory

If we put k=2, all the terms which contain Kronecker's delta can be reduced in the form

a 7. ﬁ /.
C] —('6‘]4‘62 j 032:_15 42_]'
ot T3
Using these expressions, we can find the speed of various waves in terms of GL theory.

8.3. Coupled theory

When we take ¢, =¢;, =0, then the expressions which contains the terms ¢,, ¢, become
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, 0 2 9 ,
012:['61 +62_j, C32:_], 042:].

ot T3

Now, the equations of the given waves are reduced into classical elastic medium.
9. Numerical analysis

The reflection and refraction coefficients with their energy ratios and also with a set of two couple longitudinal
wave and a set of two coupled transverse wave under three theories of thermoelasticity are calculated and drawn
graphically using numerical values of different parameters from Kumar et al. [32] specified in Tab.1 and Tab.2 for

both medium M ; and M, with phase speeds S, and S, (r=1,2,3,4)respectively by using MATLAB software.

Table 1. Numerical values of parameters.

symbol value symbol value
A 9.4x10" Nm™ Ho 4.0x10" Nm™
K, 1.0x10" Nm™ Py 1.73x10° Kgm™3
J 0.2x 107 m? V2 0.779x107° N
o, 2.33x107° N P> 2.48x10° N
o 0.9x1077 N K, 1.7%10° jKm™'s™!
f 1.03 t) 1.04
A 0.5%10"0Nm™ Ty 0.1x10° Nm™
o 5.27x10°N B, 3.17x1073N
v 0.5%10° N K, 0.5x10" N
T 0.293x10°K ¢ 1.04x10° JKg 'Kk~
Table 2. Numerical values of parameters.
symbol value symbol value
A, 75900 10° Nm™ W, 13500% 10° Nm™
K, 149x10° Nm™> Po 2.65x10° Kgm™
J 0.00000196m* v, 0.0268x10° N
o 0.01x10° N B, 0.015x10° N
3 0.9x10° N K, 1.3%10° jKm™'s™
t 0.03 t 0.04
Ay 500x10° Nm™ uy 300x10° Nm™
o) 2.0x10°N B, 4.0x10°N
v 5.0x10°N § 0.0149x10° N
K]
Ty 1.293x10°K ¢ 2.04x10° JKg 'K~




Ravinder Kumar Sahrawat and Poonam 59

0 10 20 30 40 50 60 70 80 ]
angle of incidence(incidence of coupled longitudinal waves)

angle of incidence(incidence of coupled longitudinal waves)

Fig.2. The magnitude of reflection coefficients Fig.3.The magnitude of energy coefficients versus

versus the angle of incidence (incidence of the angle of incidence (incidence of coupled
coupled longitudinal waves) under the LS- longitudinal waves) under the LS-theory.
theory.
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Fig.4. The magnitude of reflection coefficients Fig.5. The magnitude of energy coefficients versus

versus the angle of incidence (incidence of the angle of incidence (incidence of coupled
coupled longitudinal waves) under the GL- longitudinal waves) under the GL-theory.
theory.

Figure 2 illustrates that the O, (s =12...6 ) increase sharply for 0° <0, <70 and after obtaining maxima at
0, =10", decrease gradually as 6, increases for /0° <0,<90°. O, and Qg decrease continuously as 6,

increases for 0°<0,<90° and attain their maximum value at grazing incidence and vanish at grazing
incidence. Figures 2 and 3 illustrate that the graphical behaviour of the reflection and refraction coefficients
(QS) is similar to their corresponding energy coefficients ( E).

Figure 4 illustrates that the absolute value of reflection and refraction coefficients (Q; ) (s =1,2...8) increase

continuously and after that attain their maximum value at 6, =85°, it decreases sharply for 85° <6, < 90°.

Figures 4 and 5 illustrate that the graphical behaviour of the reflection and refraction coefficients (Qs) is
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similar to their corresponding energy coefficients ( £, ). The reflection and refraction coefficients with their
corresponding energy ratios are vanishing at grazing as well as normal incidence under GL-theory.
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Fig.6. The magnitude of reflection coefficients Fig.7. The magnitude of energy coefficients versus

versus the angle of incidence (incidence of the angle of incidence (incidence of coupled
coupled longitudinal waves) under the CT- longitudinal waves) under the CT-theory.
theory.

Figure 6 illustrates that that the absolute value of reflection and refraction coefficients(Q,) (s=1,2...8)

increase continuously for 0° <6, <60° and after attaining maxima at 6, =60° , the curves go down and further
increase as 6, increases for 60° <6, <90°. Figures 6 and 7 illustrate that the graphical behaviour of the

reflection and refraction coefficients (QS) is similar to their corresponding energy coefficients ( E,). The

reflection and refraction coefficients with their corresponding energy ratios are vanishing at grazing as well as
normal incidence under CT-theory.
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Fig.8. The magnitude of reflection coefficients Fig.9. The magnitude of energy coefficients versus
versus the angle of incidence (incidence of the angle of incidence (incidence of coupled
coupled transverse wave) under the LS- transverse wave) under the LS-theory.
theory.
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Figures 8 and 9 illustrate that the absolute value of W with their corresponding energy ratios E; (s=1,2...8)

decrease continuously as 6, increases for 0° <6, <90° and attaining their maximum values at normal

incidence. All the reflection and refraction coefficients with their corresponding energy coefficients are
disappear at normal incidence under LS-theory.
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Fig.10. The magnitude of reflection coefficients Fig.11. The magnitude of energy coefficients versus

versus the angle of incidence (incidence of the angle of incidence (incidence of coupled
coupled transverse wave) under the GL- transverse wave) under the GL-theory.
theory.
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Fig.12. The magnitude of reflection coefficients Fig.13. The magnitude of energy coefficients versus

versus the angle of incidence (incidence of the angle of incidence (incidence of coupled
coupled transverse wave) under the CT- transverse wave) under the CT-theory.
theory.

Figures 10-11 illustrates that the magnitude of W, with their corresponding energy ratios E; (s=1,2...8)

against angle of incidence 6, moving continuously and after attaining their maximum value in the middle of

angle of incidence, it decreases gradually. All the reflection and refraction coefficients with their
corresponding energy coefficients are disappear at grazing as well as normal incidence under GL-theory.



62 Reflection-refraction coefficients and energy ratios in ...

Figures 12-13 illustrates that the magnitude of W, with their corresponding energy ratios E; (s=1,2...8)

are decreases continuously with an increasing value of 6, for 0° <0, < 90°. All the reflection and refraction

coefficients with their corresponding energy coefficients disappear at normal incidence and attain their
maximum value at grazing incidence under CT-theory.

10. Conclusions

We have examined the effect of three theories of thermoelasticity, namely, Green-Lindsay theory
(GL), Lord- Shulman theory (LS) and Coupled theory (CT) on the propagation of set of two coupled transverse
waves and set of two coupled longitudinal waves in a couple stress micropolar thermoviscous elastic solid
medium. We have also examined the reflection and refraction phenomenon of wave propagation in which the
plane interface divides a given medium into two half spaces. Here, two relaxation times have been set forth
via Kronecker's delta in the equations and constitutive relations for the three theories of thermoelasticity. After
reflection and refraction, we find that there exist five waves, namely, longitudinal microrotational wave, set of
two coupled transverse waves and set of two coupled longitudinal waves that transmit with various speeds.
The major consequences are obtained as follows

1. The velocity, reflection-refraction coefficients with their corresponding energy ratios of coupled waves
are calculated.

2. When coupled longitudinal waves are incident, the coefficients of all the coupled longitudinal and
transverse waves are vanishing at normal as well as grazing incidence under GL- and CT- theory. But
under LS-theory, the refraction coefficients of coupled transverse waves with their energy ratios are
vanishing at normal incidence only.

3. When coupled transverse waves are incident, the reflection and refraction coefficients with their
corresponding energy ratios are vanishing at normal incidence only and attain their maximum value at
grazing incidence under LS- and CT- theory. But under GL- theory, all the coefficients are vanishing
at normal as well as grazing incidence and attain their maximum value in the middle of angle of
incidence.
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NOMENCLATURE

aK, ,K —material constants
ey =t +ep,d; — relative tensor
my; — couple stress tensor

— stress tensor

~

14
T, —ambient temperature

ty , t; —relaxation times

u — displacement vector

Y, —heat flux vector

ook .
of,B,Y,A 0 — material constants
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o , [3'* , y'* ,9 — material constants

Y = q)k ;| — Wryness tensor

A,

& - Kronecker's delta

’

— Lame's constants

¢ — microrotation vector

V2 — Laplacian operator

M — entropy per unit mass

6 — change in temperature

pp — density of the medium
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