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The article deals with a continual segment of an inter-resonance vibration machine. In the form of a solid with 
distributed parameters this segment combines two defining parameters, namely: the inertial parameter of reactive: 
masses and appropriate rigidity of elastic coupling. These operation factors are revealed only in dynamic processes 
and are clearly not included in the parameters of the continual segment. Analytical dependences are developed for 
modeling of defining parameters of an inter-resonance system, namely: reactive mass and appropriate rigidity of 
elastic: coupling. Parameters of the reference point of the continual segment passing through its center of velocity 
are studied. The inertial parameter of the reactive mass and the rigidity of elastic coupling were modeled by the 
Rayleigh-Ritz method. The reliability of the results of theoretical research was confirmed experimentally and the 
parameters of the partial frequency of the continual segment were determined.  

 
Key words: three-mass vibration system, Rayleigh-Ritz method, continual segment, equivalent mass, equivalent 

rigidity. 
 
1. Introduction 
 

One of the promising directions of development of vibrating technological equipment is the creation 
of inter-resonant vibration machines. Inter-resonant modes of operation provide a significant reduction in 
power consumption in the drives. Lanets et al. [1] supposes that for the efficient use of energy-saving inter-
resonant modes of operation it is necessary to use small inertial values of reactive mass and rigidity of the 
corresponding elastic assembly. Such properties are characteristic of a flexible body - a continuous system that 
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optimally combines inertial and rigid parameters. 
It is known that a straight rod or beam has many natural forms of vibration, where each form of 

vibration corresponds to a certain value of frequency. Gursky et al. [2] studied the natural frequency of beam 
vibrations by the finite element method. However, this method can create a number of errors, which forces 
researchers to vary the complexity (density) of the structural grid to obtain acceptable results. In the work of 
Sharma et al. [3] the vibration of functionally graduated plates was analyzed using the finite element method. 
Jaworski et al. [4] conducted the experiment using the finite element method in ANSYS software. Raju et al. 
[5] analyzed the large amplitudes of free vibrations of conical beams using the continuum and the finite element 
method. Gharaibeh et al. [6] investigated the natural vibrations of rectangular plates with partially clamped 
edges (at the corners) by the finite element method. 

Srinivasa et al. [7] experimentally studied the free vibration frequencies of isotropic and laminated 
composite plates. Jaroszewicz [8] analyzed the vibration of homogeneous and isotropic circular thin plates 
with nonlinear variable thickness, which are clamped at the edges. Zur [9] considered the natural vibration of 
homogeneous and isotropic circular thin plates with variable distributed parameters using Green’s functions, 
which depend on the Poisson coefficient and the coefficient of distribution of the rigidity of the plate on the 
bend. In the works of Amabili et al. [10], analytical dependences were obtained using the nonlinear Von 
Karman plate theory and global sampling, as well as large amplitudes of forced vibrations of a thin rectangular 
plate with different concentrated masses were experimentally studied. 

In Buchacz articles [11, 12], the beam is considered as a homogeneous beam with constant length 
parameters and the graph theory is used to establish the natural frequency of vibrations. Clementi et al. [13] studied 
the frequency response curves of a non-uniform beam by the MTS asymptotic expansion method. This non-uniform 
beam oscillates nonlinearly. Using the multiple time scale method, in which axial inertia is neglected, the equations 
of motion are statically compressed only at the transverse displacement. Firouz-Abadi et al. [14] presented an 
analytical solution based on the approximation of Wentzel, Kramers, Brillouin for free transverse vibrations of 
beams of various cross sections. Ece et al. [15] solved the problem of vibration of beams with exponentially variable 
cross-sectional width for three different types of boundary conditions: free, jointed and clamped ends. Mahmoud et 
al. [16] analyzed nonlinear free vibrations (of large amplitudes) of conical rods using the Max-Min Approach and 
Homotopy Perturbation Method. After comparing the obtained results, the authors confirmed the convergence of 
vibration. Kisa et al. [17] proposed a method for determining the frequency of natural vibrations of a uniform and 
stepped cracked beam with a circular cross section. Free vibrations of tapered beams were considered by Lee et al. 
[18]. The authors solved differential equations by numerical methods and established natural frequencies by 
combining the Runge Kutta method and the determinant search method. Shin et al. [19] applied the generalized 
method of differential quadrature and the method of differential transformation to the vibrational analysis of circular 
arches, declaring rapid convergence and accuracy. Lee [20] developed a method for finding the natural vibration of 
a Bernoulli-Euler tapered beam, in which the roots of the differential equation were determined using the Frobenius 
method, which allows obtaining solutions of the power series for bending vibrations.  

The analysis confirms the relevance of further research in the direction of studying the natural 
frequencies of continual systems.  

Analytical study of natural frequency by the Ritz method was considered in Vescovini et al. [21], 
where free vibrations and stability losses in highly anisotropic plates were studied. Dozio [22] expanded the 
potential of the Ritz method for predicting the natural bending frequencies of plates with various complicating 
factors. Study results confirmed the efficiency and accuracy of the method. 

The Rayleigh-Ritz method ensures sufficient accuracy of the results (Yuan et al. [23], Kumar [24], 
Rahbar-Ranji et al. [25], Mazanoglu [26], Babakov [27]). This method can be applied to a wide range of plates, 
bars, rods, beams, etc., with any aspect ratio. Due to its versatility and accuracy, the Rayleigh-Ritz method is 
used to study the natural vibration frequency in this article. 

 
2. Description of the problem 
 

According to known methods for calculating inter-resonance vibration machines, Lanets et al. set five 
defining parameters of the vibration system (Fig.1a), namely: the inertial values of the three masses of m1, m2 
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and m3 and the values of 12c  and 23c  rigidity of the elastic units, connecting the three vibrating masses, 
respectively. The oscillating system is driven with ω  circular frequency of forced vibrations by a crank 
mechanism with the ε  eccentricity, where the 0F  perturbation force is 23cε . The vibration system bases on 
the foundation through vibration insulators with isc  rigidity.  

 

 
(а)      (b) 

 
Fig.1. Schematic structures of three-mass mechanical vibration systems with eccentric drive: a - discrete;  

b - discrete-continual 
 
The problem is that in the discrete-continual system (Fig.1b) the continual segment (beam) 

simultaneously connects two parameters – mass of 3m  and rigidity of 23c , which are revealed only in dynamic 
processes and are clearly not included in the parameters of the beam. 

The task of this article is to develop analytical dependences that will make it possible to study the 
influence of two defining parameters of the inter-resonance system, namely: the mass of 3m  and rigidity of 

23c , which are summary values of the inertial parameter of cm  and rigidity of cc  of the beam taking into 
consideration that 3 сm m≡ , and 23 сс с≡ . 

 
3. Results and discussions 
 
3.1. The reference point of the continual segment  

 
To determine the consolidated rigidity of cc  and the consolidated mass cm  of the beam in vibrating 

motion, the point of reference at the certain coordinate of cX  is analytically determined. This point is formed 
as the interaction of the c1X , c2X  and c3X  points of reference respectively, the left, middle and right segments 
of the beam, the lengths of which are 1L , 2L  and 3L  ( L  is the length of the beam). It is at this point that the 
inertial value and rigidity of the entire beam are concentrated by convention (Fig.2).  

There may be many reference points of the beam. For each case, we can find a specific value of mass 
and rigidity and enter them into a discrete model.  

A question arises as to how adequate these values are and whether they are really perceived by the 
vibration system. 

We assume that the discretized inter-resonance vibration system perceives the continual segment with 
distributed parameters discretely just concerning the consolidated or reference point at the cX  certain 
coordinate relative to the center of velocities of the beam (Fig.2). Mathematically, the velocity center is defined 
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as the ratio of the sum of the static moments of the velocities of each segment to the sum of the velocities along 
the entire length of the beam. For amplitude values, this can be written in integral form as follows:  
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Fig.2. The scheme of velocities of the ( ) ( ) x w xυ =ω  rod segments deflection in the x coordinate, where: 1R , 

2R  – reaction of supports; ( ) ( ) ( ), andl m rw x w x w x  – deflection of the beam in the left, middle and 
right segments respectively. 

 
Velocity centers of ,c1 c2X X  and c3X  individual sections are searched according to:  
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After substituting Eqs (3.2) into Eq.(3.1) and simplifying the obtained expression, the equation for 

determining the center of velocity of the elastic beam, which is analogous to finding the center of mass of the 
solid, will take the form of: 
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Knowing the cX  coordinate of the reference point, the equivalent mass and equivalent rigidity of the 

elastic beam can be determined.  
 

3.2. Modeling of equivalent mass and equivalent rigidity by Rayleigh–Ritz method 
 
The method is based on the fact that the amplitude values of the rΚ  kinetic and potential rΠ  energies 

of the elastic beam for the period of vibrations are the same. That is: 
 

  r rΚ = Π . (3.4) 
 
The rΚ  kinetic energy of the beam consists of the kinetic energy from the ( )w x  displacement and 

from the rotation at the ( )xθ  angle: 
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where rrm  is the linear mass of beam; ( )w x  is the displacement of the cross section of the rod in the vertical 
direction depending on the x coordinate (along the length of the elastic beam); rrJ  is the moment of inertia of 
beam length unit (linear unit) as the function of x  coordinate. 

Considering the solid as a beam, the moment of inertia of the unit length of the beam is written as: 
 

  ( ) r rr2 2
rr

mJ x x x
3 3
hbρ ==  (3.6) 

 
where ρ  is the unit weight for beam material; h  is the width of the elastic beam; rb  is the thickness of the 
elastic beam.  

The displacement of the cross section of the rod of ( )w x  in general can be represented as [27]: 
 

  ( ) ( ) ( ) ( ) ( )cos sin ch shw x A x B x C x D x= ξ + ξ + ξ + ξ  (3.7) 
 

where A , B , C  and D  – four arbitrary constants are chosen so that for Eq.(3.7) the boundary conditions are 
satisfied, i.e. the conditions of fixing the ends of the beam (segments of the beam); 
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where E  is the (tensile) elastic modulus; zJ  is moment of inertia of beam rectangular cross-section area 
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relative to the neutral line of the section; zEJ  is the rigidity of the beam cross-section area. 
The rΠ  potential energy of the bent axis of the rod was determined as the sum of the potential energy 

of its bending and the potential energy of shear in the layers of the rod and the result can be written as: 
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where G  is the modulus of rigidity; rF  is the cross-section area of the beam (constant along the length of the 
beam); yk  is the coefficient that depends on the shape of the cross section of the beam [27]. 

According to formula Eq.(3.4), after a comparison Eq.(3.5) and Eq.(3.9) and selection from each term 
of the equation of the amplitude of vibration at the ( )cw X  reference point which is a constant value, the result 
can be written as: 
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Equation (3.10) is the equality of kinetic and potential energy. Given that the ( )cw Xω⋅  is a linear 

velocity of ( )cXυ , Eq.(3.10) will take the form: 
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are equivalent mass and equivalent rigidity, respectively, of the elastic beam with distributed parameters at the 

cX  point of reduction.  
 

3.3. Моdel of the continual segment 
 

The continual segment is considered as the beam with several sections. Three independent sections 
will be connected by the 1R  and 2R  reactions in the supports. The left end of the rod, which is in the free 
state, is taken as the starting point (Fig.3).  

Since the left end of the beam is free, the  ( )w x  cross motion and the ( ) ( )'x w xθ = angle of rotation 



76  Modelling of equivalent mass and rigidity of continual segment… 

are in it, and the ( ) ( )''zM x EJ w x= bending moment and ( ) ( )'''zQ x EJ w x= transverse force are absent. The 
equations of ( )lw x , ( )mw x  in ( )rw x  deflections in the left, middle and right beam sections, respectively, 
will take the form: 
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Fig.3. Calculation scheme of the beam continual segment. 
 
Given that for the left section in the 1R  support the displacement is 1 2Xδ =  ( 2X  – is the amplitude of 

vibration of the 2m  intermediate mass) at 1x L=  (Fig.3), and for the middle section ( 2R  support) the displacement 
is 2 2Xδ = + ε  at 1 2x L L= + , the system of four equations of forced vibration of the beam will be: 
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3.4. Results of modeling of equivalent mass and equivalent rigidity  

 
It is established that to ensure   5gζ =  overload ( g  - acceleration of gravity) at the frequency of  

 . /f 99 484rad sω =  ( fn 950rpm=  ) forced vibrations the amplitude of vibration of the working body should 
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be – . · 3
1X 4 955 10 m= , and the intermediate mass of – – . · 3

2X 5 868 10 m= . As above determined 1X  and 

2X  parameters were substituted into Eqs (3.17), the values of A  and B  constants, the reactions of the 1R  and 

2R  supports were determined, which are: .A 0 083= , – .B 0 066= ,  – .1R 592 066 N=  and  . .1R 341 729N=  
After determined values were substituted in Eq.(3.3), the coordinate of the reference point along the x-axis was 
defined which is .cX 0 01m= . 

To establish the equivalent mass and the equivalent rigidity of the beam according to expressions 
(3.12) and (3.13), these parameters will be formed as an algebraic sum of the corresponding indices on each 
section of the beam, i.e.:  

 
  с с1 с2 с3 с1i с2i с3iс с с с с с с= + + + + + , (3.18) 

 
  с с1 с2 с3 с1i с2i с3im m m m m m m= − − + − −  (3.19) 

 
where c1c , c2c , c3c  – fractions of equivalent rigidities of the beam bending on left, middle and right sections, 
respectively; c1ic , c2ic , c3ic  – fractions of equivalent rigidities of the beam bending on left, middle and right 
sections, respectively; c1m , c2m , c3m  – fractions of equivalent mass of linear movement of the beam on left, 
middle and right segments, respectively; c1im , c2im , c3im  – fractions of equivalent mass of the beam twist on 
left, middle and right sections, respectively. The values of the fractions of the equivalent masses and rigidities 
in the third section can be neglected due to the scantiness of its length.  

To establish the fraction of the c1m  equivalent mass of movement at the left end of the beam (from 0 
to 1L  ), the left part of expression (3.12) and expression (3.14) were used:  
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is the deflection of the beam at the point of reference. 

On the middle section of the beam (from 1L  to 1 2L L+ ) we can determine the fraction of the equivalent 
mass of movement using Eq.(3.15): 
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To establish the fraction of the c1im  equivalent mass of twist at the left end of the beam (from 0 to 1L ) 

the right part of expression (3.12) and expression (3.14) were used:  
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On the middle section of the beam (from 1L  to 1 2L L+ ) we can determine the fraction of the equivalent 
mass of twist using Eq.(3.15): 
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To establish the fraction of the cc1 equivalent rigidity of bending at the left end of the beam (from 0 to 

1L ), the left part of expression (3.13) and expression (3.14) were used: 
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On the middle section of the beam (from 1L  to 1 2L L+ ) we can determine the fraction of the equivalent 

rigidity of bending using Eq.(3.15):  
 

  ( )
( )

d d .
d

2

1

1 L

c

2L 2
m 3

c2 z
L

2
w x

с EJ x 1 416 10
x Xw

+   
= = ⋅      

  N/m. (3.25) 

 
To establish the fraction of the cc1i equivalent rigidity of beam layers shearing at the left end of the 

beam (from 0 to 1L ), the right part of expression (3.13) and expression (3.14) were used: 
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On the middle section of the beam (from 1L  to 1 2L L+ ) we can determine the fraction of the equivalent 

rigidity of beam layers shearing using Eq.(3.15):  
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Therefore, the equivalent mass and the equivalent rigidity of the beam according to expressions of 

(3.20) and (3.27) are: 
 

    .  cm 0 313kg= , (3.29) 
 

    . /cc 2 747N m= . (3.28) 
 

4. The results of the experimental study 
 

The reliability of the calculated values of the cm  equivalent mass and the cc  equivalent rigidity can 
be determined by upholding of the value of the partial frequency of the pω  continual segment. Due to the 
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established technical requirements, the partial frequency should be of . /p 95 672rad sω = . According to 
calculations using Eq.(3.29) and Eq.(3.28), the partial frequency is:  

 

  .  / ,c
p

c

c 93 707 rad s
m

ω = =  (4.1) 

 
the result coincides quite precisely with the set parameter. 

 

 
(a) 

Vibration cycle quantity  

 
(b) 

Fig.4. Experimental sample of the (a) conveyor-separator and amplitude-time characteristic of the (b) 
intermediate mass (the amplitude value of vibrations is read from the sensor in volts). 

 

UA1, 
 V 

t, s 
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The continual segment in the form of the beam with the geometric parameters given in the article is 
implemented in an inter-resonance vibrating machine. The nature of vibrations of the intermediate mass, which 
was set in motion from the continual segment with vibration at its own (partial) frequency, was experimentally 
indicated. An experimental sample of the continual segment of the inter-resonance vibrating machine is shown 
in Fig.4a. Inertial parameters of sensors connected to the 2m  mass practically do not affect the vibrating system 
because of  .2m 62 1kg= .  

The time characteristics of the 2m  mass movement during vibrations of the beam at its own frequency 
are shown in Fig.4b. The value of the first natural cyclic frequency of vibrations of the beam was determined 
from the ratio of the number of peaks to the time interval, which is defined as the difference of 219-217, Fig.4b: 

 

  vibration cycle quantity . .  .
time intervalpe

29 4 14 7 Hz
219 217

ν = ≈ ≈
−

 (4.2) 

 
The circular frequency of the beam, according to Eq.(4.2), will be . /pe 92 36rad sω ≈ . The obtained 

value is consistent with the results of simulation ( . /p 93 707rad sω = ). 
To analyze quantitatively of the consistency between the simulation results and the experimental data, 

the frequency error is calculated: 
 

  . .% .  % .
.

pe p
p

pe

92 36 93 707100 100 1 46
92 36

ω − ω −ε = ⋅ = ⋅ =
ω

 (4.3) 

 
The frequency error does not exceed 2%, which confirms the reliability of theoretical studies. 
 

5. Conclusions 
 
For inter-resonance vibration machines, the developed analytical model renders it possible to 

synthesize continual segments, the properties of which are consistent with the relevant sections of discrete 
systems. Using the developed model, the two defining parameters of the oscillating system of the vibrating 
machine are studied, namely: the inertial parameter of reactive mass and appropriate rigidity of the elastic 
coupling. These operation factors are revealed only in dynamic processes and are clearly not included in the 
parameters of the continual segment. In order to take into account these parameters the reference point of the 
continual segment passing through its centre of velocity is studied. The inertial parameter of the reactive mass 
and the rigidity of the elastic coupling were studied by the Rayleigh-Ritz method. The reliability of the results 
of theoretical research was confirmed experimentally and the parameters of the partial frequency of the 
continual segment were determined. 

  
Nomenclature 

 
 , , ,A B C D  – arbitrary constants, [–] 
 rb  – beam thickness, [m] 
 cc  – equivalent rigidity of the beam, [N/m] 
 , ,c1i c2i c3ic c c  – fractions of equivalent rigidities of the beam shearing on left, middle and right sections, respectively, [N/m] 
 , ,c1 c2 c3c c c  – fractions of equivalent rigidities of the beam bending on left, middle and right sections,  respectively, [N/m] 
 isc  – rigidity of vibration isolators, [N/m] 
 ,12 23c c  – rigidity of elastic couplings that connect the active mass to the intermediate and intermediate mass to the 

reactive mass, respectively, [N/m] 
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 E  – (tensile) elastic modulus, [Pa] 
 rF  – cross-section area of the beam, [m2] 
 0F  – amplitude value of excitation force, [N] 
 G  – modulus of rigidity, [Pa] 
 g  – acceleration of gravity, [m/s2] 
 h  – beam width, [m] 
 rrJ  – moment of inertia of the beam length unit as the x function, [m4] 
 zJ  – moment of inertia of the beam cross-section area (rectangular cross-section) relative to the neutral line of 

the section, [m4] 
 rΚ  – kinetic energy, [J] 

 yk  – coefficient that depends on the shape of the rectangular cross section of the beam, 

 L  – beam length, [m] 
 , ,1 2 3L L L  – length of left, middle and right beam sections, respectively, [m] 

 ( )M x  – bending moment, [N m] 

 cm  – equivalent mass of the beam, [kg] 
 , ,c1 c2 c3m m m  – fractions of equivalent mass of linear movement of the beam on left, middle and right sections, respectively, 

[kg] 
 , ,c1i c2i c3im m m  – fractions of equivalent mass of the beam twist on left, middle and right sections, respectively, [kg] 
 rrm  – linear mass of the beam, [kg/m] 

 ,,1 2 3m m m  – inertial parameters of active, intermediate and reactive masses, respectively, [kg] 

 n  – speed, [rpm] 
 ( )Q x  – shear distribution along the beam, [N] 

 ,1 2R R  – reaction at supports, [N] 
 cX  – value along the x-axis of the reference point of the beam, [m] 
 ,  ,c1 c2 c3X X X  – value along the x-axis of the reference points for left, middle and right sections respectively, [m] 
 ,1 2X X  – vibration amplitude of the active and intermediate mass, respectively, [m] 
 ,1 2δ δ  – displacement in the first and second supports, respectively, [m] 
 ε  – eccentricity of crank mechanism, [m] 
 ζ  – overload, [–] 
 ( )xθ  – angle of twist of beam segment, [rad] 
 rΠ  – potential energy, [J] 
 ρ  – unit weight for steel, [kg/m3] 

 ( )cXυ  – linear velocity, [m/s] 

 ω  – circular frequency of beam oscillation, [rad/s] 
 fω  – forced circular frequency of system vibration, [rad/s] 

 pω  – partial circular frequency of vibrating system, [rad/s] 
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