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In this paper, we have studied a method based on exponential splines for numerical solution of singularly 

perturbed two parameter boundary value problems. The boundary value problem is solved on a Shishkin mesh by 
using exponential splines. Numerical results are tabulated for different values of the perturbation parameters. From 
the numerical results, it is found that the method approximates the exact solution very well. 
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1. Introduction 
 
 Singular perturbation problems occur in the theory of viscous flow, in certain problems in the theory of 
elasticity, and in many other branches of applied mathematics like in fluid flow at high Reynolds number [1, 2], 
simulation of oil extraction from underground reservoirs [3], convective heat transport problems [4], water quality 
problems in river networks [5], the driftdiffusion equations of semiconductor device physics [6, 7], the Michaelis-
Menten theory for enzyme reactions [8], mathematical theory of liquid crystal materials and chemical reactions [9], 
etc. Two-dimensional singularly perturbed convection-diffusion equations are regarded as the simplest version of 
the Navier-Stokes equations [10]. These problems depend on a small positive parameter in such a way that the 
solution varies rapidly in some parts of the domain and varies slowly in some other parts of the domain. It is well 
known that classical finite difference schemes cannot give satisfactory numerical results for singularly perturbed 
problems when the mesh size is greater than the perturbation parameter and in the case of mesh size less than the 
perturbation parameter, this will lead to a huge linear system. To overcome this, there are two types of methods: (i) 
fitted operator methods and (ii) fitted mesh methods. In the fitted operator methods, an appropriate fitting factor is 
to be used to find the numerical solution on uniform meshes. Stable numerical methods on uniform mesh for 
singularly perturbed ordinary differential equations are equivalent to adding sufficient artificial diffusion to the 
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differential equation before applying standard numerical method for approximation. First such method was 
proposed by Allen and Southwell [11] and its convergence in one dimension was analyzed by Il’in [12]. The amount 
of artificial diffusion is calculated such that the computed solution agrees with the exact solution at the mesh points. 
One of the landmark work in this direction is by Kellogg and Tsan [13], where the authors used comparison principle 
to deduce discretization error from the bounds on truncation error. This is one of the most used results now. El-
Mistikawy and Werle [14] showed a different way of generating Allen-Southwell-Il’in scheme and derived a 
second-order, stable finite difference scheme for convection-diffusion problems and later Berger et al. [15] proved 
that the scheme is second-order accurate. Hegarty et al.[16] also proved the above result using the general 
convergence principle given by Miller. Roos in [17] described ten different approaches to generate uniformly 
convergent discretization schemes for one parameter singular perturbation problem. In the fitted mesh methods, 
various adaptive mesh constructions are given, for example, Bakhvalov [18] was the first who used the special grid 
for the solution of singularly perturbed differential equations. Later various adaptive meshes are given by various 
researchers, few are Vulanovic [19], Gartland [20], Shishkin [21, 22]. In the meshes given by Bakhvalov, Gartland, 
and Vulanovic the mesh size is uniform outside the layer(s) and in the decreasing/increasing form at the layer(s). 
However, Shishkin meshes are piecewise-uniform and one can also achieve uniform convergence on it.  
 In 1967, O’Malley [23] gave the asymptotic solution to two parameter singularly perturbed, 
problemsb(TPSPPs). Two decades later, some mathematicians presented the numerical techniques for the two 
parameter singularly perturbed boundary value problems. Relja Vulanovic [24] published a research article on 
numerical solution of singularly perturbed boundary value problem with two small parameters ε  and μ  with .μ ≤ ε  
Two finite-difference schemes (up-wind and Samarskii’s) are considered on a special non-uniform mesh. Up-wind 
scheme yields linear order of convergence and Samarskii’s quadratic scheme is obtained. Roos and Uzelac [25] 
provide a priori bound of the solution and its derivatives for continuous problem. They used the streamline-diffusion 
finite element method on a Shishkin mesh and proved that the method is convergent independently of the 
perturbation parameters. In the literature so far convection-diffusion problems ( )1μ =  and reaction-diffusion 

( )0ε =  have been handled separately. In this paper, they provide a unified treatment of a two parameter problem 
for all possible classes of sub problems. Torsten [26] study a model linear convection-diffusion-reaction problem 
where both the diffusion term and the convection term are multiplied by small parameters ε  and μ , respectively. 
Depending on the size of the parameters the solution of the problem may exhibit exponential layers at both end 
points of the domain. Sharp bounds for the derivatives of the solution are derived using a barrier function technique. 
These bounds are applied in the analysis of a simple upwind-difference scheme on Shishkin meshes. This method 
is established to be almost first-order convergent, independently of the parameters ε  and μ . In the present study, 
we solved the singularly perturbed two parameter boundary value problems by using exponential splines. The 
boundary value problem is solved on a Shishkin mesh. In fact, the boundary value problem can be solved on any 
suitable adaptive mesh. The convergence analysis of the proposed method is studied. Numerical results are tabulated 
for different values of the perturbation parameters. From the numerical results, it is found that the method 
approximates the exact solution very well.  
 The paper is organized in the following manner: We stated the problem under consideration and 
construction of the numerical method is discussed in Section 2. To demonstrate the efficiency and applicability 
of the proposed methods, numerical experiments are carried out for four test problems and results are given in 
Section 3. The paper ends with conclusions. 
 
2. Problem statement 
 
 We consider the two-parameter singularly perturbed convection-diffusion-reaction boundary value problem 
 

  
( ) ( ) ( ) (( ) ( ) ( ) ( ), ( , ),

( ) , ( ) ,

Ly x y x p x y x q x y x r x x 0 1

y 0 y 1

′′ ′= −ε + μ + = ∈Ω =

= α = β
 (2.1) 
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with two small parameters 0 1< ε <<  and 0 1< μ << , such that 
2

0μ
ε

→  as 0ε → . The functions ( ) ( ),  p x q x  

and ( )r x  are assumed to be sufficiently smooth with *( )p x p 0≤ − <  and  *( )q x q 0≥ >  for all [ ],  x 0 1∈ . 
This problem encompasses both the reaction-diffusion problem when µ = 0 and the convection-diffusion 
problem when 1μ = . It is well-known that standard numerical methods are unsuitable for singularly perturbed 
problems and fail to give accurate solutions.  
We solve the above boundary value problem by using an exponential spline method on a Shishkin mesh. 
 
2.1. Exponential spline method 
 
 Consider a uniform mesh Δ  with nodal points ix on the interval [ ],0 1  such that 
 
  : ....1 2 n 1 n0 x x x x 1−Δ = < < < < =  
 
where ( )and / ; , ,..... .ix ih h 1 n i 1 2 n= = =  
To develop the method, we followed the steps given in [27]. 
 Let ( )y x be the exact solution of the problem given by Eq.(2.1) and iS  be an approximation solution 
to ( ) ( )i iy x y x= , obtained by the segment ( )iQ x  passing through the points  ( , )i ix S  and ( , )i 1 i 1x S+ +  . Each 
mixed spline segment ( )iQ x  has the following form 
 
  ( ) ( ) ( )( ) , , , , ......i ik x x k x x

i i i i i iQ x a e b e c x x d i 0 1 2 3 n− − −= + + − + =   (2.2) 
 
where ,ia ,ib ,ic id  are constants and k is free parameter. 

To obtain the necessary conditions for the coefficients introduced in Eq.(2.2) the segment value of ( )i iQ x , 

( ) ( ) ( ), ,1 1
i i 1 i i 1Q x Q Q+ +  should be considered at the common node. Expressions for the four coefficients can be 

developed in terms of iS , , ,i 1 i i 1S M M+ +  by defining 
 

  ( ) ( ) ( )( ), , , 22
i i i i i 1 i 1 i i i 1i 1Q x S Q x S Q M Q M+ + ++= = = = . (2.3) 

 
From Eq.(2.2), we get 
 
  ( ) ( ) ( ) ( ) ,i ik x x k x x

i i i i i i iQ x S a e b e c x x d− − −= = + + − +  
 
  ( )i i i i i iQ x S a b d= = + + . 
 
Now we calculate ( )i i 1Q x +  from Eq.(2.2) 
 
  ( ) ( ) ( ) ( )i 1 i i 1 ik x x k x x

i i 1 i 1 i i i i 1 i iQ x S a e b e c x x d+ +− − −
+ + += = + + − + , 

 
  .kh kh

i 1 i i i iS a e b e c h d−
+ = + + +  

 
We consider /k h= θ , so khθ = , then 
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  .i 1 i i i iS a e b e c h dθ −θ

+ = + + +  (2.4) 
 
Now, by taking differentiation of Eq.(2.2) with respect to x , we get 
 
  ( ) ( )( ) ( ) i ik x x k x x1

i i i iQ x a ke b ke c− − −= − + . (2.5) 
 
Now, by taking differentiation of Eq.(2.5) with respect to x , we get 
 
  ( ) ( )( ) ( ) i ik x x k x x2 2 2

i i iQ x a k e b k e− − −= + . 
 
We take ( ) ( )2

i i iQ x M= , so 
 
  ( ) ( ) ( ) ( )i i i i2 k x x k x x2 2

i i i i iQ x M a k e b k e− − −= = + , 
 
  ( ) ( ) ( )2 2

i i i i iQ x M k a b= = + . (2.6) 
 
Again, we know that  
 
  ( ) ( )2

i i 1 i 1Q x M+ += , 
 
  ( ) ( ) ,2 2 kh 2 kh

i i 1 i 1 i iQ x M a k e b k e−
+ += = +  

 
  ( ) ( ) ( )2 2 kh kh

i i 1 i 1 i iQ x M k a e b e−
+ += = + . (2.7) 

 
From Eq.(2.6) 
 
  ( ) .2

i i ik a b M+ =  
 
Therefore 
 

  i
i i2

Ma b
k

= − . (2.8) 

 
From Eq.(2.7), we have 
 
  ( )2 kh kh

i 1 i iM k a e b e−
+ = + , 

 

  kh khi 1
i i2

M a e b e
k

−+ = + . (2.9) 

 
Now, we will put the value of ia , from Eq.(2.8) 
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( )

( )

,

,

sinh ,

,
sinh

kh khi 1 i
i i2 2

kh kh
khi 1 i

i2 2

khi 1 i
i2 2

kh
i i 1

i 2

M M b e b e
k k

M M e ee 2b
2k k

M M e 2b kh
k k

M e M1b
2 khk

−+

−
+

+

+

 = − + 
 

 − = −        

 = − 
 

 − =      

 

 
now, we consider k h= θ , so khθ =   
 

  ( )sinh

2
i i 1

i 2
M e Mhb

2

θ
+   −

=     θθ  
 (2.10) 

 
now, by Eq. (2.8), we know that 
 

  i
i i2

Ma b
k

= − . 

 
We put the value of ib from Eq.(2.10), and /k h= θ : 
 

  
( )

( )

,
sinh

sinh( ) ( ) ,
sinh

i2 2
i i 1

i i 2 2

i2
i i i 1

i 2

M e Mh ha M
2

M 2 M e Mha
2

θ
+

θ
+

     −
= −         θθ θ    

   θ − −
=     θθ  

 

 

  ( ) .
sinh

2
i 1 i

i 2
M M eha

2

−θ
+   −

=     θθ  
 (2.11) 

 
Again, we have 
 
  i i i id S a b= − − , 
 
now, by putting the value of ia and ib  from Eq.(2.10) and (2.110), we get 
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  ( ) ( ) ,
sinh sinh

2 2
i 1 i i i 1

i i 2 2
M M e M e Mh hd S

2 2

−θ θ
+ +      − −

= − +            θ θθ θ      
 

 

  
( ,

( )

2
i

i i 2
M e ehd S

e e

θ −θ

θ −θ

   −
= −     θ −    

 

  .
2

i i i2
hd S M

 
= −   θ 

 (2.12)
 

 
Again, we have from Eq.(2.4) 
 
  ,i 1 i i i iS a e b e c h dθ −θ

+ = + + +  
 

  ( ).i i 1 i i i
1c S a e b e d
h

θ −θ
+= − − −  

 
now, by putting the value of ia , ib  and id  from Eqs (2.10)-(2.12), we get 
 

  ( ) ( ) ,
sinh sinh

2 2 2
i 1 i i i 1

i i 1 i i2 2 2
M M e M e M1 h h hc S S M e e

h 2 2

−θ θ
θ −θ+ +

+
         − −

= − + − −                  θ θθ θ θ         
 

 

  ( ) ( ).
2

i i 1 i i i 12
1 hc S S M M
h + +

  
= − + −    θ  

 

 
Via straightforward calculation we obtained the value of ia , ib , ic  and id , as follows: 
 

  ( ) ,
sinh

2
i 1 i

i 2
M M eha

2

−θ
+   −

=     θθ  
      ( )sinh

2
i i 1

i 2
M e Mhb

2

θ
+   −

=     θθ  
, 

 

  ( ) ( )
2

i i 1 i i i 12
1 hc S S M M
h + +

  
= − + −    θ  

,      
2

i
i i 2

h Md S= −
θ

 

 
where 
 
  and , , ,.... .kh i 0 1 2 nθ = =  
 
Using the continuity of the first derivative at the point ( , )i ix S where ( ) ( )and1 1

i i 1Q Q + the following relation for 
  , , ,.....i 0 1 2 n 1= −  is obtained 

 
  ( ) ( )2

i 1 i i 1 i 1 i i 1S 2S S h M M M+ − + −− + = α + β + γ  (2.13) 
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where 

  
( )

( )
sinh

sinh2

 θ − θ
α =   θ θ 

,       
( ) ( )( )

( )
cosh sinh

.
sinh2

2 2 θ θ − θ
β =   θ θ 

 

 

When  andk 0 0→ θ →  then ( )( , ) ,1 1 4
6
 α β =  
 

 and the relation defined by Eq.(2.13) reduces to the following 

ordinary cubic spline relation: 
 

  ( ) ( )
2

i 1 i i 1 i 1 i i 1
hS 2S S M 4M M
6+ − + −− + = + + , (2.14) 

 
at the point ix  the proposed singularly problem may be described by: 
 

  ( )( )1
i i i i

1M p S r= μ +
ε

 (2.15) 

where 

  ( ) ( ) ( ), ,1 1 1i 1 i 1 i 1 i i 1 i 1 i i 1
i i 1 i 1

S S 3S 4S S S 4S 3SS S S
2h 2h 2h

+ − + − + −
+ −

− − + − + −
= = = . 

 
Substituting Eq.(2.15) into Eq.(2.13), we get the following 
 

  ( ) ( ) ( ) ( )( ) ( ) ( )
2

1 1 1
i 1 i i 1 i 1 i 1 i i i i 1 i 1i 1 i 1

hS 2S S p S r p S r p S r+ − + + − −+ −
 − + = α μ + + β μ + + α μ + ε

. 

 
Now we will put the values ( )1

i 1S + , ( )1
iS , ( )1

i 1S −   
 

 
( )

( ) .

2 i 1 i i 1
i 1 i i 1 i 1

2i 1 i 1 i 1 i i 1
i i 1 i1 i i 1

3S 4S SS 2S S h p
2h

S S S 4S Sp p h r r r
2h 2h

+ −
+ − +

+ − + −
− −

 − + ε − + = μ α +  
 

− − + +   +β + α + α + β + α    
    

 

 
Simplifying, we get 
 

  ( ) [ ] ( )2
i 1 i i 1 i i 1 i i i i 1 i 1 i i 1

hS 2S S D S E S A S h r r r
2+ − + − +

μ−ε − + + + + = − α −β + α−  (2.16) 

 
where   , , ,.....,  i 1 2 3 n 1= −  and  
 

  

( )

,

,

.

i i 1 i i 1

i i 1 i i 1

i i 1 i 1

A p p 3 p

D 3 p p p

E 4 p p

− +

− +

+ −

= −α + β + α

= − α − β + α

= α − +
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The above system gives ( )n 1−  linear algebraic equations with ( )n 1+  unknowns iS . We use two given 
boundary conditions, so that we have ( )n 1+  equations with ( )n 1+  unknowns. To obtain the numerical 
solution, we solved this tridiagonal system by using Thomas Algorithm. 
 
2.2. Mesh selection strategy 
 
 We know that an equidistant mesh cannot attain convergence at all mesh points uniformly in ε  and .μ  
If its coefficients have an exponential property, then the scheme can attain convergence at all mesh points 
uniformly in ε and μ . Therefore, unless a specially chosen mesh is used, we cannot obtain a parameter uniform 
convergence at all the mesh points. So a simple non-uniform mesh, namely a piecewise uniform mesh 
discussed in [28] is enough for the construction of a parameter uniform method. It is fine near layers but coarser 
otherwise. We cannot say that these piecewise uniform meshes are optimal in any sense. It is useful because it 
is simple and adequate for solving a wide variety of singularly perturbed problems. To use the Shishkin mesh 
one should have a priori knowledge about the location and nature of the layers. To obtain the discrete 
counterpart of the two-parameter singularly perturbed boundary value problem (1), firstly the considered mesh 
discretized the domain [ ],  0 1Ω =  into three subintervals 
 
  [ ] [ ] [ ], , , and ,0 1 c 1 2 1 2A 0 A 1 A 1 1= γ = γ − γ = − γ  
 
where transition parameters are given by 
 

  min , ln , min , ln1 2
1 2

1 2 1 2n n
4 4

   
γ = γ =   ψ ψ   

, 

 
with n to be the number of subdivision points of the interval [ ],0 1  and we place ( ) ( ) ( )/ ,  / ,  /n 4 n 2 n 4  mesh 
points, respectively, in [ ] [ ] [ ], , , , ,1 1 2 20 1 1 1γ γ − γ − γ . Accordingly, the resulting piecewise uniform Shishkin 
mesh may be represented by: 
 

  

, , ,..... / ,

( ) , , ,..... / ,

, , ,..... .

1
1 i i 1 1

1 2
2 i i 1 2

2
3 i i 1 3

4h x x h for i 1 2 3 n 4
n

2 1h x x h for i 1 2 3 3n 4
h n

4h x x h for i 1 2 3 n
n

−

−

−

γ = = + =


 − γ − γ
 = = + =

= 



γ = = + =



 

 
3. Numerical results 
 
 To check the applicability of the proposed method, we applied it to three examples. The maximum 
absolute errors and corresponding rate of convergence has been tabulated. For the examples, where the 
numerical solutions are not available, we used the double mesh principle to calculate the maximum absolute 
errors. 
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Example 1 [29]. Consider the singularly perturbed boundary value problem 
 
  ( ) ( ) ( ) ( )cos , , , , .y y y x x 0 1 y 0 0 y 1 0′′ ′−ε + μ + = π ∈ = =  
 

 
 

Fig.1. Exact and approximate solution for Example 1 at various values of ε and 610−μ = . 
 
Table 1. Maximum absolute error and rate of convergence (ROC) for 610−μ =  and for various values of ε . 

 
610−μ =  

ε  N=64 N=128 N=256 N=512 
210−  

ROC 

-. 27 5210 10×  
1.0194 

-. 33 7161 10×  
0.9615 

-. 31 9023 10×  
3.2765 

-. 41 7136 10×  

310−  
ROC 

-. 25 1211 10×  
0.9823 

-. 34 1345 10×  
1.0356 

-. 32 1035 10×  
3.3456 

-. 41 9245 10×  
 

410−  
ROC 

-. 21 3235 10×  
0.9789 

-. 36 9485 10×  
0.8606 

-. 36 3368 10×  
3.2963 

-. 45 3214 10×  

510−  
ROC 

-. 21 5574 10×  
1.0093 

-. 34 6923 10×  
1.3120 

-. 33 8255 10×  
3.2643 

-. 43 4569 10×  

610−  
ROC 

-. 21 6141 10×  
1.0090 

-. 36 6136 10×  
1.0020 

-. 34 2912 10×  
3.1341 

-. 43 2145 10×  

 
The exact solution is given by  
 
  ( ) ( ) ( )cos sin .11 1 xx

1 2 1 2x x e e−λ −λρ π + ρ π + ψ + ψ   
 
where  
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( )( ) , , ,
( ( ) ) ( ( ) ) ( )

( ) , , .
( )

2

1 2

1

1 2

2
1

1 2 12 2 2 2 2 2 2 2

2 2
1

2 1 2

1 e1
1 1 1 e

4 41 e
2 21 e

−λ

λ −λ

−λ

λ −λ

−ρ +επ + μρ = ρ = ψ =
μ π + επ + μ π + επ + −

μ − μ + ε μ + μ + ε−ρ +ψ = λ = λ =
ε ε−

 

 
Maximum absolute errors and the corresponding rate of convergence (ROC) for this example are given in 
Tab.1. The exact solution and approximate solution for different values of ε  and 610−μ =  are plotted in Fig.1. 
 
Example 2. Consider the singularly perturbed boundary value problem 
 
  ( ) ( ) ( ), , , ,y y y 1 x 0 1 y 0 0 y 1 0′′ ′−ε + + = ∈ = = . 
 

 
 

Fig.2. Exact and approximate solution for Example 2 when 710−ε =  and 210−μ = . 
 
The exact solution is given by 
 

  ( ) ( )
( )

( )
( )

2 1 2

1 2 1 2

xe 1 1 e e
y x 1

e e e e

λ λ λ

λ λ λ λ

− −
= + +

− −
 

 
where 

  ,1 2
1 1 4 1 1 4

2 2
+ + ε − + ελ = λ =

ε ε
. 

 
Maximum absolute errors and the corresponding rate of convergence (ROC) for Example 2 are given in Tab.2. 
The exact solution and approximate solution for different values of ε  and 210−μ =  are plotted in Fig.2. 
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Table 2. Maximum absolute error and rate of convergence for 210−μ =  and for various values of ε . 
 

210−μ =  
ε  N=40 N=80 N=160 N=360 

310−  
ROC 

-. 21 3612 10×  
1.10401 

-. 36 6194 10×  
2.3222 

-. 31 3236 10×  
2.0190 

-. 43 2657 10×  
 

410−  
ROC 

-. 21 3276 10×  
0.9789 

-. 34 6051 10×  
0.8606 

-. 49 3665 10×  
3.2963 

-. 42 3146 10×  

510−  
ROC 

-. 41 2657 10×  
1.0368 

-. 56 1690 10×  
1.1109 

-. 53 0612 10×  
2.6920 

-. 61 1843 10×  

610−  
ROC 

-. 51 2191 10×  
1.8852 

-. 63 3002 10×  
2.2609 

-. 76 8858 10×  
2.1952 

-. 71 5036 10×  

710−  
ROC 

-. 66 8819 10×  
1.6222 

-. 62 2355 10×  
2.3603 

-. 74 3537 10×  
2.8023 

-. 86 2415 10×  

 
Example 3. Consider the singularly perturbed boundary value problem 
 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , .22u x 3 2x u x u x 1 x x 0 1 u 0 0 u 1 0′′ ′−ε + μ − + = + ∈ = =  

 

  
Fig.3. Numerical solution of Example 3 when 910−ε =  and 310−μ = . 

 
Since the exact solution is not available for this example, we used the double mesh principle to calculate 
numerical solution. 
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Table 3. Maximum absolute error and rate of convergence for 310−μ =  and for various values of ε . 
 

310−μ =  
ε  N=64 N=128 N=256 N=512 

510−  
ROC 

-. 41 3124 10×  
1.0368 

-. 56 1690 10×  
1.1109 

-. 53 0612 10×  
2.6920 

-. 61 1843 10×  

610−  
ROC 

-. 51 2191 10×  
1.8852 

-. 63 3002 10×  
2.2609 

-. 76 8858 10×  
2.1952 

-. 71 5036 10×  

710−  
ROC 

-. 66 8819 10×  
1.6222 

-62.2355 10×  
2.3603 

-74.3537 10×  
2.8023 

-86.2415 10×  

810−  
ROC

-21.4165 10×  
1.6858 

-. 34 3655 10×  
1.5236 

. 31 5465 10−×  
1.5149 

. 46 5989 10−×  

910−  
ROC

. 31 3896 10−×  
1.6859 

. 33 8645 10−×  
1.5236 

. 31 2364 10−×  
3.2537 

. 46 7099 10−×  

 
4. Conclusion 
 
 In this paper, a numerical method is studied to solve two-parameter singularly perturbed linear 
boundary value problems. This method is based on exponential spline with piecewise uniform Shishkin mesh. 
The method is convergent for all perturbation parameters ε  and µ.  From the table, it can be observed that, as 
the step sizes are decreasing, the maximum absolute errors are decreasing, which shows the numerical 
convergence of the proposed method. It has been found that the proposed algorithm gives highly accurate 
numerical results and higher order of convergence. 
 
Nomenclature  
 
 ,ia ,ib ,ic id  – constants and  
 k – free parameter. 
 ε , µ – small positive parameter 
 ,α β  – real constants 
 ,1 2γ γ  – transition parameters 
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