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In this paper, a displacement based shear deformation theory formulated on the cubic in-plane displacement
field equation of Reddy and Liu is presented for the static bending analysis of isotropic circular cylindrical shells.
The adopted displacement field accounts for a quadratic (parabolic) distribution of the transverse shear through the
shell thickness as well as satisfies the need for a stress free upper and lower boundary surfaces of the shell. The
equations of static equilibrium are obtained on application of the principle of virtual work. Numerical results of the
bending analysis for the displacements and stresses are presented for the simply supported shell. A comparison
made to those of the Kirchhoff-Love theory for varying shell length to mean — radius of curvature ratios, shows

good agreement for thin shells irrespective of the shell length to radius of curvature ratio (l / a). The transverse

sharing effect is found to be noticeable in the deformation of thick shells, however, this effect diminishes with a
continuous increase in // a ratios.

Key words: isotropic circular cylindrical shell, shear deformation theory, transverse shear, principle of virtual
work, Kirchhoff- Love theory.

1. Introduction

Shell structures are three-dimensional solids closely bounded by two arbitrary curved surfaces whose
thickness is comparatively small in relation to its other dimensions. A good number of shell theories were
proposed with the aim of predicting more adequately the elastic behavior of a shell in response to both static
and dynamic loadings, with significant progress recorded thus far. Structural shells are generally classified in

terms of their thickness to radius of curvature ratios (//R;) as thin and thick shells, with thin shells defined
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in ratios A/ R; <1/20 as in Novozhilov [1]. The classical shell theories (CSTs) otherwise known as the first

approximation shell theories are founded on the kinematic postulation of Kirchhoff-Love, where the shell is
assumed to be thin. The Kirchhoff-Love postulation is based on the following:
(1) straight lines lying normal to the middle surface of the shell prior to deformation remain unchanged
after the deformation has occurred.
(2) the stresses generated normal to the shell’s middle surface are considered negligible.
(3) the shell is thin, with the generated displacements and strains considered small.

Shell theories developed upon the Kirchhoff-Love assumptions have been found to provide
satisfactory results for shells classified as thin, irrespective of the fundamental flaw associated with the neglect
of the transverse shear effects on the shell’s deformation as proposed by the first assumption stated above.
However, applications of these fundamental assumptions to anisotropic composites or thick shells have
resulted in erroneous results in displacements, frequencies of vibrations, buckling loads and stresses. With this
in mind other categories of structural shell theories have been developed to arrest these shortcomings. The first
order shear deformation theories (FSDTs) founded on Mindlin’s postulation attempted to address this issue,
by accounting for shear deformation through the relaxing of the assumption associated with the preservation
of the normals to the middle surface. Mindlin [2] achieved this by further suggesting that these normals indeed
remain straight, however are not necessarily normal to the deformed middle surface. These shell theories based
on Mindlin hypothesis have been found to result in quite satisfactory outcomes regarding the prediction of the
state of stress within thin and moderately thick shells. However, they have been shown to be inadequate for
proper estimation of the transverse shear distribution. A limitation which arose was the need for transverse
shear correction coefficients to account for its erring constant distribution of the transverse shear as opposed
to the parabolic distribution predicted by the theory of elasticity. Due to this unfortunate drawback associated
with the FSDTs an additional category of shell theories emerged known as the higher order shear deformation
theories (HSDTs). These shell theories are not restricted to using only linear terms, but second and higher order
terms are expanded as functions of the shell’s thickness coordinate, with the out-of-plane displacement
(deflection) assumed to be constant through the shell’s thickness. This assumption of constant deflection is
equivalent to the neglect of the stretching of the normals ensuring that the shell deformation problem remains
a two dimensional one [3, 4].

Reddy [5] applied the FSDT to analyze the deflection and vibrational frequencies of doubly curved
laminated shells using two sets of transverse shear correction coefficients to examine their influence on the
fundamental frequencies. Quite remarkable discoveries were documented with the selection of these shear
correction factors proven to grossly affect the accuracy of the FSDT. Soldatos [6] employed the FSDT to the free
vibrational analysis of isotropic cylindrical shells of oval cross section with the value of the shear correction
coefficient proposed by Mindlin. The HSDTs have been able to overcome the challenge associated with the use
of shear correction factors by adopting displacement fields of cubic and higher order functions, which accounts
for a more accurate quadratic distribution of the transverse shear with the stress free surface boundary condition
also met. These higher order theories involve those proposed in Reddy and Liu [7] for studying the shear
deformation of laminated shells of orthotropic layers as applied in [6, 8, 9] to study the shear deformation of non-
circular cylindrical, laminated anisotropic and symmetric laminated shells. Recent work by Vuong and Duc [10],
applied these theories the analytical investigation on buckling and post-buckling of shear deformable sandwich
toroidal shell segments with functionally graded core and homogeneous face sheets.

The present study however investigated the transverse shearing effects on the static bending behavior of
isotropic circular cylindrical shells based on the third order displacement field of Reddy and Liu. Hence, the
present solution is unaffected by the challenges associated with the use of transverse shear correction factors.

2. Theoretical formulation

The present work is an extension of the shear deformation theory developed by Reddy and Liu [7] for
doubly curved laminated composites to the static bending problem of an elastic isotropic circular cylindrical
shell. The solution is formulated upon a cubic function expansion of the in-plane displacement field together
with a constant through thickness deflection. The fundamental assumptions of the present work would mostly
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retain the classical theory assumptions with its only deviation being the adoption of a parabolic distribution of
the transverse shearing stresses, together with the satisfaction of the zero stress surface conditions. The shell
thickness is to be considered small enough in comparison to the radii of curvature (i.e /R, <<1) with the
material considered homogenous, isotropic and obeying Hooke’s law. The equation of kinematics (strain field)
is to be obtained upon substitution of the displacement field into the known strain — displacement relations for
a shell in an orthogonal curvilinear coordinate system. The stress field is obtained upon consideration of the
strain field and the known material stress — strain laws. The governing differential equations of equilibrium
associated with the adopted displacement field would then be obtained using the principle of virtual work.

Let (oc 7> Oy, O3 ) be introduced as an orthogonal curvilinear coordinate system as depicted in Fig.1., such

that (ot;, o, ) are parametric lines of the curvature lying in the middle surface ot; = 0 of the shell. The infinitesimal
distance between two points on the shell’s middle surface as in Ventsel and Krauthammer [11] is given as:

(ds) = A’do? + B?dos 2.1)

where Eq.(2.1) is known as the fundamental form and the quantities 4 and B are the fundamental form
parameters or Lame’s parameters.
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Fig.1. Differential element of a shell.
2.1. Kinematics

The assumed displacement field is in the form as given by Reddy and Liu [7]

— o 403 1 ow

U(04,00,,001) =| 1+—=2 [u+0;0, ——| @, +——— |, 2.2
(04,009,03) ( le 39; PYE [(Pz Aaulj (2.2)

= o 403 1 ow

V(o,00,,00)=| I+— [v+0,0, ——2| @, +—— |, 2.3
(01,0,0,015) [ RJV 39, Py (‘Pz Ba%J (2.3)

W((X],(Xz,o): w (24)

where (U, v, W) are the components of the displacements in the orthogonal (o, 0,,013) coordinates,

(u, v, w) are the displacements at a point (0o, o, 0) on the shell middle surface, (¢;, ®,) are the rotations

of normals at oi; =0 corresponding to the o, and o; axis while o; is the thickness coordinate.
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In Egs (2.2) and (2.3) the cubic form of the in- plane displacements provides a parabolic (quadratic)
distribution of the transverse shear through the shells thickness and is found to result in zero transverse shear strains
at the upper and lower surfaces of the shell (1.e o; =+/4/2), hence satisfying the stress free surface requirement.

The known strain — displacement relations for a shell in the orthogonal curvilinear coordinate system

as in Viola et al. [12] with the modifications to the transverse shear strains by Reddy and Liu [7] incorporated,
are given as follows:

1 10U V o4 W
€= — +——+— (2.5)
I+o;/R\ Ada; ABoa, R, )
. 1 aV U 9B +W 26
]+0c3/R2 Baoc2 ABaoc, R,
(1 V.U aA} ! (1 U _LB_B] @
I+oc3/R] Aodo; ABOo, | I+0;/R,\ Boo, ABJo,
€13= ! LW _w +8_U’ (2.8)
I+o;/ R\ Ado; R; ) doy
823 = I aW V +a—V, (29)
I1+05/R, Baocz R2 003
oW
ey =2 (2.10)
3

The assumption associated with the shell thickness 4/ R; << I makes it necessary to drop the following

terms o;/R; <<I. This assumption also makes possible the neglect of the normal strain effect (€33 =0)

together with the normal stress effect (633 =0). According to Amabili and Reddy [4], the normal stress has

been verfied to be small when compared to the transverse shear stresses, except near the edges of the shell.
Hence the plane stress assumption (633 =0) is a good approximation of the stress state in a moderately thick

shell, to which the following thickness to radius of curvature ratios are valid L < I < i

100" R~ 10

The strain displacements relations for the shell problem are obtained upon substitution of the displacement
field Egs (2.2)-(2.4) into the kinematic relations Eqs (2.5)-(2.9). The strain field is obtained as follows:

) (0) (2)

€ €1 Ki1 K71
0 0 3]0

€20 =157 (+ 03 K% pHof K ¢, (2.11)
0) 0 2)

€12 el K K5

0 )
€ 8
{’3}= +a (2.12)
es) 18" e
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with the strain components given below as

o_d du_ v o4 w o 0_ 190, ¢ 04

€ et ,
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o 4 | L Je I AT dw ¢ 04 I d|Iow
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2.2. Constitutive equations, stress field and stress resultants
The stress — strains laws for an isotropic, homogenous material as in Soedel [13] with the transverse

normal stress taken as zero (633 =0) are given by:

11 I} 2 11 W 22)>» 22 I} 2 22 M 11)> 12 2(1 ) 12>
(2.14)

G 3=——€,5, Oy=——¢
13 20+1) 13 23 20+1) 23
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where L is the poisons ratio, is the shear modulus and E is the modulus of elasticity.

2(1+p)
The stress field is obtained by the substitution of the expressions of the strain field Eqs (2.11) and
(2.12) into the constitutive laws Eq.(2.14), the expressions of the stress field may then be obtained as follows:

o= e e ot i od o) ] @15)
G, =]_E 3 [8(2(?+ue(1‘;)+0c3(1<(2%)+m<§01))+oc§(1<(222)+m<%) ], (2.16)
o) :miegg) +oi;k49 +(x§1<%)], (2.17)
G5 :ﬁ:eg@mg@?], (2.18)
O3 =ﬁ:8(203) +oc§1<(213)]. (2.19)

The expression of the stress resultants are obtained by the following integrals of the stress fields:
hi2 hi2
3 3
(NII’MIDPII)z_[_h/ZGII( 1,05,0i5 )doc3, (N12=M12=PI2)=_[_h/2612(17a3’a3 )doc3,
h/2 h/2
3 2
(sz,Mzzaszz)=I_h/2522(17003»003 )doc3 o (Q13.Ry3 ):.[_h/zcm(]’% )d% , (2.20)

(03, R3) ZIjl/22523 (1, 0‘32)"'0‘3

h/

where N, M, P, O, R are the stress resultants.

By substitution of the stress fields, into Eq.(2.20) and performing the integration, the expressions of
the stress resultants are then obtained as follows:

Nip =K(£11 (0)"‘!1822(0))’ (2.21)
Ny = K(322 @ +H811(0))a (2.22)
Njy= @81}0), (2.23)
M, :D(Ku(o) +MK22(0))+F(K11(2) +w<22(2)), (2.24)

M;,=D ( 15, e, ) +F (Kzz(z) i) ) ; (2.25)
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D(1-pn F(I-pn
= PU L 0 U0 o) (2.26)
2 2
7 =F(K11(0) +MK22(0))+H(K11(2) +l~“<22(2)), (2.27)
Py, ZF(Kzz(O) +HK11(0))+H(K22(2) +MK11(2)), (2.28)
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p= U 0 HUZW) o) (2.29)
2 2
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2 2
K(I-p D(I-u
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2 2
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Ry, = (2 “)813(0)+¥K1 K (2.32)
D(I1- F(l-
R,y = ( ”)823(04&](23(1) (2.33)
2 2
where K, D, F and H are the shell stiffnesses given by
3.5 7
K, D, F, H= E2 L (2.34)
I-u 127 80 448

Solving Eqgs (2.21)-(2.33) for the strain components, the stress field Eqs (2.15)-(2.19) may then be
obtained in stress resultants as follows:

E [N M, F|P,D-M;F P,D—-M,,F
o= (M (M [ BDMYF] | oy(PD=ME) 039
I-p? L K D D| HD-F HD—-F
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= 2{ 22+0c3( 22 ——{ 22 o } +0c§( 22 = j : (2.36)
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3 P]2D_M12F
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6,5 = E O  D| R3K-0;3D tol R;3K —0;3D (2.38)
I+ | K(1-w) K| (FK-D’)(1-p) (FK-D?)(1-n)

Gy = E Oy D] RyK-0yD +ol Ry K —0y3D (2.39)
I+w|K(1-u) K| (FK-D?)(1-p) (FK-D?)(1-n)

with definitions of the stiffnesses given by Eq.(2.34) substituted into Eqs (2.35)-(2.39), the stress field becomes:

0, = P +oc3[ 3 - 3 + 03 % - 3 , (2.40)
_ Ny 75M,, 420P, 3( 2800P,, 420M,,
O, = P +oc3( 3 - 3 + 03 % - 3 , (2.41)
_ Ny 75M;, 420P;, 3( 2800P, 420M,,
0, = P og[ 3 - 3 + 03 % - 3 , (2.42)
o= 905 151313 +a§(180§]3 a 15Q313J’ (2.43)
4h h h h
b= 905 ]51323 +a§[180§23 B ]5Q323) (2.44)
4h h h h

2.3. Equations of static equilibrium

The principle of virtual work can be applied efficiently in deriving the equations of static problems of
continuum as in Ibeabuchi et al. [14] and Ibearugbulem ef al. [15]. This principle of virtual work is used in
deriving the equations of equilibrium associated with the displacements field in Eqgs (2.2)-(2.4). The principle
of virtual work stated in an analytic form as in Soedel [13] can be expressed as:

ow=3w; + 0wy =0 (2.45)

with the virtual work due to the internal and external forces given respectively as:

8w,:j _[ J‘ ((5”58”+6226822+6128812+
oy JdoyJog (2.46)

++0,30¢,3 +6,30¢,;) ABdo,da,do;,

Ssz—j j (q,0u+q,0v+q;0w) ABdo,da,, (2.47)
Oy o0z

with q;, g, and g; being the distributed loads.
The principle of virtual work when applied to the present study results in
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h/2
LIRACY)

0 0 2
_(‘118“ +q,0v+ q38w)] ABdo,do, = J-al J-az [NHSE-:(”) + MUSK(”) + PHSK(”) + (2.48)

0 0 2 0 0 2 0
+N 2258(22) +M 226‘((22) + 1)225‘((22) +N 1263(12) +M 128‘((12) + PJzSKSz) + Q1358(13) +
Substituting the strain field components in Eq.(2.13) into Eq.(2.48) and with the displacement gradients

integrated by parts, the governing equations of static equilibrium are obtained from the resulting expression
by setting the coefficients of variations du , v, dw,d@; and 3¢, to zero separately:
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50, : a(MzzA)_c a(PZ?A)_M 04 +a(MUB)+M o5 +C,P a—A+
00, D 9o, Moa,  oay Foa, T o0, (2.53)
Jd(P,B |
_CI%_clgla_B—QﬁAB+C2R23AB=O
o, da,

where C,; =4/3h2 and C, :4/h2 .
3. Application of the higher-order theory to axisymmetric circular cylindrical shell of revolution
Now let us cast the system of equations generated into a form appropriate for circular cylindrical shells

of revolution.
The fundamental form of the reference surface is given by Soedel [13] as:

(ds)’ =(dx)’ +a’ (d6)’ 3.1)
with its Lame parameters upon comparison with the expression in Eq.(2.1) obtained as

A=1, B =a=const., with o; =x, o, =0,
3.2)
R/=R =0, Ry=Ry=a=const, 1/R, =0.

Note: the subscripts 7, 2, 3 are replaced by x,0 and z, respectively.

3.1. Governing differential equations of static equilibrium for circular cylindrical shell

The substitution of Eq.(3.2) into the equations of equilibrium, Eqs (2.49)-(2.53), results in the
governing partial differential equations of static equilibrium for circular cylindrical shells of revolution.

AN, 10N,
x4 - X tg.=0, 33
ox a 00 1 G
N, 13Ny
w0 10N, 3.4
ox a d0 7o G
2 2 2
of I P;“ _ Noo +C, I Peei+2C1 Iho !,
O a 00° 4° 0xd0 a (3.5)
+ anz _ C2 asz +iaQez _ C2 aROz i_+_ q,= 0,
ox ox a d9 d0 a
oM oP 1 oM, 0Py, 1
x o P (T 0 o o 7 +C,R._ =0, 3.6
ox "ox a 99 190 a O + 3R (36)
aMxe_cl aPGeiJriaMee—c ane—QeZ+C2ROZ:0. (3.7)

ox 09 a a 090 T ox
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3.2. Strain components

The strain components for an axisymmetric circular cylindrical shell of revolution are obtained by the
substitution of Eq.(3.2) into the strain components, Eq.(2.13)

s;?:a—”, K0 = a(Px’ = _c, 99, a_W , gg%):i(ﬁer}
ox ox ox ax2 al\d
(0190 o 109, 1 32_W g0y _10u ov
Koo a 00’ Koo 4 89 a’ 96 ® 00 ox’
L0 _ 199, 99y 2 -_¢, 109, 99y 2 9’w (3.8)
Ko a 00  ox K0 a 00  Oox aoxdo
ow ow
) _ (1) _
€, =0, +—, K, =—C,| ¢, +—
a2 o)
] ow 1 ow
0) _ D =—C, [ gy + L2
Sez (Pe ae 0z 2 ((pe aej

3.3. Elastic laws

The stress resultant — displacement relations (elastic laws) for the circular cylindrical shell are obtained
by the substitution of the strain components Eq.(3.8) into Eqs (2.21)-(2.33).

N, =K|Z EN (aij : (3.9)
ax 00
[ ou av
Ngg=K|u—+— 3.10
00 _M8x+ [86+ ﬂ (3.10)
Nxe=K(1_“)[lau i} G.11)
2 add ox
r 2 2
M, =D a&+ﬁa&}—cm 99y W W[ TOwW | (3.12)
| Ox a 099 ox  ox? 00 a0’
[ 9p, 1 a(pe} 00, °w)| 1[0y 10°w
My =D n x4 2% | o p x  CWI I P TT W 3.13
00 _u ox a 00 ks ox  ox’ ) al 00 a 90° (3-13)
2
Mxe:D(I_M)lia(p9+ia(px:|_C1 F(]_M) ia(Px+a(Pe +£a w , (314)
2 ox a 00 2 a 00 dx a dxdb
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2 2
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3.4. Equations of static equilibrium expressed in terms of displacements

By using the stress resultant — displacement relations Eqs (3.9)-(3.21), the static equations of
equilibrium Eqs (3.3)-(3.7) are expressed in terms of the displacements u, v, w, @, and @ as follows:

2 _ 2 2 2
8_u+(1 ],Lja u+(1+uj 0“v +E8_w=_qx(1 u ), (3.22)
ox’ 2a° )00’ 2a° )000x a ox Eh

2 2 2 2
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60 | ox00’ 4’ 00x’ a 252 | ox0®? a° 000x’ a o’ 0x’08’
2 2
+4(]—|.L) a(pX+8 w+ia(pe +L8 w _(Li_'_i_i_ga_uj_’_
15 ox ax2 a 00 a2 892 a2 09 a2 a ox
2( 13 3 2 3 4 3 4 2
+h_[8<px+g8<peJ_h (atpx+8w+u8<pe LB j:_qz(l 9]

(3.24)

60| o a0’ | 252\ o ox’ a o0’ a’ 96°0x° Eh
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2 2 2 2 2 3 2 3
h_{a<px+g8<peJ_h_(28(px+8w+2_u8<pe+iBW}

120 9x? a000x | 60\ o9 o9’ @ 000x a’ 90°9x
2 2 3 2 3 2 2 2
+h B(pxaw+E8(pe+£aw +h(1—u) iB(pX+8(p9+
2520 ax? 9x° a 009x &’ 90°x 24a | a 96° 000x (3.25)
25
Ri-w(20%, ey 2 Iw | KU-w(1dg, ¢
- — +2 +— + — +
120a | a 90° 000x a 96°%0x 504a \a 96° 000x
3 —
L2 I’w | 4U “)(cpﬁa—wj:a
a 96°0x 15 ox
2 2 2 2 2 3 2 3
h E)QX+1E)(p9_h ZHE)(pX+ 8w+£a(pe+iaw+
12a|" 0x00 a 96° | 60a X0  Ix%00 a 90° 4’ 90’
2 2 3 2 3 2 2 2
h uach+ 8w+18(p9+iaw+h(]—u) iH(pX+8(p9+
252a| o0x00  9x%90 a 96° 4’ 98° 24 a ox00  9x’ (3.26)

2 2 2 3 2 2 2
_KU-W[2079,  ,079g 2 Ow | KU 1070, gy
120 | a 000x o’ a 909X’ 504 | ad0dx ox?

3 —
)
a 900x’ 15 00 a

3.5. Solution for a circular cylindrical shell of revolution with simply supported ends

Consider a circular cylindrical shell under the influence of external loading with the ends simply
supported at its edges. The imposed boundary conditions at ends x =0, x=/ are:

N,=M_ =P _=v=w=0. (4.1)

If the applied load is expanded in a Fourier series given as:

I~ . mmx
q,= z qun cosn0 smT, q,=q9=0. 4.2)
m n
Uniform and sinusoidal loads are to be considered:

— with the cylinder filled to capacity (Fig. 2), the coefficients are given as [16]:

4qd 4qa
Gn =0,  Gpo=——, G =—— (m=1,3,.....),
mT mT

— sinusoidal loading

. mMTX
qz=qcosnesmmT, and m=1, n=4 and q14=9 -
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Fig.2. A circular cylinder filled to capacity [16].

The Navier type solutions are introduced as

u= iiAmn cos @cos no,

w= ZZ sin —cos no ,

Z ZDmn cos m—cos no ,

m=1n=0

Qg = z ZEmn sm—sm no .

m=1n=0

4.3)

4.4

(4.5)

(4.6)

4.7

Substitution of Eqs (4.3)-(4.7) into the boundary conditions Eq.(4.1), results in the boundary conditions

being satisfied by the adopted displacement functions at ends x=0, x=1.

Substituting Egs (4.3)-(4.7) into the equation of equilibrium Eqs (3.22)-(3.26) results in the following form:

_Yu Yo Y3 0 0 Ay g

;i Yy Yy 0 0 B, -2
Y5 Yo Yi3 Yiy Y35 3G, = _% :
0 0 Yy Yy Y5 || Dy 0

10 0 Ys3 Ysq Yss |(Epn 0

(4.8)
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The coefficients of the matrix Yl-j(i, j=1,2,..,5 ) are given below:
mm )’ 1—p mm I+ W mm
Y, =—|| —| +n’ ,  Y,=Y,,=n— , Y=Y, ==,
11 ( ] j d 12 =121 I 24 B3=h =
2 2
1-u( mn n
Y, =—| —5| ==+ |, Yy =Y,=——,
22 { P [l) ag:l 23 =132 e
v _ _4d-W)|(mn no |1 W (mm 4_ W’ n4_ w (mn\ n’
33 15 ! | 2 25201 2524% 12601 ) &*°
I 2 3 2
vy, =1, =AU mm 4 (m_’tj pomm 9)
15 1 315\ 1 a’ 1
4(I-w) n a2 (mnYn o’
Yy5 =Yy = L | g
15 a 315 / a aq
Y —__4(1‘“)__17’12(m_njz_”hz(f—mﬁ _y, A7
“ 15 3151 630 4°’ PP 630 a1 ’
y _4U-w 7R R 7R - m_n)z
? 15 315 4° 630 1)
From the above coefficients Y[-j (i, j=1,2,...5 ) one can easily see that the matrix, Eq.(4.8), is a symmetric

one, which points to the displacement being symmetric upholding Maxwell-Betti’s theorem of reciprocity.

4. Results and discussion

The results obtained for the displacements and stresses are presented for the present solution which
accounts for the transverse shear deformation. Comparison is made to the results obtained from the Kirchhoff
— Love first approximation shell theory mostly known as the classical shell theory (CST) which ignores the
transverse shear effects, for selected values of the mean-radius of curvature to thickness ratios S=a/#h at
varying shell length to mean-radius of curvature // a ratios. The CST numerical results were generated based

on the first approximation shell equations presented in the work of Soedel [13].

Case 1: Consider a simply supported cylindrical tank of elastic modulus E filled with liquid of specific weight
v to capacity (uniformly distributed loading) using the first few terms m= 1, 3, 5 and n= 0, I for selected

values of the mean radius to thickness ratio S = a/ . The maximum transverse deflection, axial and tangential
stresses are determined using the following parameters: a=d =50cm, [=25cm, W=0.3. The results are

presented in terms of the following non - dimensional definitions as in Eq.(5.1)
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— (10EW — (100 — (10#?
w= |V o, = 7 O Cg = > |Og- (5.1
Ya Ya Ya

The maximum values of the transverse deflection and internal force resultants are obtained at x=17//2, 0=0.
Table 1 presents the maximum deflection for the shell subjected to uniformly distributed loading
(UDL). It can be observed that both theories have identical results with very little percentage variations for
shells classified as thin S = 20 . The difference in variations, however, becomes comparatively more significant
with the continuous decrease in values of S (thicker shells). For cylindrical shells subjected to UDL within
the range 20> S >4, the percentage variations in transverse deflection are within 6.5% and 58% for the
moderately thick case (S =70) and very thick case (S =4), respectively, with the shell length to mean-radius

of curvature ratio //a=0.5.

Table 1. Non-dimensional results for the maximum deflection, axial and tangential stresses for a simply
supported circular cylindrical tank filled to capacity (UDL) for //a=0.5.

W . (05=h/2) o0 =h/2)
S Present | CST % A Present CST % A Present CST % A
study study study
100.00 | 0.1115 | 0.1115 0.5163 0.5070 | +1.836 | 10.9713 | 10.9720 | -0.006

83.33 | 0.1637 | 0.1638 | -0.058 1.1668 1.1563 | +0.907 | 13.5997 | 13.6046 | -0.036

71.43 | 0.2257 | 0.2259 | -0.081 2.1362 2.1277 | +0.400 | 16.3171 | 16.3277 | -0.065

62.50 | 0.2969 | 0.2972 | -0.099 3.3923 3.3896 | +0.080 | 19.0826 | 19.1003 | -0.093

55.56 | 0.3768 | 0.3773 | -0.110 4.9018 4.9090 | -0.147 | 21.8672 | 21.8930 | -0.118

50.00 | 0.4648 | 0.4653 | -0.118 6.6342 6.6560 | -0.328 | 24.6496 | 24.6842 | -0.140

25.00 | 1.6542 | 1.6523 | +0.115 | 31.4798 | 31.9541 | -1.480 | 50.0178 | 50.1221 | -0.208

20.00 | 23519 | 2.3404 | +0.495 | 45.9798 | 46.8953 | -1.952 | 60.0660 | 60.1293 | -0.105

16.67 | 3.0509 | 3.0177 | +1.100 | 60.1751 | 61.6255 | -2.354 | 68.1957 | 68.1138 | +0.121

12.50 | 4.3568 | 4.2275 | +3.060 | 85.3792 | 87.9360 | -2.910 | 79.5654 | 78.7955 | +0.976

10.00 | 5.4997 | 5.1860 | +6.050 | 105.3820 | 108.7640 | -3.110 | 86.3211 | §4.3300 | +2.360

7.14 74263 | 6.4581 | +15.000 | 132.8155 | 136.3670 | -2.604 | 92.9706 | 87.3552 | +6.420

5.00 | 10.0393 | 7.4243 | +35.221 | 156.9600 | 157.2800 | -0.198 | 97.7240 | 85.1080 | +14.830

4.00 | 12.3634 | 7.8292 | +57.908 | 170.8750 | 166.0212 | +2.920 | 101.3390 | 82.1814 | +23.311

Case 2: Consider a simply supported circular cylindrical shell with elastic modulus £ under the
influence of external sinusoidal transverse surface load ¢ for the fundamental mode m =1 and n=4 as found

in works of (Di and Rothert, [8]; Amabili and Reddy, [17]). The displacements and stresses are determined for
the selected length to mean radius of curvature ratios //a using the following parameters: a =d = 50cm ;
[=25¢m, 125¢m, 250cm and 500cm ;u=0.3.

The results are presented in terms of non-dimensional definitions as given in Di and Rothert [8] as

follows;
— (10EW . mmx - [ 10EW’ mmx
w= 7 |v cosnBsin— |, u= T | cosnbcos— |,
qa ) qa l
- [ 10ER? . mmx — [ 10K° . mmx
V= 3 |v /| cosnBsin—— |, c,= 5 |Ox /| cosnBsin—— |,
qa ) qa [

(5.2)
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— [ 10m° . mmx — [ 10m° : mmx
Gg=|—— |Og /| cOsSnBsin—— |, O, = 7 |Oxe /| SiNNOCOS—— |,
qa l qa /
(cont.5.2)
10h [ mnxj 10h ( . . MTX j
6,,=|— |0, /|cosnBcos—— |, Oy, =| — |0y, /|sinnOsin—— | .
qa l qa /

Tables 2, 3, 4 and 5 show the non-dimensional displacements for the shell subjected to sinusoidal
distributed loading (SDL) with varying length to mean radius of curvature ratios //a=0.5, 2.5, 5 and 10 for

selected values of S. The results obtained likewise point to significant variations in obtained results of the
displacements for the moderately thick to very thick case (S=10, 4). However, it is observed that

discrepancies in results become less significant with a continuous increase in the ratios //a, with variations
in displacements for the very thick case S§=4 recorded within 93%, 32%, 30% and 29% for
[/a=0.5, 2.5, 5 and 10, respectively.

Table 2. Non-dimensional displacements v_v, u and v fora simply supported circular cylindrical shell under

sinusoidal loading (SDL) for //a=0.5.

w u A%
S Present CST % A Present CST % A Present CST % A
Study study study
100 | 0.00187 | 0.00187 -0.00159 | -0.00159 -0.02597 | -0.02597
20 | 0.02111 | 0.02064 | +2.277 | -0.00358 | -0.00351 | +1.994 | -0.05861 | -0.05731 | +2.268
10 | 0.03401 | 0.03008 | +13.065 | -0.00289 | -0.00255 | +13.330 | -0.04721 | -0.04175 | +13.077
4 0.06644 | 0.03449 | +92.636 | -0.00225 | -0.00117 | +92.308 | -0.03688 | -0.01915 | +92.584

Table 3. Non-dimensional displacements w, u and v for a simply supported circular cylindrical shell under
sinusoidal loading (SDL) for //a=2.5.

w u v
S Present CST % A Present CST % A Present CST % A
Study study study
100 | 0.0903 0.09166 | -1.484 -0.57012 | -0.57861 | -1.467 -2.2946 -2.32922 | -1.486
20 | 0.32004 | 0.31715 | +0.911 -0.40414 | -0.40040 | +0.934 | -1.62656 | -1.61184 | +0.913
10 | 0.36010 | 0.34356 | +4.814 -0.22736 | -0.21687 | +4.837 | -0.91506 | -0.87302 | +4.815
4 0.46106 | 0.35177 | +31.069 | -0.11645 | -0.08882 | +31.108 | -0.46863 | -0.35755 | +31.067

Table 4. Non-dimensional displacements w, u and v for a simply supported circular cylindrical shell under
sinusoidal loading (SDL) for //a=5.

w u A%
S Present CST % A Present CST % A Present CST % A
Study study study
100 | 0.32876 | 0.32912 | -0.109 -1.22050 | -1.22230 | -0.147 -8.27210 | -8.28119 | -0.110
20 | 0.40712 | 0.40250 | +1.148 | -0.3023 -0.29900 | +1.104 | -2.04875 | -2.02553 | +1.146
10 | 0.42422 | 0.40532 | +4.663 | -0.15750 | -0.15053 | +4.630 | -1.06742 | -1.01987 | +4.662
4 | 0.52452 | 0.40612 | +29.154 | -0.0779 -0.06033 | +29.123 | -0.52788 | -0.40875 | +29.145
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Further observation of these discrepancies through varying length to radius of curvature ratios, points
to a lessening of its severity with increasing length to radius ratios from //a=0.5 — 10. An examination of
the non-dimensional out of plane displacements (deflection) through the varying // a ratios shows a continual
increase in the transverse deflection as the shell length increases for same values of S. This behavior can be
associated with that of an elastic beam in which deflection is proportional to its span with its distributed
loading, inertia and other material properties remaining constant.

Table 5. Non-dimensional displacements w, u and v for a simply supported circular cylindrical shell under

sinusoidal loading (SDL) for //a=10.

w

u v
S | Present CST % A Present CST % A Present CST % A
Study study study
100 | 0.41515 | 0.41463 | +0.113 | -0.80365 | -0.80276 | +0.111 | -10.39740 | -10.38559 | +0.114
20 | 0.42591 | 0.42108 | +1.147 | -0.16490 | -0.16303 | +1.148 | -2.13336 -2.10916 | +1.148
10 | 0.44063 | 0.42128 | +4.593 | -0.08530 | -0.08155 | +4.593 -1.10354 -1.05509 | +4.592
4 | 0.54202 | 0.42134 | +28.643 | -0.04197 | -0.03263 | +28.624 | -0.54300 -0.42209 | +28.646

o,,

supported circular cylindrical shell under sinusoidal loading (SDL) for [/ a=0.5.

Table 6. Non-dimensional in-plane normal stresses G_e and in-plane shearing stress G_xe for a simply

o, (0; =£h/2) o (013 =+h/2) Oy (003 =+1/2)
S Present CST % A Present CST % A Present CST % A
Study Study study
100 | 0.08382 0.08393 -0.131 0.12331 | 0.12336 | -0.041 | -0.04227 -0.04222 | +0.118
-0.00702 | -0.00712 | -1.404 0.06618 | 0.06611 | +0.106 | -0.07836 -0.07840 | -0.051
20 | 0.58361 0.58718 -0.608 0.52633 | 0.52504 | +0.246 | 0.06132 0.06650 | -7.789
-0.41029 | -0.41764 | -1.760 -0.09867 | -0.10682 | -7.630 | -0.33358 -0.33273 | +0.255
10 | 0.80262 0.79372 +1.121 0.63307 | 0.61261 | +3.340 | 0.18150 0.19386 | -6.376
-0.66300 | -0.67022 | -1.077 -0.28856 | -0.30796 | -6.300 | -0.40083 -0.38780 | +3.360
4 1.00381 0.86769 +715.688 | 0.73181 | 0.59769 | +22.44 | 0.29163 0.2890 +0.910
-0.89469 | -0.81100 +10.319 | -0.46254 | -45794 +1.004 | -0.46294 -0.37800 | +22.471

The results of the non-dimensional in-plane normal and shearing stresses for the case of a UDL and
SDL are presented in Tabs 1, 6, 7, 8 and 9. From the results obtained, it is realized that the variations in stresses
are more subtle than these shown by the displacements, with percentage variations obtained for the very thick

case (S=4) within 24%, 7%, 6% and 5% for //a=0.5, 2.5, 5 and 10, respectively. However, for the

moderately thick case S =10, variations in stresses are obtained within 7%, 2%, 1% and 0.8% for [/ a=0.5,
2.5, 5 and 10, respectively, highlighting the ability of CST to estimate the in-plane normal and shearing stresses
in thin to moderately thick shells within the engineering admissible error of 5% for // a ratios within 2.5 — /0.

Generally, one can see that a rise in the shell’s bending deformation as a consequence of an increase
in the shell’s length to mean-radius of curvature ratios // a, results in diminishing transverse shearing effects
on the displacements and stresses for same values of mean-radius to thickness ratios S'. However the classical
(first approximation) shell theory ultimately fails to predict acceptable values of the displacements even at
sufficiently high //a ratios in thick shells due to the neglect of the transverse shear effects.
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Table 7. Non-dimensional in-plane normal stresses o,

X

supported circular cylindrical shell under sinusoidal loading (SDL) for //a=2.5.

G_e and in-plane shearing stress G_xe for a simply

. (03 =%h/2) g (03 =£h/2) C.o(0; =£h/2)
S Present CST % A Present CST % A Present CST % A
Study study study

100 | 1.05448 | 1.07076 | -1.520 0.88925 0.90396 -1.627 -0.05760 | -0.05836 | -1.302
0.42225 | 0.42803 | -1.350 -0.74352 | -0.75584 | -1.630 -0.40631 | -0.41287 | -1.589

20 | 1.63269 | 1.63051 +0.134 | 2.91646 2.92273 -0.215 0.44741 | 0.45028 | -0.637
-0.58590 | -0.59334 | -1.254 -2.81313 | -2.82023 | -0.252 -0.77625 | -0.77636 | -0.014

10 | 1.50570 | 1.48543 +1.365 | 3.15633 3.13842 +0.571 0.57538 | 0.57608 | -0.122
-0.91646 | -0.92362 | -0.775 -3.09819 | -3.08279 | +0.500 -0.76040 | -0.75269 | +1.024
4 | 1.43956 | 1.34831 +6.768 | 3.33913 3.19625 +4.470 0.66444 | 0.64406 | +3.164
-1.13788 | -1.11825 | +1.755 | -3.30906 | -3.17375 | +4.263 -0.75919 | -0.71644 | +5.967

Table 8. Non-dimensional in-plane normal stresses

)

X

supported circular cylindrical shell under sinusoidal loading (SDL) for [/a=35.

G_e and in-plane shearing stress G_xe for a simply

o, (03 =%h/2) o (03 =%h/2) (03 =24/2)
S Present CST % A Present CST % A Present CST % A
Study study study

100 1.70995 1.71340 | -0.201 2.92732 | 2.93453 -0.246 | 0.19606 | 0.19741 -0.684
-0.16465 | -0.16589 | -0.747 -2.88919 | -2.89655 | -0.254 | -0.43880 | -0.43904 | -0.055

20 1.34132 1.33841 +0.217 | 3.57282 | 3.57025 +0.072 | 0.35939 | 0.35963 | -0.067
-0.95859 | -0.95990 | -1.760 -3.56336 | -3.56097 | +0.067 | -0.41951 | -0.41873 | +0.186

10 1.26453 1.25251 +0.960 | 3.61674 | 3.59297 | +0.662 | 0.37881 0.37703 +0.472
-1.06515 | -1.06193 | +0.303 | -3.61189 | -3.58829 | +0.658 | -0.41014 | -0.40679 | +0.824

4 1.26381 1.19769 +5.521 | 3.76964 | 3.59863 +4.752 | 0.40356 | 0.38675 +4.346

-1.16513 | -1.21310 | +3.908 | -3.76688 | -3.59675 | +4.730 | -0.41906 | -0.39863 | +5.125

Table 9. Non-dimensional in-plane normal stresses

)

X

supported circular cylindrical shell under sinusoidal loading (SDL) for [/ a=10.

G_e and in-plane shearing stress G_xe for a simply

o, (05 =%h/2) o (03 =%14/2) O (03 =2h/2)
S Present CST % A Present CST % A Present CST % A
Study study study

100 | 1.36913 | 1.36915 | -0.001 | 3.65388 | 3.65487 -0.027 0.18050 | 0.18059 | -0.050
-0.86319 | -.86377 | -0.067 | -3.65075 | -3.65171 | -0.026 | -0.22037 | -0.22037 | +0.001
20 1.18657 | 1.18500 | +0.132 | 3.71320 | 3.70997 | +0.087 | 0.19967 | 0.19953 | +0.070
-1.08277 | -.08236 | +0.038 | -3.71256 | -3.70933 | +0.087 | -0.20785 | -0.20761 | +0.115
10 1.16856 | 1.15990 | +0.746 | 3.73608 | 3.71161 +0.659 | 0.20291 0.20165 | +0.622
-1.11486 | -.10856 | +0.569 | -3.73574 | -3.71128 | +0.659 | -0.20714 | -0.20569 | +0.705
4 1.20051 | 1.14465 | +4.880 | 3.88516 | 3.71201 +4.665 | 021217 | 0.20289 | +4.574
-1.17410 | -.12410 | +4.447 | -3.88506 | -3.71188 | +4.666 | -0.21426 | -0.20451 | +4.767
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The non-dimensional transverse shearing stresses distribution for the present study presented in
Tab.10. below depicts a parabolic (quadratic) distribution of the transverse shear stresses together with the
condition of stress free boundary surfaces satisfied. This is in agreement with the predictions of the theory of
elasticity and ensures that the need for shear correction coefficients is thereby obviated. The symmetric
distribution of the transverse shearing stresses is as a result of the assumption of symmetry in transverse shear
deformation while developing the present solution. This is done by adopting an odd function (cubic) expansion
of the in-plane displacements (i.e. Eqs (2.2) and (2.3)), where first derivatives are of the form of even functions,
hence the transverse shear symmetry about the shell middle surface.

Table 10. Thickness distribution of the non-dimensional transverse shearing stresses o, G_ez of the present

Xz ?

study for a simply supported circular cylindrical shell under sinusoidal loading for S =10.

Thickness coordinate 0,; =7/

, -2 -13 ~1/4 -1/5 -1/6 0 1/6 15 1/4 03 |12
L os o, 0 0.7815 1.0526 | 1.1781 | 1.2463 | 1.4013 | 1.2463 | 1.1781 | 1.0526 | 0.7815 | 0
a co.| 0 -0.4971 | -0.6670 | -0.7494 | -0.7927 | -0.8913 | -0.7927 | -0.7494 | -0.6670 | -0.4971 | 0
Ly Szl 0 | 05828 | 0.7849 | 0.8785 | 0.9294 | 1.0449 | 0.9294 | 0.8785 | 0.7849 | 0.5828 | 0
a co.| 0 -1.8418 | -2.4806 | -2.7765 | -2.9372 | -3.3024 | -2.9372 | -2.7765 | -2.4806 | -1.8418 | 0
125 Ox| 0 0.3206 0.4318 | 04833 | 0.5112 | 0.5748 | 0.5112 | 04833 | 0.4318 | 0.3206 | 0
a cg,| 0 -2.0301 | -2.7342 | -3.0603 | -3.2374 | -3.6400 | -3.2374 | -3.0603 | -2.7342 | -2.0301 | 0
I_ 10 o, 0 0.1628 0.2192 | 0.2454 | 0.2596 | 0.2918 | 0.2596 | 0.2454 | 0.2192 | 0.1628 | 0
a co,| 0 -2.0723 | -2.7911 | -3.1239 | -3.3047 | -3.7157 | -3.3047 | -3.1239 | -2.7911 | -2.0723 | 0

5. Conclusions

The present work accounts for the transverse shearing effect on the elastic deformation of simply
supported isotropic circular cylindrical shells under static loading by an adoption of a cubic functions
expansion of the in-plane displacements. The adopted displacement field accounts for a quadratic (parabolic)
distribution of the transverse shear through the shell thickness and satisfies the zero surface stress condition
on the top and bottom surfaces of the shell. Analytical solutions were obtained on application of the Navier
type solution to the equations governing the deformation of the cylindrical shell. Some numerical examples
were considered, evaluated and compared. The incorporation of the transverse effects on the shell’s
deformation by the present solution is found to result in higher values of the displacements in the moderately
thick and thick cylindrical shells in comparison to the Kirchhoff — Love classical theory. However, the classical
theory is found to under-predict these displacements within the engineering admissible error (5%) in
moderately thick shells with length to mean radius of curvature ratios within 2.5 — /0. The values of the in-
plane normal and shearing stresses for moderately thick shell predicted by the classical theory is in good
agreement to those predicted by the present solution for shells with length to radius of curvature ratios within
2.5—10. It is concluded that the equations obtained herein could be employed in the static flexural analysis of
the circular cylindrical shell of thin to moderate thickness to a sufficient extent.

Nomenclature

a —radius of the circular cylindrical shell
A4, B — Lame’s parameters
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E —Young’s modulus

h  —thickness of the shell
K, D, F, H - shell stiffness

I —length of shell

47, 42, q3 — distributed loads
r —thickness coefficient
R;, R, —radiiof curvature
S —mean radius of curvature to thickness ratio
w — displacements at a point (a;, a, 0) on the shell middle surface
v, w —non-dimensional displacements
U,V,W —componentsof the displacements in the orthogonal (a;, a2, a3) coordinates
z — Cartesian coordinates system
Y, - coefficients of the matrix
o, 0, 03 — orthogonal curvilinear coordinate system
vy —specific weight

Su ,dv,dw — variations of the displacements

g — strain components

6 — spherical co-ordinates
u — Poison’s ratio
o, — stress components

o, —non-dimensional stress components

©;, ¢, —rotations of normals at a3 = 0 corresponding to the a, and a; axis.
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