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In this paper, a displacement based shear deformation theory formulated on the cubic in-plane displacement 

field equation of Reddy and Liu is presented for the static bending analysis of isotropic circular cylindrical shells. 
The adopted displacement field accounts for a quadratic (parabolic) distribution of the transverse shear through the 
shell thickness as well as satisfies the need for a stress free upper and lower boundary surfaces of the shell. The 
equations of static equilibrium are obtained on application of the principle of virtual work. Numerical results of the 
bending analysis for the displacements and stresses are presented for the simply supported shell. A comparison 
made to those of the Kirchhoff-Love theory for varying shell length to mean – radius of curvature ratios, shows 
good agreement for thin shells irrespective of the shell length to radius of curvature ratio ( )/l a . The transverse 
sharing effect is found to be noticeable in the deformation of thick shells, however, this effect diminishes with a 
continuous increase in /l a  ratios.  

 
Key words: isotropic circular cylindrical shell, shear deformation theory, transverse shear, principle of virtual 

work, Kirchhoff- Love theory. 
 
1. Introduction 
 
 Shell structures are three-dimensional solids closely bounded by two arbitrary curved surfaces whose 
thickness is comparatively small in relation to its other dimensions. A good number of shell theories were 
proposed with the aim of predicting more adequately the elastic behavior of a shell in response to both static 
and dynamic loadings, with significant progress recorded thus far. Structural shells are generally classified in 
terms of their thickness to radius of curvature ratios ( )/ ih R  as thin and thick shells, with thin shells defined 
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in ratios / /ih R 1 20≤  as in Novozhilov [1]. The classical shell theories (CSTs) otherwise known as the first 
approximation shell theories are founded on the kinematic postulation of Kirchhoff-Love, where the shell is 
assumed to be thin. The Kirchhoff-Love postulation is based on the following: 

(1) straight lines lying normal to the middle surface of the shell prior to deformation remain unchanged 
after the deformation has occurred. 

(2) the stresses generated normal to the shell’s middle surface are considered negligible. 
(3) the shell is thin, with the generated displacements and strains considered small. 

 Shell theories developed upon the Kirchhoff-Love assumptions have been found to provide 
satisfactory results for shells classified as thin, irrespective of the fundamental flaw associated with the neglect 
of the transverse shear effects on the shell’s deformation as proposed by the first assumption stated above. 
However, applications of these fundamental assumptions to anisotropic composites or thick shells have 
resulted in erroneous results in displacements, frequencies of vibrations, buckling loads and stresses. With this 
in mind other categories of structural shell theories have been developed to arrest these shortcomings. The first 
order shear deformation theories (FSDTs) founded on Mindlin’s postulation attempted to address this issue, 
by accounting for shear deformation through the relaxing of the assumption associated with the preservation 
of the normals to the middle surface. Mindlin [2] achieved this by further suggesting that these normals indeed 
remain straight, however are not necessarily normal to the deformed middle surface. These shell theories based 
on Mindlin hypothesis have been found to result in quite satisfactory outcomes regarding the prediction of the 
state of stress within thin and moderately thick shells. However, they have been shown to be inadequate for 
proper estimation of the transverse shear distribution. A limitation which arose was the need for transverse 
shear correction coefficients to account for its erring constant distribution of the transverse shear as opposed 
to the parabolic distribution predicted by the theory of elasticity. Due to this unfortunate drawback associated 
with the FSDTs an additional category of shell theories emerged known as the higher order shear deformation 
theories (HSDTs). These shell theories are not restricted to using only linear terms, but second and higher order 
terms are expanded as functions of the shell’s thickness coordinate, with the out-of-plane displacement 
(deflection) assumed to be constant through the shell’s thickness. This assumption of constant deflection is 
equivalent to the neglect of the stretching of the normals ensuring that the shell deformation problem remains 
a two dimensional one [3, 4]. 
 Reddy [5] applied the FSDT to analyze the deflection and vibrational frequencies of doubly curved 
laminated shells using two sets of transverse shear correction coefficients to examine their influence on the 
fundamental frequencies. Quite remarkable discoveries were documented with the selection of these shear 
correction factors proven to grossly affect the accuracy of the FSDT. Soldatos [6] employed the FSDT to the free 
vibrational analysis of isotropic cylindrical shells of oval cross section with the value of the shear correction 
coefficient proposed by Mindlin. The HSDTs have been able to overcome the challenge associated with the use 
of shear correction factors by adopting displacement fields of cubic and higher order functions, which accounts 
for a more accurate quadratic distribution of the transverse shear with the stress free surface boundary condition 
also met. These higher order theories involve those proposed in Reddy and Liu [7] for studying the shear 
deformation of laminated shells of orthotropic layers as applied in [6, 8, 9] to study the shear deformation of non-
circular cylindrical, laminated anisotropic and symmetric laminated shells. Recent work by Vuong and Duc [10], 
applied these theories the analytical investigation on buckling and post-buckling of shear deformable sandwich 
toroidal shell segments with functionally graded core and homogeneous face sheets. 
 The present study however investigated the transverse shearing effects on the static bending behavior of 
isotropic circular cylindrical shells based on the third order displacement field of Reddy and Liu. Hence, the 
present solution is unaffected by the challenges associated with the use of transverse shear correction factors. 
 
2. Theoretical formulation 
 

The present work is an extension of the shear deformation theory developed by Reddy and Liu [7] for 
doubly curved laminated composites to the static bending problem of an elastic isotropic circular cylindrical 
shell. The solution is formulated upon a cubic function expansion of the in-plane displacement field together 
with a constant through thickness deflection. The fundamental assumptions of the present work would mostly 
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retain the classical theory assumptions with its only deviation being the adoption of a parabolic distribution of 
the transverse shearing stresses, together with the satisfaction of the zero stress surface conditions. The shell 
thickness is to be considered small enough in comparison to the radii of curvature (i.e / ih R 1<< ) with the 
material considered homogenous, isotropic and obeying Hooke’s law. The equation of kinematics (strain field) 
is to be obtained upon substitution of the displacement field into the known strain – displacement relations for 
a shell in an orthogonal curvilinear coordinate system. The stress field is obtained upon consideration of the 
strain field and the known material stress – strain laws. The governing differential equations of equilibrium 
associated with the adopted displacement field would then be obtained using the principle of virtual work.  
 Let ( ), ,1 2 3α α α  be introduced as an orthogonal curvilinear coordinate system as depicted in Fig.1., such 
that ( ),1 2α α  are parametric lines of the curvature lying in the middle surface 3 0α ≈  of the shell. The infinitesimal 
distance between two points on the shell’s middle surface as in Ventsel and Krauthammer [11] is given as:  
 
  ( )2 2 2 2 2

1 2ds A d B d= α + α  (2.1) 
 
where Eq.(2.1) is known as the fundamental form and the quantities A  and B  are the fundamental form 
parameters or Lame’s parameters. 

 
 

Fig.1. Differential element of a shell. 
 

2.1. Kinematics 
 
 The assumed displacement field is in the form as given by Reddy and Liu [7] 
 

  ( )1 2 3, ,  
3

3 3
3 1 12

1 1

4 1 wU 1 u
R A3h

   α α ∂α α α = + + α ϕ − ϕ +   ∂α   
, (2.2) 

 

  ( )1 2 3, ,
3

3 3
3 2 22

2 2

4 1 wV 1 v
R B3h

   α α ∂α α α = + + α ϕ − ϕ +   ∂α   
, (2.3) 

 
  ( ), ,  1 2W 0 wα α =  (2.4) 
 
where ( ), ,U V W  are the components of the displacements in the orthogonal ( ), ,1 32α α α  coordinates, 

( ), ,u v w  are the displacements at a point ( ), ,1 2 0α α  on the shell middle surface, ( ),1 2ϕ ϕ  are the rotations 
of normals at 3 0α =  corresponding to the 2α  and 1α  axis while 3α  is the thickness coordinate. 
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 In Eqs (2.2) and (2.3) the cubic form of the in- plane displacements provides a parabolic (quadratic) 
distribution of the transverse shear through the shells thickness and is found to result in zero transverse shear strains 
at the upper and lower surfaces of the shell (1.e 3 h 2α = ± ), hence satisfying the stress free surface requirement. 
 The known strain – displacement relations for a shell in the orthogonal curvilinear coordinate system 
as in Viola et al. [12] with the modifications to the transverse shear strains by Reddy and Liu [7] incorporated, 
are given as follows: 
 

  
/11

3 1 1 2 1

1 1 U V A W
1 R A AB R

 ∂ ∂ε = + +  + α ∂α ∂α 
, (2.5) 

 

  
/22

3 2 2 1 2

1 1 V U B W
1 R B AB R

 ∂ ∂ε = + +  + α ∂α ∂α 
, (2.6) 

 

  
/ /12

3 1 1 2 3 2 2 1

1 1 V U A 1 1 U V B
1 R A AB 1 R B AB

   ∂ ∂ ∂ ∂ε = − + −      + α ∂α ∂α + α ∂α ∂α   
, (2.7) 

 

  
/13

3 1 1 1 3

1 1 W u U
1 R A R

 ∂ ∂ε = − +  + α ∂α ∂α 
, (2.8) 

 

  
/23

3 2 2 2 3

1 1 W v V
1 R B R

 ∂ ∂ε = − +  + α ∂α ∂α 
, (2.9) 

 

  33
3

W∂ε =
∂α

. (2.10) 

 
 The assumption associated with the shell thickness / ih R 1<<  makes it necessary to drop the following 
terms 3 iR 1α << . This assumption also makes possible the neglect of the normal strain effect ( )33 0ε =  
together with the normal stress effect ( )33 0σ = . According to Amabili and Reddy [4], the normal stress has 
been verfied to be small when compared to the transverse shear stresses, except near the edges of the shell. 
Hence the plane stress assumption ( )33 0σ =  is a good approximation of the stress state in a moderately thick 

shell, to which the following thickness to radius of curvature ratios are valid  
i

1 h 1
100 R 10

≤ ≤ . 

 The strain displacements relations for the shell problem are obtained upon substitution of the displacement 
field Eqs (2.2)-(2.4) into the kinematic relations Eqs (2.5)-(2.9). The strain field is obtained as follows: 
 

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 2
11 11 1111
0 0 23

22 3 322 22 22
0 0 212 12 12 12

     ε κ κε              ε = ε + α κ + α κ       
       ε  ε κ κ          

, (2.11) 

 

  
( ) ( )

( ) ( )

0 1
13 13 132

30 123 23 23

   ε κε     = + α     ε ε κ        
 (2.12) 
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with the strain components given below as 
 

  ( )0
11

1 2 1

1 u v A w
A AB R

∂ ∂ε = + +
∂α ∂α

,        ( )0 1 2
11

1 2

1 A
A AB

∂ϕ ϕ ∂κ = +
∂α ∂α

, 

 

  ( )2 1 2
11 2

1 2 2 2 1 1

4 1 1 A 1 w A 1 1 w
A AB B AB A A3h

  ∂ϕ ∂ ∂ ϕ ∂ ∂ ∂κ = − + + +  ∂α ∂α ∂α ∂α ∂α ∂α   
, 

 

  ( )0
22

2 1 2

1 v u B w
B AB R

∂ ∂ε = + +
∂α ∂α

,        ( )0 2 1
22

2 1

1 B
B AB

∂ϕ ϕ ∂κ = +
∂α ∂α

, 

 

  ( )2 2 1
22 2

1 2 1 1 1 2 2

4 1 1 B 1 w B 1 1 w
B AB A AB B B3h

  ∂ϕ ∂ ∂ ϕ ∂ ∂ ∂κ = − + + +  ∂α ∂α ∂α ∂α ∂α ∂α   
, 

 

  ( )0
12

1 2 2 1

1 v u A 1 u v B
A AB B AB

∂ ∂ ∂ ∂ε = − + −
∂α ∂α ∂α ∂α

, (2.13) 

 

  ( )0 2 1 1 2
12

1 2 2 1

1 A 1 B
A AB B AB

∂ϕ ϕ ∂ ∂ϕ ϕ ∂κ = − + −
∂α ∂α ∂α ∂α

, 

 

  

( )

,

2 2 1
12 2

1 1 2 2 2 1

1 2

2 2 1 1 1 2

4 1 1 1 w A 1 A 1 w
A A B AB AB A3h

1 1 1 w B 1 B 1 w
B B A AB AB B

  ∂ϕ ∂ ∂ ϕ ∂ ∂ ∂κ = − + − − +  ∂α ∂α ∂α ∂α ∂α ∂α  
  ∂ϕ ∂ ∂ ϕ ∂ ∂ ∂+ + − −  ∂α ∂α ∂α ∂α ∂α ∂α  

 

 

  ( )0
13 1

1

1 w
A

∂ε =ϕ +
∂α

,        ( )1
13 12

1

4 1 w
Ah

 ∂κ = − ϕ + ∂α 
,        ( )0

23 2
2

1 w
B

∂ε =ϕ +
∂α

, 

 

  ( )1
23 22

2

4 1 w
Bh

 ∂κ = − ϕ + ∂α 
. 

 
2.2. Constitutive equations, stress field and stress resultants  
 
 The stress – strains laws for an isotropic, homogenous material as in Soedel [13] with the transverse 
normal stress taken as zero ( )33 0σ =  are given by: 
 

  ( )11 11 222
E

1
σ = ε +με

− μ
,        ( )22 22 112

E
1

σ = ε +με
− μ

,        
( )12 12

E
2 1

σ = ε
+ μ

, 

   (2.14) 

  
( )13 13

E
2 1

σ = ε
+ μ

,        
( )23 23

E
2 1

σ = ε
+ μ
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where μ  is the poisons ratio, 
( )

E
2 1+ μ

 is the shear modulus and E  is the modulus of elasticity. 

 The stress field is obtained by the substitution of the expressions of the strain field Eqs (2.11) and 
(2.12) into the constitutive laws Eq.(2.14), the expressions of the stress field may then be obtained as follows: 
 

  ( ) ( ) ( ) ( ) ( ) ( )( ) ( )0 0 0 0 2 23
11 3 311 22 11 22 11 222

E
1

 σ = ε + με + α κ + μκ + α κ + μκ − μ
, (2.15) 

 

  ( ) ( ) ( ) ( ) ( ) ( )( ) ( )0 0 0 0 2 23
22 3 322 11 22 11 22 112

E
1

 σ = ε + με + α κ + μκ + α κ + μκ − μ
, (2.16) 

 

  
( )

( ) ( ) ( )0 0 23
12 3 312 12 12

E
2 1

 σ = ε + α κ + α κ + μ
, (2.17) 

 

  
( )

( ) ( )0 12
13 313 13

E
2 1

 σ = ε + α κ + μ
, (2.18) 

 

  
( )

( ) ( )0 12
23 323 23

E
2 1

 σ = ε + α κ + μ
. (2.19) 

 
The expression of the stress resultants are obtained by the following integrals of the stress fields:  
 

  ( ) ( )/

/
, , , ,

h 2 3
11 11 11 11 3 3 3h 2

N M P 1 d
−

= σ α α α ,      ( ) ( )/

/
, , , ,

h 2 3
12 12 12 12 3 3 3h 2

N M P 1 d
−

= σ α α α , 
 

  ( ) ( )/

/
, , , ,

h 2 3
22 22 22 22 3 3 3h 2

N M P 1 d
−

= σ α α α ,      ( ) ( )/

/
, ,

h 2 2
13 13 13 3 3h 2

Q R 1 d
−

= σ α α , (2.20) 
 

  ( ) ( )/

/
, ,

h 2 2
23 23 23 3 3h 2

Q R 1 d
−

= σ α α   

 
where N , M , P , Q , R  are the stress resultants. 
 By substitution of the stress fields, into Eq.(2.20) and performing the integration, the expressions of 
the stress resultants are then obtained as follows: 
 
  ( )( ) ( )0 0

11 11 22N K= ε +με , (2.21) 
 

  ( )( ) ( )0 0
22 22 11N K= ε +με , (2.22) 

 

  ( ) ( )0
12 12

K 1
N

2
− μ

= ε , (2.23) 

 

  ( ) ( )( ) ( ) ( ) ( )0 0 2 2
11 11 22 11 22M D F= κ +μκ + κ +μκ , (2.24) 

 

  ( ) ( )( ) ( ) ( ) ( )0 0 2 2
22 22 11 22 11M D F= κ +μκ + κ +μκ , (2.25) 
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  ( ) ( )( ) ( )0 2
12 12 12

D 1 F 1
M

2 2
− μ − μ

= κ + κ , (2.26) 

 
  ( ) ( )( ) ( ) ( ) ( )0 0 2 2

11 11 22 11 22P F H= κ +μκ + κ +μκ , (2.27) 

 
  ( ) ( )( ) ( ) ( ) ( )0 0 2 2

22 22 11 22 11P F H= κ +μκ + κ +μκ , (2.28) 

 

  ( ) ( )( ) ( )0 2
12 12 12

F 1 H 1
P

2 2
− μ − μ

= κ + κ , (2.29) 

 

  ( ) ( )( ) ( )0 1
13 13 13

K 1 D 1
Q

2 2
− μ − μ

= ε + κ , (2.30) 

 

  ( ) ( )( ) ( )0 1
23 23 23

K 1 D 1
Q

2 2
− μ − μ

= ε + κ , (2.31) 

 

  ( ) ( )( ) ( )0 1
13 13 13

D 1 F 1
R

2 2
− μ − μ

= ε + κ , (2.32)  

 

  ( ) ( )( ) ( )0 1
23 23 23

D 1 F 1
R

2 2
− μ − μ

= ε + κ  (2.33) 

 
where K , D , F  and H  are the shell stiffnesses given by 
 

  , , , , , ,
3 5 7

2
E h h hK D F H h

12 80 4481

 
=  

− μ   
. (2.34) 

 
 Solving Eqs (2.21)-(2.33) for the strain components, the stress field Eqs (2.15)-(2.19) may then be 
obtained in stress resultants as follows: 
 

  311 11 11 11 11 11
11 3 32 2 2

E N M F P D M F P D M F
K D D1 HD F HD F

  − −   σ = + α − + α    − μ − −     
, (2.35) 

 

  322 22 22 22 22 22
22 3 32 2 2

E N M F P D M F P D M F
K D D1 HD F HD F

  − −   σ = + α − + α    − μ − −     
, (2.36) 

 

  
( ) ( ) ( )( )

( )( )
,

12 12 12 12
12 3 2

3 12 12
3 2

E N M F P D M F
1 K 1 D 1 D HD F 1

P D M F
HD F 1

   −   σ = + α − +   + μ − μ − μ − − μ    
 −  +α  − − μ  

 (2.37) 
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( ) ( )( ) ( )( )

213 13 13 13 13
13 32 2

Q R K Q D R K Q DE D
1 K 1 K FK D 1 FK D 1

    − −    σ = − + α    + μ − μ − − μ − − μ     

, (2.38) 

 

  
( ) ( )( ) ( )( )

,223 23 23 23 23
23 32 2

Q R K Q D R K Q DE D
1 K 1 K FK D 1 FK D 1

    − −    σ = − + α    + μ − μ − − μ − − μ     

 (2.39) 

 
with definitions of the stiffnesses given by Eq.(2.34) substituted into Eqs (2.35)-(2.39), the stress field becomes: 
 

  311 11 11 11 11
11 3 33 5 7 5

N 75M 420P 2800P 420M
h h h h h

   σ = + α − + α −   
   

, (2.40) 

 

  322 22 22 22 22
22 3 33 5 7 5

N 75M 420P 2800P 420M
h h h h h

   σ = + α − + α −   
   

, (2.41) 

 

  311 12 12 12 12
11 3 33 5 7 5

N 75M 420P 2800P 420M
h h h h h

   σ = + α − + α −   
   

, (2.42) 

 

  213 13 13 13
13 33 5 3

9Q 15R 180R 15Q
4h h h h

 σ = − + α − 
 

, (2.43) 

 

  223 23 23 23
23 33 5 3

9Q 15R 180R 15Q
4h h h h

 σ = − + α − 
 

. (2.44) 

 
2.3. Equations of static equilibrium 
 
 The principle of virtual work can be applied efficiently in deriving the equations of static problems of 
continuum as in Ibeabuchi et al. [14] and Ibearugbulem et al. [15]. This principle of virtual work is used in 
deriving the equations of equilibrium associated with the displacements field in Eqs (2.2)-(2.4). The principle 
of virtual work stated in an analytic form as in Soedel [13] can be expressed as:  
 
  I Ew w w 0δ = δ + δ =  (2.45) 
 
with the virtual work due to the internal and external forces given respectively as:  
 

  
(

) ,
1 2 3

I 11 11 22 22 12 12

13 13 23 23 1 2 3

w

ABd d d
α α α

δ = σ δε + σ δε + σ δε +

+ +σ δε + σ δε α α α

    (2.46) 

 
  ( ) ,

1 2
E 1 2 3 1 2w q u q v q w AB d d

α α
δ = − δ + δ + δ α α   (2.47) 

 
with 1q , 2q  and 3q  being the distributed loads. 
 The principle of virtual work when applied to the present study results in 
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( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

/

/1 2

1 2

h 2
11 11 22 22 12 12 13 13 23 23 3h 2

0 0 2
1 2 3 1 2 11 11 1111 11 11

0 0 2 0 0 2 0
22 22 22 12 12 12 1322 22 22 12 12 12 13

1
13 213

0 d

q u q v q w ABd d N M P

N M P N M P Q

R Q

α α −

α α

= σ δε + σ δε + σ δε + σ δε + σ δε α +
− δ + δ + δ α α = δε + δκ + δκ + 

+ δε + δκ + δκ + δε + δκ + δκ + δε +

+ δκ +

  

 

( ) ( ) .0 1
3 23 1 2 3 1 223 23R q u q v q w ABd dδε + δκ − δ − δ − δ α α

 (2.48) 

 
Substituting the strain field components in Eq.(2.13) into Eq.(2.48) and with the displacement gradients 
integrated by parts, the governing equations of static equilibrium are obtained from the resulting expression 
by setting the coefficients of variations uδ , vδ , wδ , 1δϕ  and 2δϕ  to zero separately: 
 

  ( ) ( ): 11 21
22 12 1

1 1 2 2

N B N AB Au N N q AB 0
∂ ∂∂ ∂δ − + + + =

∂α ∂α ∂α ∂α
, (2.49) 

 

  ( ) ( ): 22 12
11 21 2

2 2 1 1

N A N BA Bv N N q AB 0
∂ ∂∂ ∂δ − + + + =

∂α ∂α ∂α ∂α
, (2.50) 

 

  

w : 
2 2

11 11 11 11
1 11 1 1 12 2 2

1 2 2 2 21 2
2

11 11 11 11 11
1 1 1 1 12 2 2

1 1 1 1 1 1 11
2 2

11
1 1 11 22 12 2 2 2

21 1

P B AB P 1 A P B A P AC N C C C
A R B BB

P B P A B P B P 1 B P B AC C C C C
A A AA A

P A B A ABC B C P N C
RA A

∂ ∂ ∂ ∂ ∂ ∂δ − − + − +
∂α ∂α ∂α ∂α∂α ∂α

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ − + + − +
∂α ∂α ∂α ∂α ∂α ∂α ∂α∂α

∂ ∂ ∂− + − −
∂α ∂α

22 22
1 2

1 1 1 1
2 2

22 22 22 22 22
1 1 1 1 12 2 2

2 2 2 2 21 2
2 2 2 2

22 22 22 12
1 1 1 1 22 12 2 2 2 2 2

2 2 1 22 2 2

21
1

2

P 1 B P A BC
A A

P B P A P B A P A P 1 AC C C C C
A B B BB

P A B A P P B A B PC C C A C P 2C
BB B B

P 12C

∂ ∂ ∂+ +
∂α ∂α ∂α ∂α

∂ ∂ ∂ ∂ ∂ ∂ ∂− + − + + +
∂α ∂α ∂α ∂α ∂α∂α ∂α

∂ ∂ ∂ ∂ ∂ ∂− + − + + +
∂α ∂α ∂α ∂α∂α ∂α ∂α

∂−
∂α

( ) ( ) ( )

( ) ,

2
21 21 12

1 1 12
1 2 1 1 2 1 2

2
13 13 2312 12

1 1 22
1 2 2 1 1 1 2

23
2 3

2

B P B B P B P 1 A2C 2C 2C
B B AB

Q B R B Q AP A A P A2C 2C C
AA

R A
C q AB 0

∂ ∂ ∂ ∂ ∂ ∂+ − − +
∂α ∂α ∂α ∂α ∂α ∂α ∂α

∂ ∂ ∂∂ ∂ ∂+ − + − + +
∂α ∂α ∂α ∂α ∂α ∂α ∂α

∂
− + =

∂α

 (2.51)

  

 

  

( ) ( ) ( )

( )

:

,

11 11 21
1 1 22 12 1 22

1 1 1 2 2 1

21
1 1 12 13 2 13

2 2

M B P B M AB A BC M M C P

P A AC C P Q AB C R AB 0

∂ ∂ ∂∂ ∂ ∂δϕ − − + + + +
∂α ∂α ∂α ∂α ∂α ∂α

∂ ∂− − − + =
∂α ∂α

 (2.52) 
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( ) ( ) ( )

( )

: 22 22 12
2 1 11 21 1 11

2 2 2 1 1 2

12
1 1 21 23 2 23

1 1

M A P A M BA B AC M M C P

P B BC C P Q AB C R AB 0

∂ ∂ ∂∂ ∂ ∂δϕ − − + + + +
∂α ∂α ∂α ∂α ∂α ∂α

∂ ∂− − − + =
∂α ∂α

 (2.53) 

 
where 2

1C 4 3h=  and 2
2C 4 h= . 

 
3. Application of the higher-order theory to axisymmetric circular cylindrical shell of revolution 
 
 Now let us cast the system of equations generated into a form appropriate for circular cylindrical shells 
of revolution. 
 The fundamental form of the reference surface is given by Soedel [13] as:  
 
  ( ) ( ) ( )2 2 22ds dx a d= + θ  (3.1) 
 
with its Lame parameters upon comparison with the expression in Eq.(2.1) obtained as 
 

  
, ., with , ,

, ., / .

1 2

1 x 2 x

A 1 B a const x

R R R R a const 1 R 0θ

= = = α = α = θ

= = ∞ = = = =
 (3.2) 

 
Note: the subscripts 1, 2, 3 are replaced by x , θ  and z , respectively.  
 
3.1. Governing differential equations of static equilibrium for circular cylindrical shell 
 
 The substitution of Eq.(3.2) into the equations of equilibrium, Eqs (2.49)-(2.53), results in the 
governing partial differential equations of static equilibrium for circular cylindrical shells of revolution. 
 

  xx x
x

N N1 q 0
x a

θ∂ ∂
+ + =

∂ ∂θ
, (3.3) 

 

  xN N1 q 0
x a

θ θθ
θ

∂ ∂
+ + =

∂ ∂θ
, (3.4) 

 

  
,

2 2 2
xx x

1 1 12 2 2

xz xz z z
2 2 z

P N P P1 1C C 2C
a x ax a

Q R Q R1 1C C q 0
x x a a

θθ θθ θ

θ θ

∂ ∂ ∂
− + + +

∂ ∂θ∂ ∂θ
∂ ∂ ∂ ∂

+ − + − + =
∂ ∂ ∂θ ∂θ

 (3.5) 

 

  xx xx x x
1 1 xz 2 xz

M P M P1 1C C Q C R 0
x x a a

θ θ∂ ∂ ∂ ∂
− + − − + =

∂ ∂ ∂θ ∂θ
, (3.6) 

 

  x x
1 1 z 2 z

M P M P1 1C C Q C R 0
x a a x

θ θθ θθ θ
θ θ

∂ ∂ ∂ ∂
− + − − + =

∂ ∂θ ∂θ ∂
. (3.7) 
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3.2. Strain components  
 
 The strain components for an axisymmetric circular cylindrical shell of revolution are obtained by the 
substitution of Eq.(3.2) into the strain components, Eq.(2.13) 
 

  ( )0
xx

u
x

∂ε =
∂

,        ( )0 x
xx x

∂ϕ
κ =

∂
,        ( )

2
2 x

xx 1 2
wC

x x

 ∂ϕ ∂κ = − +  ∂ ∂ 
,        ( )0 1 v w

aθθ
∂ ε = + ∂θ 

,  

 

  ( )0 1
a

θ
θθ

∂ϕ
κ =

∂θ
,        ( )

2
2

1 2 2
1 1 wC
a a

θ
θθ

 ∂ϕ ∂κ = − +  ∂θ ∂θ 
,        ( )0

x
1 u v
a xθ

∂ ∂ε = +
∂θ ∂

, 

 

  ( )0 x
x

1
a x

θ
θ

∂ϕ ∂ϕ
κ = +

∂θ ∂
,        ( )

2
2 x

1x
1 2 wC
a x a x

θ
θ

 ∂ϕ ∂ϕ ∂κ = − + +  ∂θ ∂ ∂ ∂θ 
, (3.8) 

 

  ( )0
xz x

w
x

∂ε = ϕ +
∂

,        ( )1
xz 2 x

wC
x

∂ κ = − ϕ + ∂ 
, 

 

  ( )0
z

1 w
aθθ

∂ε = ϕ +
∂θ

,        ( )1
2z

1 wC
aθθ

∂ κ = − ϕ + ∂θ 
. 

 
3.3. Elastic laws 
 
 The stress resultant – displacement relations (elastic laws) for the circular cylindrical shell are obtained 
by the substitution of the strain components Eq.(3.8) into Eqs (2.21)-(2.33). 
 

  xx
u vN K w
x a

 ∂ μ ∂ = + +  ∂ ∂θ  
, (3.9) 

 

  u 1 vN K w
x aθθ

 ∂ ∂ = μ + +  ∂ ∂θ  
, (3.10) 

 

  ( )
x

K 1 1 u vN
2 a xθ
− μ ∂ ∂ = + ∂θ ∂ 

, (3.11) 

 

  
2 2

x x
xx 1 2 2

w 1 wM D C F
x a x a ax

θ θ
  ∂ϕ ∂ϕ ∂ϕ ∂ϕμ ∂ μ ∂ = + − + + +     ∂ ∂θ ∂ ∂θ∂ ∂θ     

, (3.12) 

 

  
2 2

x x
1 2 2

1 w 1 1 wM D C F
x a x a ax

θ θ
θθ

    ∂ϕ ∂ϕ ∂ϕ ∂ϕ∂ ∂ = μ + − μ + + +         ∂ ∂θ ∂ ∂θ∂ ∂θ       
, (3.13) 

 

  ( ) ( ) 2
x x

x 1
D 1 1 F 1 1 2 wM C

2 x a 2 a x a x
θ θ

θ
 ∂ϕ ∂ϕ ∂ϕ ∂ϕ− μ − μ ∂ = + − + +  ∂ ∂θ ∂θ ∂ ∂ ∂θ    

, (3.14) 
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2 2

x x
xx 1 2 2

w 1 wP F C H
x a x a ax

θ θ
  ∂ϕ ∂ϕ ∂ϕ ∂ϕμ ∂ μ ∂ = + − + + +     ∂ ∂θ ∂ ∂θ∂ ∂θ     

, (3.15) 

 

  ( ) ( ) 2
x x

x 1
F 1 1 H 1 1 2 wP C

2 x a 2 a x a x
θ θ

θ
 ∂ϕ ∂ϕ ∂ϕ ∂ϕ− μ − μ ∂ = + − + +  ∂ ∂θ ∂θ ∂ ∂ ∂θ    

, (3.16) 

 

  
2 2

x x
1 2 2

1 w 1 1 wP F C H
x a x a ax

θ θ
θθ

    ∂ϕ ∂ϕ ∂ϕ ∂ϕ∂ ∂ = μ + − μ + + +         ∂ ∂θ ∂ ∂θ∂ ∂θ       
, (3.17) 

 

  ( ) ( )
xz x 2 x

K 1 w D 1 wQ C
2 x 2 x
− μ ∂ − μ ∂   = ϕ + − ϕ +   ∂ ∂   

, (3.18) 

 

  ( ) ( )
z 2

K 1 1 w D 1 1 wQ C
2 a 2 aθ θ θ
− μ ∂ − μ ∂   = ϕ + − ϕ +   ∂θ ∂θ   

, (3.19) 

 

  ( ) ( )
xz x 2 x

D 1 w F 1 wR C
2 x 2 x
− μ ∂ − μ ∂   = ϕ + − ϕ +   ∂ ∂   

, (3.20) 

 

  ( ) ( )
z 2

D 1 1 w F 1 1 wR C
2 a 2 aθ θ θ
− μ ∂ − μ ∂   = ϕ + − ϕ +   ∂θ ∂θ   

. (3.21) 

 
3.4. Equations of static equilibrium expressed in terms of displacements 
 
 By using the stress resultant – displacement relations Eqs (3.9)-(3.21), the static equations of 
equilibrium Eqs (3.3)-(3.7) are expressed in terms of the displacements u , v , w , xϕ  and θϕ as follows: 
 

  ( )22 2 2
x

2 2 2 2
q 1u 1 u 1 v w

x a x Ehx 2a 2a
− μ∂ − μ ∂ + μ ∂ μ ∂   + + + = −    ∂θ∂ ∂∂ ∂θ   

, (3.22) 

 

  ( )22 2 2

2 2 2 2 2
q 1u 1 1 v 1 v 1 w

x 2 Eh2a x a a
θ − μ∂ + μ − μ ∂ ∂ ∂   + + + = −   ∂ ∂θ ∂θ∂ ∂θ   

, (3.23) 

 

  

( ) ( )

(

3 3 3 32 2 4 4
x x
2 2 3 2 2 2 2 3 3 4

3 3 3 32 2 4
x x
2 2 2 2 2 2 2 2 2

h 1 h w 1 1 w
60a a 252a a ax a x x a a

h 1 1 1 h 1 1 1 2 w
60 a 252 ax a x x a x a x

4 1

θ θ

θ θ

   ∂ ϕ ∂ ϕ ∂ ϕ ∂ ϕμ μ μ ∂ ∂+ − + + + +      ∂ ∂θ ∂θ ∂ ∂θ ∂θ ∂ ∂θ ∂θ   
   ∂ ϕ ∂ ϕ ∂ ϕ ∂ ϕ− μ − μ ∂+ + − + + +     ∂ ∂θ ∂θ∂ ∂ ∂θ ∂θ∂ ∂ ∂θ   

− μ+ )

( ) ,

2 2
x

2 2 2 2 2

3 3 3 32 2 4 4 2
x x z

3 2 3 4 2 2 2 2

w 1 1 w 1 v w u
15 x a a xx a a a

h h w w q 1
60 a 252 a Ehx x x x x a x

θ

θ θ

 ∂ϕ ∂ϕ∂ ∂ ∂ μ ∂ + + + − + + +    ∂ ∂θ ∂θ ∂∂ ∂θ   
   ∂ ϕ ∂ ϕ ∂ ϕ ∂ ϕμ ∂ μ μ ∂ − μ+ + − + + + = −      ∂ ∂θ∂ ∂ ∂ ∂θ∂ ∂θ ∂   

 (3.24) 
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( )

( )

2 2 2 22 2 3 3
x x

2 2 3 2 2

2 2 2 22 3 3 2
x x

2 3 2 2 2

2 22
x

2

h h w 2 w2
12 a x 60 a xx x x a x

h w w h 1 1
252 a x 24a a xx x a x

h 1 2 2
120a a

θ θ

θ θ

   ∂ ϕ ∂ ϕ ∂ ϕ ∂ ϕμ ∂ μ μ ∂+ − + + + +      ∂θ∂ ∂θ∂∂ ∂ ∂ ∂θ ∂   
  ∂ ϕ ∂ ϕ ∂ ϕ ∂ ϕ∂ μ μ ∂ − μ+ + + + + +    ∂θ∂ ∂θ∂∂ ∂ ∂θ ∂ ∂θ  

 ∂ ϕ ∂− μ− + ∂θ

( )

( ) ,

2 23 2
x

2 2

3

x2

2 w h 1 1
x a 504a a xx

2 w 4 1 w 0
a 15 xx

θ θ ϕ ∂ ϕ ∂ ϕ∂ − μ+ + + +  ∂θ∂ ∂θ∂∂θ ∂ ∂θ 
∂ − μ ∂ + − ϕ + =   ∂∂θ ∂  

 (3.25) 

 

  

( )

( )

2 2 2 22 2 3 3
x x

2 2 2 2 3

2 2 2 22 3 3 2
x x

2 2 2 3 2

22
x

h 1 h w 2 1 w2
12a x a 60a x ax a

h w 1 1 w h 1 1
252a x a 24 a xx a x

h 1 2
120 a x

θ θ

θ θ

   ∂ ϕ ∂ ϕ ∂ ϕ ∂ ϕ∂ ∂μ + − μ + μ + + +      ∂ ∂θ ∂ ∂θ∂θ ∂ ∂θ ∂θ ∂θ   
   ∂ ϕ ∂ ϕ ∂ ϕ ∂ ϕ∂ ∂ − μμ + μ + + + + +      ∂ ∂θ ∂ ∂θ∂ ∂θ ∂θ ∂θ ∂   

 ∂ ϕ− μ−
∂θ∂

( )

( ) .

2 2 23 2
x

2 2 2

3

2

2 w h 1 12
a 504 a xx x x

2 w 4 1 w 1 0
a 15 ax

θ θ

θ

 ∂ ϕ ∂ ϕ ∂ ϕ∂ − μ+ + + + +     ∂θ∂∂ ∂θ∂ ∂ 
∂ − μ ∂ + − ϕ + =   ∂θ∂θ∂  

 (3.26) 

 
3.5. Solution for a circular cylindrical shell of revolution with simply supported ends 
 
 Consider a circular cylindrical shell under the influence of external loading with the ends simply 
supported at its edges. The imposed boundary conditions at ends x 0= , x l=  are: 
 
  xx xx xxN M P v w 0= = = = = . (4.1) 
 
If the applied load is expanded in a Fourier series given as:  
 

  cos sin ,z mn x
m n

m xq q n q q 0
l

∞ ∞

θ
π= θ = = . (4.2) 

 
Uniform and sinusoidal loads are to be considered: 
– with the cylinder filled to capacity (Fig. 2), the coefficients are given as [16]:  
 

  , ,mn mo
4qq
m

0 q d=
π

= m1
4
m

q qa=
π

      ( ), , ..m 1 3= … , 

 
– sinusoidal loading 
 

  cos sin ,z
m xq q n

l
π= θ and     ,m 1 n 4= =      and       14q q= . 
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Fig.2. A circular cylinder filled to capacity [16]. 
 

The Navier type solutions are introduced as 
 

  cos cos mn
m 1 n 0

m xu A n
l

∞ ∞

= =

π= θ , (4.3) 

 

  sin  sin  mn
m 1 n 0

m xv B n
l

∞ ∞

= =

π= θ , (4.4) 

 

   sin  cos   mn
m 1 n 0

m xw C n
l

∞ ∞

= =

π= θ , (4.5) 

 

   cos  cos  x mn
m 1 n 0

m xD n
l

∞ ∞

= =

πϕ = θ , (4.6) 

 

  sin sin  mn
m 1 n 0

m xE n
l

∞ ∞

θ
= =

πϕ = θ . (4.7) 

 
 Substitution of Eqs (4.3)-(4.7) into the boundary conditions Eq.(4.1), results in the boundary conditions 
being satisfied by the adopted displacement functions at ends x 0= , x l= .  
 Substituting Eqs (4.3)-(4.7) into the equation of equilibrium Eqs (3.22)-(3.26) results in the following form: 
 

  

12 13

22 23

32 33 34 35

43 44 45

53 54 55

     Y      Y       0      0
     Y      Y      0      0
     Y      Y      Y    Y

               Y      Y    Y
               Y      Y    Y

11 mn

21 mn

31 mn

mn

mn

Y A
Y B
Y C
0 0 D
0 0 E

  
  
 
  
 
 
 
 

( )2
mn

0
0

q 1
Eh

0
0

 
  
  

   − μ   = −  
   
   
    

  

. (4.8) 
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The coefficients of the matrix ( ), ,  ,...,ijY i j 1 2 5=  are given below:  
 

  
2

2
11 2

m 1Y n
l 2a

 π − μ = − +  
   

,        12 21
m 1Y Y n
l 2a
π + μ= = ,        13 31

mY Y
a l
μ π= = , 

 

  
2 2

22 2
1 m nY

2 l a

 − μ π = − +  
   

,        23 32 2
nY Y

a
= = − , 

 

  ( ) 2 4 22 2 2 4 2 2

33 2 2 4 2
4 1 m n 1 h m h n h m nY

15 l 252 l 252 126 la a a a

 − μ π π π     = − + − − − −      
       

, 

 

  ( ) 32 2

34 43 2
4 1 m 4h m n mY Y

15 l 315 l la

 − μ π π π = = − + +  
   

,  (4.9) 

 

  ( ) 22 3

35 53 3
4 1 n 4h m n nY Y

15 a 315 l a a

 − μ π = = − +  
   

, 

 

  ( ) ( )22 2 2

44 2
4 1 17h m 17h 1 nY

15 315 l 630 a
− μ π − μ = − − − 

 
,        ( )

2

45 45
17h n mY Y 1
630 a l

π= = + μ , 

 

  ( ) ( ) 22 2 2

55 2
4 1 17h n 17h 1 mY

15 315 630 la
− μ − μ π = − − −  

 
. 

 
From the above coefficients ( ), ,  ,. . .,ijY i j 1 2 5=  one can easily see that the matrix, Eq.(4.8), is a symmetric 
one, which points to the displacement being symmetric upholding Maxwell-Betti’s theorem of reciprocity.  
 
4. Results and discussion 
 
 The results obtained for the displacements and stresses are presented for the present solution which 
accounts for the transverse shear deformation. Comparison is made to the results obtained from the Kirchhoff 
– Love first approximation shell theory mostly known as the classical shell theory (CST) which ignores the 
transverse shear effects, for selected values of the mean-radius of curvature to thickness ratios /S a h=  at 
varying shell length to mean-radius of curvature /l a  ratios. The CST numerical results were generated based 
on the first approximation shell equations presented in the work of Soedel [13].  
 
Case 1: Consider a simply supported cylindrical tank of elastic modulus E  filled with liquid of specific weight 
γ  to capacity (uniformly distributed loading) using the first few terms ,  ,  m 1 3 5=  and  ,  n 0 1=  for selected 
values of the mean radius to thickness ratio /S a h= . The maximum transverse deflection, axial and tangential 
stresses are determined using the following parameters: a d 50cm= = , l 25cm= , .0 3μ = . The results are 
presented in terms of the following non - dimensional definitions as in Eq.(5.1) 
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3

4
10Ehw w

a

 
=   γ 

,        
2

x x2
10h

a

 
σ = σ  γ 

,        
2

2
10h

aθ θ
 

σ = σ  γ 
. (5.1) 

 
The maximum values of the transverse deflection and internal force resultants are obtained at /x l 2= , 0θ = . 
 Table 1 presents the maximum deflection for the shell subjected to uniformly distributed loading 
(UDL). It can be observed that both theories have identical results with very little percentage variations for 
shells classified as thin S 20≥ . The difference in variations, however, becomes comparatively more significant 
with the continuous decrease in values of S  (thicker shells). For cylindrical shells subjected to UDL within 
the range 20 S 4> ≥ , the percentage variations in transverse deflection are within 6.5% and 58% for the 
moderately thick case ( )S 10=  and very thick case ( )S 4= , respectively, with the shell length to mean-radius 
of curvature ratio / .l a 0 5= . 
 
Table 1. Non-dimensional results for the maximum deflection, axial and tangential stresses for a simply 

supported circular cylindrical tank filled to capacity (UDL) for / .l a 0 5= . 
 

 w  ( / )x 3 h 2σ α =  ( / )3 h 2θσ α =  
S   Present 

study 
CST % Δ   Present 

study 
CST % Δ  Present 

study 
CST % Δ  

100.00 0.1115 0.1115 _ 0.5163 0.5070 +1.836 10.9713 10.9720 -0.006 
83.33 0.1637 0.1638 -0.058 1.1668 1.1563 +0.907 13.5997 13.6046 -0.036 
71.43 0.2257 0.2259 -0.081 2.1362 2.1277 +0.400 16.3171 16.3277 -0.065 
62.50 0.2969 0.2972 -0.099 3.3923 3.3896 +0.080 19.0826 19.1003 -0.093 
55.56 0.3768 0.3773 -0.110 4.9018 4.9090 -0.147 21.8672 21.8930 -0.118 
50.00 0.4648 0.4653 -0.118 6.6342 6.6560 -0.328 24.6496 24.6842 -0.140 
25.00 1.6542 1.6523 +0.115 31.4798 31.9541 -1.480 50.0178 50.1221 -0.208 
20.00 2.3519 2.3404 +0.495 45.9798 46.8953 -1.952 60.0660 60.1293 -0.105 
16.67 3.0509 3.0177 +1.100 60.1751 61.6255 -2.354 68.1957 68.1138 +0.121 
12.50 4.3568 4.2275 +3.060 85.3792 87.9360 -2.910 79.5654 78.7955 +0.976 
10.00 5.4997 5.1860 +6.050 105.3820 108.7640 -3.110 86.3211 84.3300 +2.360 
7.14 7.4263 6.4581 +15.000 132.8155 136.3670 -2.604 92.9706 87.3552 +6.420 
5.00 10.0393 7.4243 +35.221 156.9600 157.2800 -0.198 97.7240 85.1080 +14.830 
4.00 12.3634 7.8292 +57.908 170.8750 166.0212 +2.920 101.3390 82.1814 +23.311 

 
Case 2: Consider a simply supported circular cylindrical shell with elastic modulus E  under the 

influence of external sinusoidal transverse surface load q  for the fundamental mode m 1=  and n 4=  as found 
in works of (Di and Rothert, [8]; Amabili and Reddy, [17]). The displacements and stresses are determined for 
the selected length to mean radius of curvature ratios /l a  using the following parameters: a d 50cm= = ;

, ,  and l 25cm 125cm 250cm 500cm= ; .0 3μ = . 
 The results are presented in terms of non-dimensional definitions as given in Di and Rothert [8] as 
follows; 
 

  cos sin
3

4
10Eh m xw w n

lqa
  π = θ       

,        cos cos
2

3
10Eh m xu u n

lqa
  π = θ       

, 

   (5.2) 

  cos sin
2

3
10Eh m xv v n

lqa
  π = θ       

,        cos sin
2

x x2
10h m xn

lqa
  π σ = σ θ       

, 
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  cos sin
2

2
10h m xn

lqaθ θ
  π σ = σ θ       

,        sin cos
2

x x2
10h m xn

lqaθ θ
  π σ = σ θ       
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   (cont.5.2) 

cos cosxz xZ
10h m xn
qa l

  π σ = σ θ   
  

 ,     sin sinz Z
10h m xn
qa lθ θ

  π σ = σ θ   
  

 .            

 
Tables 2, 3, 4 and 5 show the non-dimensional displacements for the shell subjected to sinusoidal 

distributed loading (SDL) with varying length to mean radius of curvature ratios / . ,  . , and l a 0 5 2 5 5 10=  for 
selected values of S . The results obtained likewise point to significant variations in obtained results of the 
displacements for the moderately thick to very thick case ( ),  S 10 4= . However, it is observed that 
discrepancies in results become less significant with a continuous increase in the ratios /l a , with variations 
in displacements for the very thick case S 4=  recorded within 93%, 32%, 30% and 29% for 

/ . ,  . , and l a 0 5 2 5 5 10= , respectively.  
 
Table 2. Non-dimensional displacements w , u  and v  for a simply supported circular cylindrical shell under 

sinusoidal loading (SDL) for / .l a 0 5= . 
 
 

 w  u   v   
S  Present  

Study 
CST % Δ  Present 

study 
CST % Δ  Present 

study 
CST % Δ  

100 0.00187 0.00187 _ -0.00159 -0.00159  _ -0.02597 -0.02597  _ 
20 0.02111 0.02064 +2.277 -0.00358 -0.00351 +1.994 -0.05861 -0.05731 +2.268 
10 0.03401 0.03008 +13.065 -0.00289 -0.00255 +13.330 -0.04721 -0.04175 +13.077 
4 0.06644 0.03449 +92.636 -0.00225 -0.00117 +92.308 -0.03688 -0.01915 +92.584 

 
Table 3. Non-dimensional displacements w , u  and v  for a simply supported circular cylindrical shell under 

sinusoidal loading (SDL) for / .l a 2 5= . 
 

 w  u   v   
S Present  

Study 
CST % Δ  Present 

study 
CST % Δ  Present 

study 
CST % Δ  

100 0.0903 0.09166 -1.484 -0.57012 -0.57861 -1.467 -2.2946 -2.32922 -1.486 
20 0.32004 0.31715 +0.911 -0.40414 -0.40040 +0.934 -1.62656 -1.61184 +0.913 
10 0.36010 0.34356 +4.814 -0.22736 -0.21687 +4.837 -0.91506 -0.87302 +4.815 
4 0.46106 0.35177 +31.069 -0.11645 -0.08882 +31.108 -0.46863 -0.35755 +31.067

 
Table 4. Non-dimensional displacements w , u  and v  for a simply supported circular cylindrical shell under 

sinusoidal loading (SDL) for /l a 5= . 
 

 w  u   v   
S  Present 

Study 
CST % Δ  Present 

study 
CST % Δ  Present 

study 
CST % Δ  

100 0.32876 0.32912 -0.109 -1.22050 -1.22230 -0.147 -8.27210 -8.28119 -0.110 
20 0.40712 0.40250 +1.148 -0.3023 -0.29900 +1.104 -2.04875 -2.02553 +1.146 
10 0.42422 0.40532 +4.663 -0.15750 -0.15053 +4.630 -1.06742 -1.01987 +4.662 
4 0.52452 0.40612 +29.154 -0.0779 -0.06033 +29.123 -0.52788 -0.40875 +29.145 
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Further observation of these discrepancies through varying length to radius of curvature ratios, points 
to a lessening of its severity with increasing length to radius ratios from / .  –  l a 0 5 10= . An examination of 
the non-dimensional out of plane displacements (deflection) through the varying /l a  ratios shows a continual 
increase in the transverse deflection as the shell length increases for same values of S . This behavior can be 
associated with that of an elastic beam in which deflection is proportional to its span with its distributed 
loading, inertia and other material properties remaining constant.  
 
Table 5. Non-dimensional displacements w , u  and v  for a simply supported circular cylindrical shell under 

sinusoidal loading (SDL) for /l a 10= . 
 

 w  u   v   
S  Present 

Study 
CST % Δ  Present 

study 
CST % Δ  Present 

study 
CST % Δ  

100 0.41515 0.41463 +0.113 -0.80365 -0.80276 +0.111 -10.39740 -10.38559 +0.114 
20 0.42591 0.42108 +1.147 -0.16490 -0.16303 +1.148 -2.13336 -2.10916 +1.148 
10 0.44063 0.42128 +4.593 -0.08530 -0.08155 +4.593 -1.10354 -1.05509 +4.592 
4 0.54202 0.42134 +28.643 -0.04197 -0.03263 +28.624 -0.54300 -0.42209 +28.646

 
Table 6. Non-dimensional in-plane normal stresses xσ , θσ  and in-plane shearing stress xθσ  for a simply 

supported circular cylindrical shell under sinusoidal loading (SDL) for / .l a 0 5= . 
 

 ( )x 3 h 2σ α = ±  ( )3 h 2θσ α = ±  ( )x 3 h 2θσ α = ±  

S   Present 
 Study 

CST % Δ  Present 
 Study 

CST % Δ  Present 
 study 

CST % Δ  

100 0.08382 
-0.00702 

0.08393 
-0.00712 

-0.131 
-1.404 

0.12331 
0.06618 

0.12336 
0.06611 

-0.041 
+0.106 

-0.04227 
-0.07836 

-0.04222 
-0.07840 

+0.118 
-0.051 

20 0.58361 
-0.41029 

0.58718 
-0.41764 

-0.608 
-1.760 

0.52633 
-0.09867 

0.52504 
-0.10682 

+0.246 
-7.630 

0.06132 
-0.33358 

0.06650 
-0.33273 

-7.789 
+0.255 

10 0.80262 
-0.66300 

0.79372 
-0.67022 

+1.121 
-1.077 

0.63307 
-0.28856 

0.61261 
-0.30796 

+3.340 
-6.300 

0.18150 
-0.40083 

0.19386 
-0.38780 

-6.376 
+3.360 

4 1.00381 
-0.89469 

0.86769 
-0.81100 

+15.688 
+10.319 

0.73181 
-0.46254 

0.59769 
-45794 

+22.44 
+1.004 

0.29163 
-0.46294 

0.2890 
-0.37800 

+0.910 
+22.471 

 
The results of the non-dimensional in-plane normal and shearing stresses for the case of a UDL and 

SDL are presented in Tabs 1, 6, 7, 8 and 9. From the results obtained, it is realized that the variations in stresses 
are more subtle than these shown by the displacements, with percentage variations obtained for the very thick 
case ( )S 4=  within 24%, 7%, 6% and 5% for / . ,  . , and l a 0 5 2 5 5 10= , respectively. However, for the 
moderately thick case S 10= , variations in stresses are obtained within 7%, 2%, 1% and 0.8% for / . ,l a 0 5=  
2.5, 5 and 10, respectively, highlighting the ability of CST to estimate the in-plane normal and shearing stresses 
in thin to moderately thick shells within the engineering admissible error of 5% for /l a  ratios within 2.5 – 10. 

Generally, one can see that a rise in the shell’s bending deformation as a consequence of an increase 
in the shell’s length to mean-radius of curvature ratios /l a , results in diminishing transverse shearing effects 
on the displacements and stresses for same values of mean-radius to thickness ratios S . However the classical 
(first approximation) shell theory ultimately fails to predict acceptable values of the displacements even at 
sufficiently high /l a  ratios in thick shells due to the neglect of the transverse shear effects. 
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Table 7. Non-dimensional in-plane normal stresses xσ , θσ  and in-plane shearing stress xθσ  for a simply 
supported circular cylindrical shell under sinusoidal loading (SDL) for / .l a 2 5= . 

 
 ( )x 3 h 2σ α = ±  ( )3 h 2θσ α = ±  ( )x 3 h 2θσ α = ±  

S   Present 
 Study 

CST % Δ  Present 
 study 

CST % Δ  Present 
 study 

CST % Δ  

100 1.05448 
0.42225 

1.07076 
0.42803 

-1.520 
-1.350 

0.88925 
-0.74352 

0.90396 
-0.75584 

-1.627 
-1.630 

-0.05760 
-0.40631 

-0.05836
-0.41287

-1.302 
-1.589 

20 1.63269 
-0.58590 

1.63051 
-0.59334 

+0.134 
-1.254 

2.91646 
-2.81313 

2.92273 
-2.82023 

-0.215 
-0.252 

0.44741 
-0.77625 

0.45028 
-0.77636

-0.637 
-0.014 

10 1.50570 
-0.91646 

1.48543 
-0.92362 

+1.365 
-0.775 

3.15633 
-3.09819 

3.13842 
-3.08279 

+0.571 
+0.500 

0.57538 
-0.76040 

0.57608 
-0.75269

-0.122 
+1.024 

4 1.43956 
-1.13788 

1.34831 
-1.11825 

+6.768 
+1.755 

3.33913 
-3.30906 

3.19625 
-3.17375 

+4.470 
+4.263 

0.66444 
-0.75919 

0.64406 
-0.71644

+3.164 
+5.967 

 
Table 8. Non-dimensional in-plane normal stresses xσ , θσ  and in-plane shearing stress xθσ  for a simply 

supported circular cylindrical shell under sinusoidal loading (SDL) for /l a 5= . 
 

 ( )x 3 h 2σ α = ±  ( )3 h 2θσ α = ±  ( )x 3 h 2θσ α = ±  

S   Present 
Study 

CST % Δ  Present 
study 

CST % Δ  Present 
study 

CST % Δ  

100 1.70995 
-0.16465 

1.71340 
-0.16589 

-0.201 
-0.747 

2.92732 
-2.88919 

2.93453 
-2.89655 

-0.246 
-0.254 

0.19606 
-0.43880 

0.19741 
-0.43904 

-0.684 
-0.055 

20 1.34132 
-0.95859 

1.33841 
-0.95990 

+0.217 
-1.760 

3.57282 
-3.56336 

3.57025 
-3.56097 

+0.072 
+0.067 

0.35939 
-0.41951 

0.35963 
-0.41873 

-0.067 
+0.186 

10 1.26453 
-1.06515 

1.25251 
-1.06193 

+0.960 
+0.303 

3.61674 
-3.61189 

3.59297 
-3.58829 

+0.662 
+0.658 

0.37881 
-0.41014 

0.37703 
-0.40679 

+0.472 
+0.824 

4 1.26381 
-1.16513 

1.19769 
-1.21310 

+5.521 
+3.908 

3.76964 
-3.76688 

3.59863 
-3.59675 

+4.752 
+4.730 

0.40356 
-0.41906 

0.38675 
-0.39863 

+4.346 
+5.125 

 
Table 9. Non-dimensional in-plane normal stresses xσ , θσ  and in-plane shearing stress xθσ  for a simply 

supported circular cylindrical shell under sinusoidal loading (SDL) for /l a 10= . 
 

 ( )x 3 h 2σ α = ±  ( )3 h 2θσ α = ±  ( )x 3 h 2θσ α = ±  

S   Present 
Study 

CST % Δ  Present 
study 

CST % Δ  Present 
study 

CST % Δ  

100 1.36913 
-0.86319 

1.36915
-.86377 

-0.001 
-0.067 

3.65388 
-3.65075 

3.65487 
-3.65171 

-0.027 
-0.026 

0.18050 
-0.22037 

0.18059 
-0.22037 

-0.050 
+0.001 

20 1.18657 
-1.08277 

1.18500
-.08236 

+0.132 
+0.038 

3.71320 
-3.71256 

3.70997 
-3.70933 

+0.087 
+0.087 

0.19967 
-0.20785 

0.19953 
-0.20761 

+0.070 
+0.115 

10 1.16856 
-1.11486 

1.15990
-.10856 

+0.746 
+0.569 

3.73608 
-3.73574 

3.71161 
-3.71128 

+0.659 
+0.659 

0.20291 
-0.20714 

0.20165 
-0.20569 

+0.622 
+0.705 

4 1.20051 
-1.17410 

1.14465
-.12410 

+4.880 
+4.447 

3.88516 
-3.88506 

3.71201 
-3.71188 

+4.665 
+4.666 

0.21217 
-0.21426 

0.20289 
-0.20451 

+4.574 
+4.767 
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The non-dimensional transverse shearing stresses distribution for the present study presented in 
Tab.10. below depicts a parabolic (quadratic) distribution of the transverse shear stresses together with the 
condition of stress free boundary surfaces satisfied. This is in agreement with the predictions of the theory of 
elasticity and ensures that the need for shear correction coefficients is thereby obviated. The symmetric 
distribution of the transverse shearing stresses is as a result of the assumption of symmetry in transverse shear 
deformation while developing the present solution. This is done by adopting an odd function (cubic) expansion 
of the in-plane displacements (i.e. Eqs (2.2) and (2.3)), where first derivatives are of the form of even functions, 
hence the transverse shear symmetry about the shell middle surface. 
 
Table 10. Thickness distribution of the non-dimensional transverse shearing stresses xzσ , zθσ  of the present 

study for a simply supported circular cylindrical shell under sinusoidal loading for S 10= . 
 

Thickness coordinate 3 rhα =   
r   1 2−  1 3−  1 4−  1 5−  1 6−  0 1 6  1 5  1 4  1 3  1 2

.l 0 5
a

= xzσ

zθσ
0 
0 

0.7815 
-0.4971 

1.0526 
-0.6670 

1.1781 
-0.7494 

1.2463 
-0.7927 

1.4013 
-0.8913 

1.2463 
-0.7927 

1.1781 
-0.7494 

1.0526 
-0.6670 

0.7815 
-0.4971 

0 
0 

.l 2 5
a

= xzσ

zθσ
0 
0 

0.5828 
-1.8418 

0.7849 
-2.4806 

0.8785 
-2.7765 

0.9294 
-2.9372 

1.0449 
-3.3024 

0.9294 
-2.9372 

0.8785 
-2.7765 

0.7849 
-2.4806 

0.5828 
-1.8418 

0 
0 

l 5
a

=  xzσ

zθσ
0 
0 

0.3206 
-2.0301 

0.4318 
-2.7342 

0.4833 
-3.0603 

0.5112 
-3.2374 

0.5748 
-3.6400 

0.5112 
-3.2374 

0.4833 
-3.0603 

0.4318 
-2.7342 

0.3206 
-2.0301 

0 
0 

l 10
a

=  xzσ

zθσ
0 
0 

0.1628 
-2.0723 

0.2192 
-2.7911 

0.2454 
-3.1239 

0.2596 
-3.3047 

0.2918 
-3.7157 

0.2596 
-3.3047 

0.2454 
-3.1239 

0.2192 
-2.7911 

0.1628 
-2.0723 

0 
0 

 
5. Conclusions 
 

The present work accounts for the transverse shearing effect on the elastic deformation of simply 
supported isotropic circular cylindrical shells under static loading by an adoption of a cubic functions 
expansion of the in-plane displacements. The adopted displacement field accounts for a quadratic (parabolic) 
distribution of the transverse shear through the shell thickness and satisfies the zero surface stress condition 
on the top and bottom surfaces of the shell. Analytical solutions were obtained on application of the Navier 
type solution to the equations governing the deformation of the cylindrical shell. Some numerical examples 
were considered, evaluated and compared. The incorporation of the transverse effects on the shell’s 
deformation by the present solution is found to result in higher values of the displacements in the moderately 
thick and thick cylindrical shells in comparison to the Kirchhoff – Love classical theory. However, the classical 
theory is found to under-predict these displacements within the engineering admissible error (5%) in 
moderately thick shells with length to mean radius of curvature ratios within 2.5 – 10. The values of the in-
plane normal and shearing stresses for moderately thick shell predicted by the classical theory is in good 
agreement to those predicted by the present solution for shells with length to radius of curvature ratios within 
2.5 – 10. It is concluded that the equations obtained herein could be employed in the static flexural analysis of 
the circular cylindrical shell of thin to moderate thickness to a sufficient extent.  
 
Nomenclature  

 

 
  a  – radius of the circular cylindrical shell  
 ,  A B  – Lame’s parameters 
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 E  – Young’s modulus 
  h  – thickness of the shell 
 , , ,K D F H  – shell stiffness 
  l  – length of shell 
 , ,1 2 3q q q  – distributed loads 
 r  – thickness coefficient 
 ,  1 2R R  – radii of curvature 
 S  – mean radius of curvature to thickness ratio 
 , ,u v w  – displacements at a point (α1, α2, 0) on the shell middle surface 
 u , v , w  – non-dimensional displacements 
 U , V , W  – components of the displacements in the orthogonal (α1, α2, α3) coordinates 
 , ,   x y z  – Cartesian coordinates system 
 ijY  – coefficients of the matrix 
 , ,1 2 3α α α  – orthogonal curvilinear coordinate system 
 γ  – specific weight 
 uδ , vδ , wδ  – variations of the displacements 
  ijε  – strain components 
 θ  – spherical co-ordinates 
 μ  – Poison’s ratio 
 ijσ  – stress components 

 ijσ  – non-dimensional stress components 
 1ϕ , 2ϕ  – rotations of normals at α3 = 0 corresponding to the α2 and α1 axis. 
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