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A study of nonlinear waves in liquid-gas mixtures with the consideration of internal effects is an important 
problem of both the fundamental and the applied fluid mechanics. Investigation of nonlinear waves in the gas-
liquid mixtures with allowance for internal effects is an important task of both fundamental and applied fluid 
mechanics. These problems often arise in industrial processes such as oil and gas production, hydrocarbons pipeline 
transportation, gas-saturated fluids flow in pipelines, etc. In this work, we investigate the effect of the internal 
electric field on the nonlinear wave propagation in a bubbly liquid. Numerical simulations have been conducted to 
study the nonlinear waves described by the nonlinear Burgers-Korteweg-de Vries equation. The numerical 
simulations showed that the electrokinetic processes significantly affect the wave propagation process. The 
amplitude of the waves gradually decreases when the size of the gas bubble is decreasing and the electrical potential 
increases. A good agreement of obtained results with our previous predictions is found. 

Keywords: nonlinear waves, bubbly liquids, electrokinetic phenomena, perturbation, electric potential 

1. Introduction

A study of nonlinear waves in liquid-gas mixtures with the consideration of internal effects is an 
important problem of the fluid mechanics. There are many engineering and industry applications related to the 
liquid flow with gas bubbles. An extensive literature review of both theoretical and experimental studies of the 
various aspects of propagation of pressure waves of small amplitude in bubbly liquids has been done by 
Wijngaarden [1]. The previous studies showed that the dynamic properties of bubbly liquids could be 
beneficially used in the design of systems to drive high-speed vessels. In this review paper, the authors Feng 
and Meng and Wang et al. [2, 3] discussed the effects of nonlinearity, dispersion and dissipation described by 
Burgers' and Korteweg and de Vries equations. 

Macroscopic equations for sound propagation in a bubbly liquid at finite volume fraction in the 
linearized, low-frequency regime are derived by Caflisch et al. [4]. For the small volume fraction, the results 
can describe the relative drift and deformations of the bubbles. At finite volume fractions the incompressibility 
of the gas is a consequence of conservation of local liquid volume due to the low frequencies. It is shown that 
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the compressibility effects are exposed for the microscopic problem at second order and the leading-order 
macroscopic equations are affected by the compressibility.  

The propagation of nonlinear waves in a mixture of liquid and gas bubbles considering the effect of 
heat transfer and viscosity was studied by Kudryashov and Sinelshchikov [5]. The authors applied different 
scales of time and coordinate and the method of perturbation to obtain nonlinear evolution equations for 
describing pressure waves. A nonlinear evolution equation of the fourth order was derived for describing the 
pressure waves in a liquid with bubbles with consideration of the effect of the viscosity and the heat transfer 
on the pressure waves. The obtained nonlinear differential equation generalizes the Burgers equation, the 
Korteweg-de Vries equation, the Korteweg-de Vries–Burgers equation and the Kuramoto-Sivashinsky 
equation. The authors found some exact solutions of the derived non-integrable equation. 

Long weakly non-linear waves in the liquid containing gas bubbles were studied by Kudryashov and 
Sinelshchikov [5]. The authors derived equations for non-linear waves taking into consideration high order 
terms in the asymptotic expansion. The derived equations describe non-linear waves at different length and 
time scales and are the generalizations of the Burgers and the Burgers–Korteweg–de Vries equations. The 
authors suggested that the equations derived for the non-linear waves in the liquid containing gas bubbles can 
be used for the description of non-linear waves in other media (viscoelastic tubes, plasma) as well.  

An explicit form of a wave equation in a bubbly liquid medium is derived by Mahmood and Kwak [6]. 
A dispersion relation for the linear pressure wave propagation in bubbly liquids was obtained using the 
linearized wave equation and the Keller-Miksis equation by Keller and Miksis [7] for bubble wall motion. It 
is shown that the attenuation of the waves in a bubbly liquid takes place due to the viscosity and the heat 
transfer from/to the bubble. The thermal diffusion has a considerable effect on the frequency dependent 
attenuation coefficients at the lower frequency region as reported by Yuning et al. [8]. The authors 
demonstrated that the phase velocity and the attenuation coefficient obtained from the dispersion relation are 
in a good agreement with the observed values in all sound frequency ranges from kHz to MHz. 

An analytical approach for the shock propagation in a bubbly mixture is provided by Seung and Kwak 
[9]. An explicit form of the wave equation in a bubbly mixture was obtained in this study. The solution of the 
derived wave equation provides the pressure field due to the shock profile and the radiation pressure field 
considering the interaction between bubbles. The equation of motion of the bubble along the shock wave which 
shows the relaxation oscillation was obtained by using the Keller-Miksis equation. A rigorous treatment for 
the heat transfer from/to the bubble was considered based on the homologous solutions for the mass, 
momentum and energy equations for the gas inside the bubble by Martins and Seleghim [10]. The heat transfer 
at the interface was taken into account by obtaining the thickness of the thermal boundary layer from the heat 
diffusion equation for the liquid layer outside the bubble wall by Gubaidullin and Fedorov [11]. An analytical 
study for the relaxation oscillation provides an understanding of the relaxation oscillations in the shock front 
in a bubbly mixture and the interaction between the bubbles. It is also demonstrated that heat transfer through 
the bubble wall significantly affects the amplitude of the relaxation oscillations. However, the bubble-bubble 
interaction affects mainly the period of the oscillations occurring behind the shock front. 

In previous studies of nonlinear waves in the liquid containing gas bubbles only a surface tension, a 
liquid viscosity and an interphase heat transfer were taken into account by Li et al. and Yano et al. [12, 13]. 
However, during the flow of the bubbly liquid, some other important physical phenomena such as an 
interaction between dissipative and dispersive processes in a gas-liquid mixture and its effect on the wave 
propagation may take place. Therefore, a study of nonlinear waves in liquid-gas mixtures with consideration 
of the internal physical effects is an important problem of the fluid mechanics and was made by Sitdikova 
and Gimaltdinov [14]. In this study we have investigated the nonlinear waves in a liquid phase with gas 
bubbles taking into account an effect of the internal electric field (Cerepi [15]). To the best of our knowledge, 
an effect of the potential difference on the nonlinear wave propagation was not studied previously. In this 
study the effect of the electrokinetic processes on the propagation of nonlinear waves was analyzed using a 
basic system of equations for the nonlinear waves and the obtained equation was solved numerically. Also, 
an experimental study was conducted to investigate the effect of the electrokinetic processes on the fluid 
flow characteristics. 
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2. Experimental setup and procedures 
 

The experimental studies were conducted to study the impact of the flow rate on the electric potential 
differences generated during electrokinetic processes in the fluid flow. The effect of the potential difference 
on the formation of gas bubbles and fluid dynamics was previously investigated by Panahov and Museibli 
[16]. In these experiments we studied the flow of an aqueous solution of sodium chloride in a circular pipe by 
measuring the flow rate, the potential difference and the electrical conductivity of the test solutions at different 
electrolyte concentrations. The experimental setup used for these purposes is schematically shown in Fig.1. 
The experimental setup consists of a compressed gas cylinder (1), valves (2, 5), a pressure gauge (3), a 
container for the gas-liquid mixture system (4), a potentiometer to record the electrokinetic potential (6), 2.7m 
long and 4mm diameter circular pipe (7), an ultra-thermostat (8), and a graduated cylinder (9). 

 

 
 

Fig.1. Experimental setup. 
 

The experiments were conducted using tap water with and without the electrolyte (sodium chloride - 
NaCl) additive. The mineral content in the water (without the electrolyte additive) is shown in Tab.1. The 
sodium chloride (NaCl) dissolved in water disassociates into cations (Na+) and anions (Cl-). In the first set of 
the experiments, we studied a variation of the electric potential difference of the water on the volume flow 
rate. The results of the experiments are shown in Fig.2. 

 
Table 1. The mineral content in the water. 
 

Ca2+ Mg2+ Ca2+
+ Mg2+ Na+ Cl- SOସଶି HOଷି  ΣK SiOଷଶି Salinity 

mg/l 

3.8 2.2 6.0 0.5 0.2 1.9 4.4 6.5 18.2 345 

 
A variation of the electrical conductivity in the test solution at various concentrations of the sodium 

chloride was studied experimentally using a conductometer. Figure 3 shows a variation of the electrical 
conductivity of the test solutions with electrolyte (NaCl) concentration. As seen from this figure, the electrical 
conductivity of the solution almost linearly increases with the electrolyte concentration. 
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Fig.2. The variation of potential difference vs. volume flow rate of water. 
 

 
 

Fig.3. The electrical conductivity vs. NaCl concentration. 
 
3. Mathematical modeling of nonlinear wave propagation in bubbly liquid 
 

Nonlinear effects arising during the electrolyte solutions flow are also encountered in pipeline 
transportations of oil and it is essentially difficult to control these processes. It is important to note that the 
high-frequency wave processes in some cases reduce the efficiency of the transportation process. However, 
in some cases the high-frequency oscillations can be a control factor for the restoration of the pipeline's 
throughput (for example, a destruction of the gas accumulations, prevention of the sedimentation of solid 
phase, etc.). Therefore, it is important to determine the origins of such processes, the ranges of possible 
frequencies and amplitudes of the oscillations, and selection of the appropriate device (technique) for 
recording of these high-frequency waves. Previous studies (Gallyamov et al. [17]) show that in pipeline 
transportation the oil has a gas content of up to 2%. Transport of such media is accompanied by high-
frequency oscillations, which cause early development of cavitation, enhanced corrosion processes, etc. 

The problem of two-phase flows is traditionally solved by using a system of differential equations 
describing both liquid and gas phases. However, assuming that in this case the gas content is insignificant, 
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a single-phase model developed by Nigmatulin [18] has been used in our mathematical simulations. It is 
assumed that the characteristic linear dimension of the perturbation is much greater than the distance 
between the bubbles and, in addition, the distance between the bubbles is different from the radius of the 
bubble. Under these assumptions the motion of such a system can be considered using a homogeneous 
fluid approach proposed by Nakoryakov et al. [19]. According to this approach, the entire mixture is a 
continuous medium of density equal to the density of the liquid, and the compressibility is equal to the 
compressibility of the gas. With these assumptions, the density of the mixture can be expressed as: 
 
  .0 0 0

1 1 2 2 1 1a a aρ = ρ + ρ ≈ ρ  
 
The change of the density can be expressed as: 

 
  0

1 2aδρ = −ρ δ  (3.1) 
 
where the volume concentration of the gas phase: 
 

  .3
2

4a R n
3

= π   (3.2) 

 
The continuity equations for the number of the bubbles per unit of volume of the gas-liquid mixture n  

and the density ρ  can be written as: 
 

  ( ) ( ),
nU Un 0 0

t x t x
∂ ∂ ρ∂ ∂ρ+ = + =

∂ ∂ ∂ ∂
  

 
where U  is the velocity of the homogeneous medium. From the last two equations we can obtain: 
 

  n
n

∂ ∂ρ=
ρ

. (3.3) 

 
Combining Eqs (3.2) and (3.3) we can obtain: 
 

  ( ) .2 3 2 2
2

a a4a 3R n R R n 3 R
3 R

δ = π δ + δ = δ + δρ
ρ

 (3.4) 

 
Substituting the equation (3.4) into the equation (3.1) we can obtain: 
 

  0 2 2
1

3a a
R

 δρ = −ρ + δρ ρ 
 

or 

  .
0

1 2 13a a R
R

ρδρ = − δ  (3.5) 

 
The radial motion of the gas bubble in an infinite incompressible fluid (excluding phase transitions 

and surface tension) can be described by the Rayleigh-Lamb equation (Kutateladze and Styrikovich [20]): 
 



182  An effect of electrokinetics phenomena on nonlinear wave … 

  .
22

2 12 0
1

d R 3 dR 1 4 dR 2 dRR P P ER
2 dt R dt 3 dtdt

μ   + = − − − σ   ρ   
 (3.6) 

 

Assuming that the gas inside the bubble is in the barotropic condition: ( )/0 0
2 0 2 20P P

γ
= ρ ρ , then for the long 

waves the isothermal approximation ( )1γ =  will be valid. 
For short waves a heat exchange between the gas and the liquid phases can be neglected, and the gas 

phase can be considered in adiabatic condition. However, the basic assumptions of the homogeneous model 
will be violated if the phase velocity does not have time to equalize. Since there are no phase transitions, the 
mass of a single bubble will be conserved: 
 
  ( )/ .3

2 0 0P P R R γ=   
 
Then Eq.(3.6) can be written as: 
 

  ( )/ .
22

3 0 0
1 0 0 0 1 12

0

4 2 dR d R 3 dRP P R R ER R
R 3 dt 2 dtdt

γ  μ  = − + σ − ρ − ρ   
  

  

 
From this equation we can find a pressure increment [20]: 
 

  ( ) ( ) .
2

00
0 1 0 2

0 0

d R d R3 P 4 2P R ER R
R R 3 dt dt

δ δ γ μδ = − δ − + σ − ρ 
 

  

 
From Eq.(3.5) we can obtain the following equation of state: 

 

  
( ) ( )0 0 22

00 0
0 0 2

1 21 2 1 1 2 1

4 2 ER R
R 3 d dP RP

dt 3a aa a 3a a dt

 μ + σ  δρ δργ  δ = δρ + +
ρ ρ

 (3.7) 

where  

  2 0
e 0

1 2 1

PC
a a

γ
=

ρ
  

 
is the equilibrium velocity of the sound propagation in the mixture (Nigmatulin [18]). 
The continuity and the momentum equations for the homogeneous gas-liquid medium can be written as: 

 

  U 0
t x

∂ρ ∂ρ+ =
∂ ∂

, (3.8) 

 

  .U U PU 0
t x x

∂ ∂ ∂ρ + ρ + =
∂ ∂ ∂

 (3.9) 

 
Equations (3.7)-(3.9) are one-dimensional Navier-Stokes-Boussinesq equations system. If the coefficients of 

( )d
dt
δρ

 and ( )2

2
d

dt
δρ

 are small, the time derivatives can be approximately expressed as: 
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  ( ) ( ), .
2 2

2
e2 2

d dU C
dt x dt x
δρ δρ∂ ∂ ρ= −ρ =

∂ ∂
 

 
Substituting Eq.(3.7) into Eqs (3.8) and (3.9) we can write: 
 

  ,
2 2 2
e e

2 3
C 2 CU U U UU 2

t x x x x
β∂ ∂ ∂ρ ∂ ∂+ + = η −

∂ ∂ ρ ∂ ρ∂ ∂
 (3.10) 

 

  U U 0
t x x

∂ρ ∂ ∂ρ+ ρ + =
∂ ∂ ∂

 (3.11) 

 
where 

  , .
0

0 0 e
0

1 21 2 1

4 2 ER
R 3 R C2 2

3a a3a a

 μ + σ 
 η = β =

ρ
 

 
If ,0η = β = the system of equations (3.10)-(3.11) describes the “simple waves” or Riemann waves. 

But in general, the system of equations (3.10)-(3.11) does not contain solutions of the Riemann type. In case 
of the weak dispersion and dissipation, the solutions of the system can be sought in the form of a quasi-simple 
wave as in Karpman [21] and Whitham [22]: 
 
  ( )( ) , ,f U x tδρ = + ψ   (3.12) 
 
where ( )f U  is the solution of the system (3.10) and (3.11) without dispersion and dissipation, ( ),x tψ  is a 
function, depending on dissipation and dispersion effects. If 0η = β = ψ = , we have: 
 
  ( ) / / .df U dU C= ±ρ  (3.13)  
 

If we consider the perturbations propagating along the characteristics ,ex C t Const− =  then it will 
correspond to the positive sign on the right-hand side of Eq.(3.13). Combining Eqs (3.10)-(3.13) we will obtain 
the following expression: 
 

  .
2 2 3
e e

e2 3
C C U U2 2 C 0

x t x x
∂ψ ∂ψ ∂ ∂− + + η − β =

ρ ∂ ρ ∂ ∂ ∂
  (3.14) 

 
Equation (3.14) can be easily integrated along the characteristics ex C t Const− =  by introducing the 

variable ex C t z− = : 
 

  .
3

2 3
e

U U
zC z

 ρ ∂ ∂ψ = η − β  ∂ ∂ 
 

 
Substituting this expression into Eqs (3.10) or (3.11), we will obtain an equation for the velocity perturbations in 
the coordinate system moving with the velocity eC , which is the classical Burgers-Korteweg-de-Vries equation: 
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  ,
2 2

2
2

U U U UU 0
t z zz

∂ ∂ ∂ ∂+ − η + β =
∂ ∂ ∂∂

 (3.15) 

where 

  , .
0 0 2

0 0 e
0

1 21 2 1

4 2 ER R
R 3 R C

6a a6a a

 μ + σ 
 η = β =

ρ
 

 

 
 

Fig.4. The patterns of nonlinear waves propagation at .0R 0 1mm=  and E 2mV= . 
 

 
 

Fig.5. The patterns of nonlinear waves propagation at .0R 0 08mm=  and E 3mV= . 
 
Equation (3.15) for the nonlinear wave processes has been solved numerically. The patterns of the 

nonlinear wave propagation for various 0R  (0.1mm, 0.08mm and 0.06mm) and E  (2mV, 3mV and 5mV) are 
shown in Figs 4-6. As seen from these figures, the amplitude of the waves gradually decreases when the size 
of the gas bubble is decreasing and the electrical potential increases. In other words, the electrokinetic 
processes significantly affect the wave propagation process. This is in a good agreement with our previous 
studies which showed that the potential difference increases as the radii of the bubble decrease, and the waves 
attenuate gradually (Panahov and Museibli [16]). 
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Fig.6. The patterns of nonlinear waves propagation at .0R 0 06mm=  and E 5mV= . 
 
4. Conclusions 

 
A propagation of the long nonlinear waves in a liquid with gas bubbles has been studied with the 

consideration of the elektrokinetic process, which occurs during the fluid flow. The nonlinear differential 
equation (Burgers-Korteweg-de-Vries) with respect to the potentials difference parameter for the long weak 
nonlinear waves in the bubbly liquid has been derived. The numerical simulations showed that the 
electrokinetic processes significantly affect the wave propagation. The amplitude of the waves gradually 
decreases when the size of the gas bubble is decreasing and the electrical potential increases. A good agreement 
of obtained results with our previous predictions is found. 

 
Nomenclature 

 
 ,1 2a a  – volume concentrations of the liquid and the gas phases, respectively; 

 Μ  – viscosity of the liquid phase. 
 N  – number of the bubbles per unit of volume of the gas-liquid mixture; 
 ,1 2P P  – pressures in the liquid and inside the bubbles, respectively; 
 R  – radius of the gas bubble; 
 U  – velocity of the homogeneous medium; 
 ,0 0

1 2ρ ρ  – true densities of the liquid and the gas, respectively; 
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