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This work presents a mathematical model of an aeropendulum system with two sets of motors with propellers 
and the design and simulation of a loop-shaping ∞  control for this system. In this plant, the objective is to control 
the angular position of the pendulum rod through the torque generated by the thrust of the motorized propellers at 
the end of the rod’s axis. The control design is obtained by first using feedback linearization and then designing the 

∞  controller using the resulting linear system. For the control strategy validation, simulations were conducted in 

the Matlab/Simulink® environment, and the weighting functions for the ∞  controller were adjusted to obtain the 
desired performance and stability of the closed-loop system. The simulation results show the efficiency of the 
applied methodology. 
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1. Introduction 
 

Inverted pendulum systems present high dynamic complexity and represent a challenge in the 
automatic control field due to their nonlinearity and unstable equilibrium point when the pendulum rod is at 
the vertical position (Ogata [1]). Several approaches and configurations of inverted pendulums are studied 
in the literature, such as the Furuta pendulum (Furuta et al. [2]; Antonio-Cruz et al. [3]; Zabihifar et al. [4]), 
the cart pendulum (Blondin and Pardalos [5]; Roose, Yahya and Al-Rizzo [6]), the robot pendulum (Grasser 
et al. [7]; Ye et al. [8]; Johnson et al. [9]), the single propeller pendulum (Job and Jose [10]; Habib et al. 
[11]), among others. The aeropendulum system with two propellers has been also analyzed, which presents 
a dynamic behavior similar to the traditional helicopters and can be used as a didact tool for engineering 
studies (Saleem et al. [12]). 

From a constructive perspective, the aeropendulum considered in this paper is a system composed of 
a pendulum rod with two sets of motors with propellers at its free extremity, while the other rod extremity is 
coupled to a rotational axis, which has an encoder to measure the angular position of the rod. In the literature, 
Saleem et al. [12] use an adaptive Proportional-Integrative-Derivative (PID) controller for a system similar to 
this, where a Particle Swarm Optimization (PSO) and Fuzzy inference system algorithms were used to tune 

                                                            
* To whom correspondence should be addressed  



2  Loop-shaping ∞  control of an aeropendulum model 

the gains of the controller. Similar equipment is also considered in Jaber et al. [13], where a geometric non-
linear controller is presented, in Ghanbari et al. [14], where a continuous controller of sampled data is used, 
and in Gultekin and Tascioglu [15], that uses a PD controller. 

The ∞  control technique can be applied to several mechanical systems due to its robust performance, 
even when the system’s model presents uncertainties or different types of disturbances. For example, Sampaio 
et al. [16] present an ∞  controller to stabilize a quadrotor with 2 degrees of freedom (DOF); Breganon et al. 
[17] propose an ∞ controller to control the position and orientation of a Stewart platform with 6 DOF.  

Based on the wide range of investigation and application of aeropendulum systems, the importance 
assigned to the control technique studies applied to this type of system can be noticed. In this way, the main 
objective of this work is to present the mathematical model, an ∞  controller design for the position control, 
and simulation results of an aeropendulum system that uses two sets of motorized propellers. 

The paper is divided as follows: in Section 2, the mathematical model of the aeropendulum, its main 
parameters, and the use of feedback linearization are presented. In Section 3, the ∞  controller design is 
described. The main simulation results and discussions are conducted in Section 4. Finally, the conclusions 
and perspectives for future works are presented in Section 5.   
 
2. Aeropendulum system’s modeling 
 

The methodology for mathematical modeling and the parameters’ obtainment of an aeropendulum 
system are described in this section. The considered aeropendulum model is based on the one available at the 
Automation Laboratory of the Instituto Federal do Paraná (IFPR) – Jacarezinho.  
 
2.1. Mathematical model   
 

Let us consider an aeropendulum system shown in Fig.1., where .1m 0 02kg=  represents the rod’s 
mass, .2m 0 295kg= , the mass of the motorized propellers, 12l  (  .1l 0 1465m= ) indicates the rod’s length, 

.2l 0 306m= , the distance between the rotation axis and the center of mass of the motorized propellers, and 

  .cm 0 045kg=  is the mass of the rod’s coupling cylinder as well as .1r 0 02m=  and .2r 0 004m=  are its larger 
and smaller radius, respectively. In summary, this system consists of a rod in which one extremity is coupled 
to a rotational axis, and the other one (free extremity) has two sets of motorized propellers. Thus, the motors 
generate torque to the system through the thrust generated by the propellers. In this work, it is considered that 
the independent actuation of each motorized propeller provides a resultant thrust that defines the rotation 
movement of the pendulum rod.  

For the mathematical modeling, it is considered that the thrust provided by the motorized propellers 
generates a force at the free extremity of the rod. Thus, Newton’s second law and the D’Alembert principle 
are used to describe the system motion equation, which led to  

 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )sin , 2 2 2 2
1 1 2 2 c 1 2 1 1 2 2

1 1m 2l m l m r r t m l m l g t b t t
3 2

 + + + = − + θ − θ + τ 


θ

   (2.1) 

 
in which the first term comes from the system’s inertial moment; the second term is the torque due to the 
weight of the pendulum set; the third term is the torque due to the viscous friction of the bearings and to the 
aerodynamic drag caused by the propeller; and the last term is the torque provided by the motorized propellers’ 
thrust (Gultekin and Tascioglu [15]). ( )tθ  represents the rotational angle of the pendulum, g  is the 
acceleration due to gravity, and ( )tτ  is the torque generated by the thrust due to the propeller's actuation. 
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Fig.1. A simplified scheme of an aeropendulum system. 
 

One can observe that (2.1) is nonlinear due to the term ( ) ( )( )sin1 1 2 2m l m l g t+ θ . In this work, to 
simplify the design procedure, the linearization of the model (2.1) is carried out by feedback linearization. 
Thus, the torque applied to the system is defined as 

 
  ( ) ( ) ( )( ) ( )sin1 1 2 2t m l m l g t u tτ = + θ +  (2.2) 

 
where ( )u t  is the control signal. By substituting (2.2) into (2.1), we have 
 

  ( ) ( ) ( ) ( ) ( )2 2 2 2
1 1 2 2 c 1 2

1 1m 2l m l m r r t b t u t
3 2

 + + + = − θ + θ
 

   (2.3) 

 
and by taking the Laplace transform of (2.3) it results in the transfer function given by 
 

  ( ) ( )
( )

Θ   n
2

1
s JG s bU s s s

J

= =
+

 (2.4) 

 
where ( )Θ s  represents the Laplace transform of the rod’s angle ( )tθ , ( )U s  is the Laplace transform of the 

control signal ( )u t , and ( ) ( )  .  2 2 2 2
1 1 2 c 2

2
2 1

1 1J m 2l m l m r r 0 0282 g
2

m
3

k = + + + =


⋅


 
  . 

 
2.2. Obtaining the system’s parameters  
 

The majority of the parameters required by the mathematical model of the aeropendulum were 
obtained from an actual prototype, which is shown in Fig.2.  

The viscous friction of the pendulum (parameter b  in (2.4)) was obtained through an experiment 
considering the free-swinging movement of the rod. In this experiment, from the resting position (free 
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extremity pointing downwards), the rod was brought manually to a small angle (about 0.4267 rad) and then 
released such that the oscillatory dynamics of the system were observed. It is important to highlight that in this 
initial experiment, the aeropendulum behaved as a simple pendulum system, in which there is an initial 
condition given by the angle ( )0θ  (a small inclination angle), and the only force acting on the system is the 

force of gravity . / 2g 9 81m s= . The oscillation obtained from this experiment is shown in Fig.3., and the data 
(time and value) of the first three peaks are shown in Tab.1.  

The total moment of inertia consists of the sum of the individual moments of the rod, the motorized 
propellers set, and the coupling cylinder between the rod and the rotational axis. Thus, it is described by 

 

 ( ) ( )  2 2 2 2
1 1 2 2 c 1 2

1 1J m 2l m l m r r
3 2

 = + + + 
 

 (2.5) 

 
where 1r  and 2r  are the larger and smaller radius, respectively, of the coupling cylinder between the rod and 
the rotational axis, whose  mass is denoted by cm .  
 

 
 

Fig.2. Aeropendulum prototype available at the Automation Laboratory of Instituto Federal do Paraná, 
Jacarezinho, Paraná, Brazil. 

 
Table 1. Data obtained from the free-swinging movement of the aeropendulum shown in Fig.3.  
 

Time [s] Angle [rad] 
 0t 0=   .0y 0 4267=
 .1t 1 1=   .1y 0 3691=  
 .2t 2 18=  .2y 0 3063=

 
By applying Newton’s law for rotation on the system shown in Fig.1. it yields  
 
  ( ) ( )( ) ( )( ) ( )sin sin .1 1 2 2J t m gl t m gl t b t 0+ θ + θ + θ =θ   (2.6) 
 

For small values of ( )tθ , the approximation ( )( ) ( )sin t tθ ≈ θ  can be carried out. By the change of 

variables  /1a b J=  and ( ) /2 1 1 2 2a g m l m l J= + , (2.6) becomes 
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 ( ) ( ) ( ) .1 2t a t a t 0θ + θ + θ =   (2.7) 
 
The null input response of a system described by (2.7) is obtained from its characteristic equation 

2
1 2D a D a 0+ + =  (Lathi, [18]). If ,2

1 2a 4 a 0− × <  then the characteristic equation of the system has the roots 
jα ± β , which is given by 

 

 .
2
1 21 a 4 aaj j

2 2
− ×−α ± β = ±  (2.8) 

 

 
 

Fig.3. Time response of the aeropendulum system during its free-swinging movement. 
 
In this case, the null input response of the system (2.7) has the form (Lathi [18]): 

 
 ( ) ( )cost

0y t Ae tα= β + φ  (2.9) 
 

where A  and φ  are parameters that depend on the initial conditions. Note that the maximum values occur 
when ( )cos t 1β + φ = . From the first three maximum points in the time response shown in Fig.3., described in 
Tab.1., and from (2.9), one has  
 
  1t

1Ae yα = ,       .2t
2Ae yα =  (2.10) 

 
By dividing the equations in (2.10), it follows 

 

 1 2t t 1

2

ye
y

α −α = ,      ( ) ln 1
1 2

2

yt t
y

 
α − =  

 
,      

( )

ln
.

1

2

1 2

y
y

t t

 
 
 α =
−

 (2.11) 

 
The frequency β  is obtained from the period in the response shown in Fig.3. by 
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 . 
2 1

2
t t

πβ =
−

 (2.12) 

 
Furthermore, from (2.8) and (2.11), and the data in Tab.1., one finds 

 
  .  1a 2 0 3045=− α =  (2.13) 
 

and 
 

  ( )2 2
1 22 a 4 aβ× = + × ,      ( ) . .

2 2
1

2
2 a

a 33 257
4

β +
= =  (2.14) 

 

 
 

Fig.4. Relationship between voltage and torque of the motorized propellers. 
 

Thus, .  /1b a J 0 0086 Nms rad= × = . By substituting these values in (2.4), it follows that 
 

 ( ) ( )
( )

Θ . .
.n 2

s 35 46G s
U s s 0 305s

= =
+

 (2.15) 

 
The mathematical model presented in (2.1) considers the torque as the control input. However, this 

torque is provided by the sets of motorized propellers that are activated by voltage levels. Thus, the real 
constraints of the control signal encompass the voltage limits of the motors. The relationship between these 
variables was identified considering the actual prototype to convert the torque signal into its corresponding 
voltage level. The data from the real prototype is shown in Fig.4. as well as its approximation. 

The relationship between torque and voltage levels presented in Fig.4. was used to estimate the voltage 
applied to the simulated motors, considering the saturation levels. Although both motorized propellers have 
the same dimensions and electrical characteristics, it is possible to see that each set of motorized propellers 
has a slightly different response. A third-degree polynomial was used to model the presented response curves 
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by employing polyfit tool available in the Matlab® software. The polynomials obtained for the left ( )( )1V τ  

and right ( )( )2V τ  motor are described as 
 

 ( )
( )

.  .  . .
.

.  .  . .

3 2
1 1 1 1

3 22 2 2 2

V 24 1725 16 6195 10 7176 0 0839
V 33 1576 28 5849 13 5630 0 05

  τ  τ − τ + τ +
=   τ τ − τ + τ −    

 (2.16) 

 
3. ∞  control 
 

The standard ∞  problem is formulated in order to find a ( )K s  controller, if one exists, such that the 
closed-loop system is stable and presents the desired performance. A typical diagram of a feedback SISO 
system is presented in Fig.5. (Oliveira, Aguiar and Vargas [19]; Doyle et al. [20]; Zhou, Doyle and Glover 
[21]).  

 

 
 

Fig.5. Typical diagram of a feedback system (adapted from Oliveira, Aguiar and Vargas [19]). 
 
From the block diagram presented in Fig.5., the following equations are obtained: 

 
 ( ) ,ie r y S r d Tn SGd= − = − + +  (3.1) 
 
 ( ) iu KS r n d Sd= − − +  (3.2) 
 

where id  is the plant’s input disturbance, d  is the output’s disturbance, and n  represents sensor’s noises. The 
sensitivity matrix ( )S s  and the complementary sensitivity matrix ( )T s  are given by 
 

  ( ) ( ) ( )( )  1S s I G s K s −= + , (3.3) 
 

  ( ) ( ) ( ) ( ) ( )( ) ( ) .1T s G s K s I G s K s I S s−= + = −  (3.4) 
 

In the servo system design, it is desired that the error ( e ) be null and, consequently, the plant’s output 
follows the reference signal. From (3.1), for e  to be small compared to the disturbances d , id , and also to 
the reference r , ( )S s  must be small. On the other hand, in order to obtain a small effect of the noise n  on the 
error e , ( )T s  must be small. However, ( ) ( )T s S s I+ =  and then it is not possible to reach both of the 
mentioned objectives at the same frequency range, simultaneously. Another critical point in the controller 
design is the magnitude of the control signal u , which must be small in order to stay within the physical 
constraints of the system (within the saturation limits). From (3.1), this can be achieved if, in addition to S , 
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KS  has a small amplitude. The size of the complex functions is understood through its ∞  norm, which is 
defined as 

 
 ( )

ω
sup .S S j∞ = ω  (3.5) 

 
Thus, in the specifications for attenuation of disturbance and steady-state error, generally, an upper 

limit for the norm of ( )S jω  is considered, that is: 
 
 ( ) ( ) ,  ,1

1S j W j−ω ≤ ω ∀ω  (3.6) 

 
in which ( )1W jω  ponders ( )S jω  and reflects the desired attenuation for each frequency ω . 

From (3.2), a constraint on the control signal ( )u t  can be introduced by a bound on ( ) ( )K j S jω ω , 
which can be given by  

 
 ( ) ( ) ( ) ,  ,1

2K j S j W j−ω ω ≤ ω ∀ω  (3.7) 

 
such that the function ( )2W jω  limits the control input within an acceptable range, avoiding the saturation. 

Suppose that the plant ( )G s  has multiplicative uncertainties so that it can be described by  
 
 ( ) ( ) ( ) ( )   nG s 1 W s s G s=  + Δ    (3.8) 
 

where  1∞Δ ≤  and ( )nG s  is the nominal model of the system. Thus, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   n n nK s G s K s 1 W s s G s K s G s K s W s s G s=  + Δ  = + Δ  . 
By analysing the Nyquist diagram for the nominal system, the distance between ( ) ( )nK s G s  

and the critic point  1 j0− +  is given by ( ) ( )nK j G j 1ω ω +  (Oliveira, Aguiar and Vargas [19]). Therefore, 

to avoid an involvement of the critical point, the distance between ( ) ( )nK j G jω ω  and 1−  must be greater 

than the uncertainty module ( ) ( ) ( ) ( )nK j W j j G jω ω Δ ω ω . Thus, 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   ,n n nK j W j j G j K j W j G j K j G j 1ω ω Δ ω ω ≤ ω ω ω < ω ω +  
  (3.9) 

 ( ) ( ) ( )
( ) ( )  

n

n

K j W j G j
1

K j G j 1
ω ω ω

<
ω ω +

 

 
and, from (3.4), 
 
  ( ) ( )W Tj j 1ω ω <  (3.10) 
 
which must be valid for any ω . In this way, the size of the smaller disturbance ( )W jω  described by a 
multiplicative uncertainty (3.5) that makes the feedback system unstable is given by 
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  ( ) ( )
W s   .1

T s∞
∞

=  (3.11) 

 
That is, a small value of ( )T s

∞
 corresponds to a high value for the destabilizing uncertainty and 

leads to a greater stability margin. As a consequence, an upper limit for ( )T s
∞

 can be specified as 
 
 ( ) ( ) ,  1

3T j W j−ω ≤ ω ∀ω  (3.12) 

 
where the function ( )3W jω  minimizes the peak of the complementary sensitivity function ( )T s  so that 
oscillations are mitigated, and stability is guaranteed. However, ( )3W jω  and ( )1W jω  specifications conflict, 
especially at low frequencies, due to the relation ( ) ( )S j T j Iω + ω = .  

The constraints described by (3.6), (3.7), and (3.12) can be understood as a restriction in the ∞  norm 
of an augmented plant based on the diagram of Fig.5. The augmented plant with the weighting functions is 
presented in Fig.6., in which ( )w t  and ( )u t  are the augmented system’s inputs, while ( )1z t , ( )2z t , and 

( )3z t  are the outputs. In this diagram, ( )w t  and ( )u t  correspond to the reference r  and the control signal 

( )u t  as defined in Fig.5., respectively. 
 

 
 

Fig.6. Augmented plant for the ∞  controller (adapted from Oliveira, Aguiar and Vargas [19]). 
 

The relation between the inputs and outputs of the augmented plant of Fig.6. is given by 
 

 ( )  .

1 1 1

2 2

3 3

z W W G
z 0 W w w

P s
z 0 W G u u
e I G

−   
          = =          
   −   

 (3.13) 

 
From the diagram of Fig.6. and considering the output vector [ ] T

1 2 3z z z z=  and the input w , the 
transfer function matrix zwT  is given by 
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1

zw 2

3

W S
T W KS

W T

 
 =  
  

 (3.14) 

 
and the norm constraints defined in (3.6), (3.7), and (3.12) can be described by means of a bound in the ∞  
norm of zwT  such that 
 

    .
1

zw 2

3

W S
T W KS

W T
∞

∞

= ≤ γ  (3.15) 

 
The following weighting functions were considered in the designing of the controller 
 

 . . . ,  
.1 2

0 1125 0 27s 5 4W W
s 0 0025 s 50

+= =
+ +

 (3.16) 

 
with the objective of minimizing the steady-state error and the constraints about the control input, respectively. 
The weighting function 3W  was not used in this work because no uncertainty parameter was considered in the 
simulated system. 

The augmented plant ( )P s , from (3.13), considered in this work was obtained with the function augtf 
of Matlab®. This plant is described in state space by the following matrices: 

 
.
.

  ,             ,
. .

0 305 0 0 0 0 8
0 5 0 0 0 0 0

A B
0 8 867 0 0025 0 1 0
0 0 0 50 0 1

−   
   
   = =
   − −
   −   

 

  (3.17) 
.

 .  ,                           . .
.

0 0 0 1125 0 0 0
C 0 0 0 8 1 D 0 0 27

0 8 867 0 0 1 0

   
   = − =   
   −   

 

 
The ∞  controller’s gain ( ( )K s ) designed for the aeropendulum were obtained using the function 

hinf of Matlab®, and it is described in state space by the following matrices: 
 

. . . .  .

. . . .   .
 ,  ,

. . . . .
. . . . .

c c

8 85 3 798 32 06 23 47 0 05739
1 24 0 6144 5 28 3 909 1 342

A B
0 923 0 9955 10 64 10 21 0 6846
1 383 0 2054 1 114 6 558 0 6302

− − −   
   − − − −   = =
   − −
   − − −   

 

  (3.18) 
[ ] . . . . ,cC 1 372 0 6096 5 165 3 776= −       [ ].cD 0=  
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The Bode diagram of ( ) 1
1W j −ω  and the sensitivity funtion ( )S jω  are presented in Fig.7(a), while 

the Bode diagram of ( ) 1
2W j −ω  and ( ) ( )K j S jω ω  are shown in Fig.7(b). It is possible to notice that the 

constraints (3.6) and (3.7) were satisfied for the obtained ∞  controller. 
 

 
(a) 

 
(b) 

 
Fig.7. Bode diagrams of the weighting functions ( ) ( )and1 1

1 2W j W j− −ω ω      , inverse of (3.16), ( )S jω  and 

( ) ( )K j S jω ω . 
 
4. Simulation results 

 
The control diagram of Fig.8. was considered for the simulation of the aeropendulum system with the 

∞  controller, where ( )K s  is given in state space by (3.18).  
 

 
 

Fig.8. Control system diagram for the aeropendulum simulation. 
 

Initially, a step reference with an amplitude of π  rad (  r = π  rad) at 1 second was considered in the 
simulation. In this first experiment, the system’s response (Fig.9(a)) presents a peak value of about 3.386 rad, 
representing an overshoot of 7.78% concerning the reference, and the stabilization time is about 5.998 seconds. 
In Fig.9(b), it is possible to see the error tending to zero. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig.9. System’s response to the step reference (  r = π  rad) in t 1=  s. 

 
The time response of the torque and voltage are presented in Fig.9(c) and (d), respectively. Notice that 

the torque is the control input in (2.4), whereas the voltage was obtained by the polynomial approximation 
described in (2.15). In addition, the control action had a low maximum value due to the use of ( )2W s  given in 
(3.16) in the design procedure. 

In the second simulation, a sequence of step references with different amplitudes was considered to 

the system: , , , , ,  rad2 5r
6 3 2 3 6
π π π π π = π 

 
 applied at instants ( ),  ,  ,  ,  ,   st 10 20 30 40 50 60= , correspondingly. The 

time response of the rod’s angle, error, torque provided by the motorized propellers and its equivalent voltage 
are presented in Figs 10(a) – (d), respectively.  

It is possible to observe in Fig.10(a) that the designed controller performed satisfactorily to the 
reference steps. In other words, it was able to achieve rod stabilization at all desired levels. Complementary, 
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this fact can also be observed through the error evolution (error tending to zero) in Fig.10(b). Moreover, there 
were no abrupt variations in the control action, as shown in Figs 10(c) and (d), contributing to the devices’ 
longevity. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig.10. System’ response to the reference , , , , , 2 5r
6 3 2 3 6
π π π π π = π 
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 rad in ( ), , , , , st 10 20 30 40 50 60=   . 

 
5. Conclusions 
 

This work presented an ∞  controller design for an aeropendulum system with two motorized 
propellers using its mathematical model. The main objective was to control the angular position of the 
aeropendulum through the thrust variation provided by the propellers. The methodology considered for the 
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mathematical modeling and the project of the ∞  controller was validated through simulations in two different 
scenarios.  

In the first set of simulations, a step reference with π  rad of amplitude was considered for the 
pendulum’s rod. From the presented results, it was observed that the controller was able to stabilize the 
pendulum at the desired angle with an adequate stabilization time, despite an overshoot of about 7.78%.  

In the other set of simulations, a sequence of step references with different amplitudes was considered 
to observe the system’s response under successive reference variations. In this case, the efficient performance 
of the designed controller was also observed, controlling the pendulum at the desired stabilization points and 
without abrupt variations in the control action. 

In future works, the authors intend to apply the ∞  controller in the actual prototype to validate both 
the mathematical model and the control strategy in experiments. This next step is important because these new 
experiments will naturally encompass unpredictable situations present in any real system, such as noises, 
disturbances, asymmetries in constructive parts of the actual system, among others. 
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Nomenclature 
 
 A  – amplitude of the null input response of the aeropendulum system 

 , , , A B C D  – state space matrices of the augmented plant 

, , , C C C CA B C D  – state space matrices of the ∞  controller 

 1a  – characteristic equation coefficient 

 2a  – characteristic equation coefficient 

 b  – viscous friction 

 D  – differential operator 

 d  – output’s disturbance 

 id  – plant’s input disturbance 

 e  – error 

 G  – plant 

 nG  – nominal model of the system 

 g  – gravitational acceleration 

 I  – identity matrix 

 J  – total moment of inertia 

 K  – ∞  controller 

 1l  – distance from the center of mass of the rod to the rotational axis 

 2l  – distance between the rotational axis and the center of mass of the sets of motorized propellers 

 1m  – rod’s mass 
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 2m  – mass of the set of motorized propellers 

 cm  – mass of the rod’s coupling cylinder 

 n  – sensor’s noises 

 P  – augmented plant 

 r  – reference 

 1r  – larger radius of the rod’s coupling cylinder 

 2r  – smaller radius of the rod’s coupling cylinder 

 S  – sensitivity matrix 

 T  – complementary sensitivity matrix 

 zwT  – transfer function between w  and z  

 U  – Laplace transform of the control signal 

 u  – control signal 

 ( )1V τ  – polynomial approximation for the left motor 

 ( )2V τ  – polynomial approximation for the right motor 

 y  – system output 

 0y  – first peak 

 1y  – second peak 

 2y  – third peak 

 , ,  1 2 3W W W  – weighting functions 

 , , 1 2 3z z z  – augmented system’s outputs 

 α  – attenuation coefficient 

 β  – frequency of the null input response of the aeropendulum system  

 θ  – rotational angle of the pendulum 

 Θ  – Laplace transform of the rod’s angle 

 τ  – torque 

 φ  – phase of the null input response of the aeropendulum system 
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