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The fluid flow and heat transfer through a rotating curved duct has received much attention in recent years 
because of vast applications in mechanical devices. It is noticed that there occur two different types of rotations in 
a rotating curved duct such as positive and negative rotation. The positive rotation through the curved duct is 
widely investigated while the investigation on the negative rotation is rarely available. The paper investigates the 
influence of negative rotation for a wide range of Taylor number ( )10 Tr 2500− ≤ ≤ −  when the duct itself rotates 
about the center of curvature. Due to the rotation, three types of forces including Coriolis, centrifugal, and 
buoyancy forces are generated. The study focuses and explains the combined effect of these forces on the fluid 
flow in details. First, the linear stability of the steady solution is performed. An unsteady solution is then obtained 
by time-evolution calculation and flow transition is determined by calculating phase space and power spectrum. 
When Tr  is raised in the negative direction, the flow behavior shows different flow instabilities including steady-
state, periodic, multi-periodic, and chaotic oscillations. Furthermore, the pattern variations of axial and secondary 
flow velocity and isotherms are obtained, and it is found that there is a strong interaction between the flow 
velocities and the isotherms. Then temperature gradients are calculated which show that the fluid mixing and the 
acts of secondary flow have a strong influence on heat transfer in the fluid. Diagrams of unsteady flow and vortex 
structure are further sketched and precisely elucidate the curvature effects on unsteady fluid flow. Finally, a 
comparison between the numerical and experimental data is discussed which demonstrates that both data coincide 
with each other. 
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1. Introduction 

 
 Characteristics of a two-dimensional fluid flow through a rotating curved duct are typically observed 
not only in mechanical sectors, specifically in chemical reactors, rocket and aircraft engines, air-conditioning, 
refrigeration, turbo-machinery; but also applied in biological problems such as human lungs and blood 
circulation in veins and arteries. The analysis of flow through a duct started many years ago, some outstanding 
reviews on a curved duct are given by Zheng et al. [1] for a pipe, Mondal et al. [2] for a square and a 
rectangular duct, Yanase et al. [3] for a rectangular duct, Chandratilleke et al. [4] for an elliptical duct. It is 
investigated that the differences between different types of ducts are characterized based on their force 
generation as well as the curvature. For example, the curved duct generates two types of force, one is the 
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centrifugal force that is due to the curvature of the duct and the other one is the Coriolis force that is induced by 
the duct rotation. The work done due to the centrifugal body force takes place at the outer wall of the duct 
because of the pressure gradient of the flow. As a result, a two-vortex secondary flow is produced, and this two-
vortex secondary flow converts into four-vortex under a critical flow condition. These types of vortices were 
first obtained by Dean [5] and the vortices are called Dean vortices. They are also called hydrodynamic flow 
instability in the base secondary flow.  

Several investigations considered the fluid flow phenomena during a flow through a curved duct. An 
important phenomenon is the bifurcation together with linear stability and secondary flow characteristics. 
Two types of bifurcations, such as Pitchfork and Hopf-bifurcations are found to vanish due to an increasing 
curvature of the duct, see Mondal et al. [6]. Sultana et al. [7] adopted the spectral method to seek out the 
steady solution branches in the curved rotating duct. The effect of aspect ratios in the steady solution 
branches was analyzed by Yanase et al. [8]. The influence of the steady and unsteady solution structures in a 
non-rotating duct for a large aspect ratio was demonstrated by Dolon et al. [9, 10]. For different values of the 
equilibrium contact angle, bifurcation structures for partially wetting liquids in the rotational cylinder were 
studied by Lin et al. [11]. Three-dimensional bifurcation structures of the curved square duct were studied by 
Watanabe and Yanase [12]. Hasan et al. [13, 14] obtained the two- and four-different steady solution 
structures of the rotating and non-rotating curved duct, respectively, when the temperature difference was 
located at the top and bottom walls. 

Several researchers investigated the time-dependent behavior by changing the parameters such as the 
aspect ratio, curvature, Dean number, Grashof number, Taylor number. A detailed explanation of the flow 
through a curved rectangular duct with unsteady behavior was given by Islam et al. [15], where the 
temperature was introduced at the bottom wall. The structural change of unsteady behavior between a 
cylinder and an enclosure was illustrated by Zhang et al. [16]. The unsteady flow structures for different 
curvatures were conducted by Yanase et al. [17]. The effects of Dean and Grashof numbers in the flow 
transition were proposed by Mondal et al. [18]. They also drew the phase space to take a clear decision 
whether the flow is periodic, multi-periodic, or chaotic. Numerical and experimental results of the unsteady 
solutions were demonstrated by Tsuda and Ohba [19] for a U-shaped duct. Dynamic responses of the curved 
duct flow for an extensive range of the Dean number, for both the steady asymmetric and symmetric solution 
branches, were conducted by Wang et al. [20]. Islam et al. [21] showed that the transitional behavior in a 
rotating curved duct for different values of the Dean number with a wide range of Taylor numbers. They also 
described the heat transfer effects and fluid mixing. Hasan et al. [22-24] investigated the unsteady flow 
characteristics as well as the bifurcation structures for both rotating and non-rotating curved ducts. The 
transition based unsteady solutions and the effects of heat transfer in laminar flow were described 
numerically by Helal et al. [25]. 

Characteristics of fluid flow through the curved duct are widely used in metal industry as well as 
petrol engineering. Two- and three-dimensional studies of fluid flow through the duct were performed by 
Yanase et al. [26]. Yamamoto et al. [27] presented the secondary flow profiles for a wide range of the Dean 
and Taylor numbers. A numerical analysis in the secondary flow with convective heat transfer for different 
aspect ratios (1 to 8) was described by Chandratilleke and Nursubyakto [28]. Mondal et al. [29, 30] 
compared their numerical results with the experimental data of Chandratilleke et al. [31] and visualized the 
stream functions and the isotherms for different Dean, Grashof, and Taylor numbers. Datta et al. [32] studied 
the helical curved duct numerically as well as experimentally. The buoyancy forces in the curved duct are 
converted into the driving force for the secondary flow which was obtained by Wang et al. [33]. Moreover, it 
was found that the large secondary velocity created between each of the high-velocity cores. Recently, flow 
characteristics, heat transfer, and entropy generation were performed by Razavi et al. [34]. Heat transfer in 
both steady and unsteady solutions, as well as the temperature gradients for both the circular and non-circular 
ducts were estimated by Hasan et al. [35-37]. Promvonge and Skullong [38] explained the thermal 
characteristics through the v-shaped duct under a fixed heat-flux condition. Norouzi et al. [39] elaborated 
first and second normal stresses by enumerating the Nusselt number, and the influence on secondary flow 
intensity in the elastic property. Garcia et al. [40] analyzed the convection in the rotating spherical cells for 
the oscillating flows. Chanda et al. [41] showed the heat transfer enhancement due to the unsteady flows 
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characteristics in the rectangular duct for both positive and negative rotation. Dolon et al. [42] calculated 
heat transfer in the stable and oscillating flow behavior for the non-rotating curved duct of large aspect ratio. 
Facao and Oliveira [43] used the CFD method and fluent code to manipulate heat transfer in the rectangular 
duct for several Dean numbers. To the best of the authors' knowledge, the physical phenomena of the 
negative rotation through a curved duct is yet to understand. The paper is helpful to fill up this gap. 

The study aims to investigate the unsteady solution and heat transfer for a wide range of negative 
rotation and between two horizontal sidewalls, respectively. Specifically, the linear stability for negative 
rotation is discussed, and the time-dependent flow characteristics are investigated through the rotating curved 
square duct. Furthermore, the change of flow velocity and isotherms in the steady-state, periodic, multi-
periodic, and chaotic are observed carefully and the influence of centrifugal, Coriolis, and buoyancy forces 
in the flow transition is discussed. Moreover, the overall heat transfer through the duct is calculated in order 
to investigate the combined influence of heating-induced buoyancy force and duct rotation upon the collision 
of fluid particles. 
 
2. Physical model and governing equations 

 
 A Newtonian fluid is assumed to be flowing with a fully-developed laminar profile through a curved 
square duct of constant curvature. The lower wall of the duct is a heating source (red), while the upper wall 
is a cooling source (sky-blue), the remaining walls are thermally insulated. Figure 1 presents the physical 
model of the duct, a two-dimension a (2D) cross-section, and the coordinate system with relevant notations. 
The duct is considered to be rotating about the vertical direction. More details about the physical model 
description can be found in Hasan et al. [37]. 
 

 
 

Fig.1. (a) The physical model, (b) 2D cross-sectional view of curved duct. 
 

The continuity equation, Navier-Stokes equations and energy equation in the cylindrical coordinate 
system are written as,  
Continuity equation: 
 

  yr rvvv v1 0
r r y r

θ ∂∂∂ + + + =
∂ ∂θ ∂

,  (2.1) 

 
Navier-Stokes equations: 
 

  ( ).
2

r r
r r 2 2

v vv v1 P 2v v v
t r r r r

θ θ∂∂ ∂  + ∇ − = − + ν Δ − − ∂ ρ ∂ ∂θ 
 ,  (2.2) 
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t r r r r
θ θ θ

θ θ
∂ ∂∂  + ∇ + = − + ν Δ − + ∂ ρ ∂θ ∂θ 
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Energy equation: 
 

  ( ).T v T T
t

∂ + ∇ = κΔ
∂

 .  (2.5) 

 
Here,  

  . r y
vv v v

r r y
θ∂ ∂ ∂∇ = + +

∂ ∂θ ∂
, 

 

  
2 2 2

2 2 2 2
1 1
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∂ ∂ ∂ ∂Δ = + + +
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 , 

 
and xv , yv  and vθ  are velocity components in the r , θ  and y  axis, respectively. Now, Eqs (2.1)-(2.5) are 
non-dimensionalized by the assumptions: 
 

  

0

',  ',  ',  ' ,  ',  ',

',  = ',  ,  = ,  = .
'

r x 0 y y 0

2
z 0 0

r L dx y hy L dz T T T v v U u v v U v

P 2d dv v U w U P G 2
z L Lθ
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∂

 

 
In this study, δ  is the curvature of the duct identified as the ratio of the width and radius of 

curvature. The study is based on a two-dimensional flow which is uniform in the 'z − direction and so 
'
'

p 0
z

∂ =
∂

. After non-dimensionalization, the transformed Eqs (2.1)-(2.5) can be written as,  

Continuity equation: 
 

  ' ' ' '
' ' ' ' '

u v u 1 w 0
x y 1 x 1 x z

∂ ∂ δ ∂+ + + =
∂ ∂ + δ + δ ∂

,  (2.6) 

 
Navier-Stokes equations: 
 

  ( )
( )

'' ' ' ''. ' ' '
' ' ' '

2 2
2

2 2
u 1 w P uv u u
t 2 1 x x Dn 1 x

 ∂ ∂ ∈ δ + ∇ − ∈ = − + Δ −
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 ,  (2.7) 
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Energy equation: 
 

  ( ) '' '. ' ' '
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T v T T
t dU
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∂

  (2.10) 

where 

  ( )'. ' ' '
' '
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x y
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∂ ∂
 

and 

  ' .
' '' '

2

2 2 2 1 x xx y
∂ ∂ δ ∂Δ = + +

+ δ ∂∂ ∂
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Now, introducing the vorticity vector and the stream function along the 'x - and 'y -directions, respectively, we have 
 

  ' ''
' ' ' ' '' '
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      and      ''
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∂ψ= −
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. (2.12) 

 
Differentiating (2.8) and (2.9) with respect to 'x  and 'y  and subtracting, we have, 
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The simplified equations are found after removing the prime signs from the primitive equations and 

finally we obtain, 
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where 
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It is noted that Eqs (2.14)-(2.16) are invariant with respect to the horizontal axis; Dn , Gr , Tr  and 

Pr are the non-dimensional parameters and addressed as the Dean number, the Grashof number, the Taylor 
number and the Prandtl number, respectively, defined as 
 

  ,
3Gd 2dDn

L
=

μυ
      ,

3

2
g T dGr β Δ=

υ
     

3
T2 2 dTr δΩ=

υδ
,      Pr υ=
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. 

 
The boundary conditions of the axial velocity ( )w  and the sectional stream velocity ( )ψ  are 

 

  ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,w 1 y w x 1 1 y x 1 1 y x 1 0
x y

∂ψ ∂ψ± = ± = ψ ± = ψ ± = ± = ± =
∂ ∂

 (2.17) 

 
and the boundary conditions for the isotherm ( )T  are taken as 
 
  ( ) ( ) ( ), , , , ,T x 1 1 T x 1 1 T 1 y y= − = − ± = − .  (2.18) 

 
In the current study, water is the working fluid ( ).Pr 7 0=  and throughout this study we performed 

numerical simulations for ,Dn 1000= Gr 100=  and the curvature ( )δ  and the Taylor number ( )Tr  vary 
from . .0 001 0 5≤ δ ≤  and 10 Tr 2500− ≤ ≤ −  respectively.  
 
3. Numerical calculation 
 
3.1. Numerical processing 

 
To investigate the flow characteristics together with heat transfer through the curved square duct, the 

governing equations are codded by using the spectral method (details of the method were given by Gottlieb 
and Orazag [44]). Expansion of the polynomial functions is one of the main objects of this method. That is, 
the variables ,  w ψ  and T  are expanded in the series of functions ( )n xϕ  and ( )n xψ  together with the 
Chebyshev polynomials and the functions are disclosed as,  

 

  

( ) ( ) ( )

( ) ( ) ( )

2
n n

22
n n

x 1 x C x

x 1 x C x

ϕ = − 



ψ = − 

.  (3.1) 
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Here, ( )nC x  is the nth order Chebyshev polynomials defined by ( ) cos cos ( )1C x n xn
 
 
 

−= . 

Moreover, ( ) ( ), , , , ,w x y t x y tψ  and ( ), ,T x y t  are expanded in terms of ( )n xφ  and ( )n xψ  as: 
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( ) ( ) ( ) ( )

, , )

, , .

, ,

M N

m n m n
m 0 n 0

M N
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w x y t w t x y

x y t t x y

T x y t T t x y y

= =

= =

= =


= φ φ 




ψ = ψ ψ ψ 





= ϕ ϕ − 








  (3.2)
 

 
Here, mnw , m nψ  and m nT  are the coefficients of expansion which start from 0 for both m and n and 

end at M and N respectively where M and N are the truncation numbers for the horizontal and vertical axis. 
After expanding the co-efficient  m nw , m nψ  and m nT , the obtained values are substituted into Eqs (2.14)-
(2.16) with applying the collocation method. As a consequence, the nonlinear algebraic equations for m nw , 

m nψ  and m nT  are found. The collocation points are considered as 
 

  cos ,              cosi i
i jx 1 y 1

M 2 N 2
      = π − = π −      + +      

  (3.3) 

 
where ,...,i 1 M 1= +  and , ,j 1 N 1= … + . In order to calculate the unsteady solutions, the Crank-Nicolson 
and Adams-Bashforth methods together with the function expansion (3.2) and the collocation methods are 
applied to Eqs (2.14)-(2.16).  
 
3.2. Grid accuracy 
 

Grid accuracy is checked in this section for several truncation numbers M and N. Since the paper 
describes a square duct flow, so M and N are considered equal. In this study, the values of the resistance 
coefficient and axial flow negative rotation are taken for several truncation numbers where the parameters of 
governing equations are fixed ( ),  ,  ,  .Dn 1000 Tr 1000 Gr 100 0 001= = − = δ = . Table 1 shows the grid 
accuracy, and it is observed that the values do not show a substantial change for increasing or decreasing the 
truncation numbers. To get sufficient accuracy, ( )M N 20= =  has been taken for numerical simulation. 

 
Table 1. Grid accuracy for several truncations numbers. 

 
M N λ  ( ),w 0 0  
18 18 .03596529 386.001169 
20 20 .03594688 386.006282 
22 22 .03595800 386.062169 
24 24 .03595447 386.165292 
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3.3. Resistance coefficient 
 

The resistance coefficient, λ , which is also known as the hydraulic resistance coefficient, is used as 
the quantity of the flow state in engineering fluids, defined as: 

 

   
*

* *
*

*
21 2

hz

P P 1
2d

− λ= ρω 
Δ

.  (3.4) 

 
The main axial velocity denoted by *ω  is calculated as:  
 

  ( )* , ,
1 1

1 1

v dx x y t dy
4 2 d − −

ω  = ω
δ   .  (3.5) 

 
In this study, λ is related to the mean non-dimensional axial velocity  ω as:  
 

  2
4 2 Dn
5

δλ =
ω 

  (3.6) 
 

 
where * /2 d vω = δ ω  . Equation (3.6) will be applied to find the resistance coefficient of the flow 
evolution by numerical calculations. 

 
4. Results and discussion 

 
4.1. Stability analysis 

 
Here, linear stability is investigated for the flow through a rotating curved duct by assuming z  as an 

independent axis. The function expansion method, together with the collocation method, is applied to the 
linearized equation for the perturbation of axial flow ( )( ),w x y  and secondary flow ( )( ),x yψ . To stabilize the 

unsteady solutions, the perturbation is considered as, teσ , where r iiσ = σ + σ . Here, rσ  represents the real value 
and iσ  addresses the imaginary value. The solution is linearly stable when all the values of rσ  are negative. On 
the other hand, when rσ  contains at least a single positive value, the solution shows linear instability. It is also 
noted that the perturbation increases monotonically if iσ  is equal to zero and oscillatory if iσ  is not equal to zero. 
It is observed that there is a strong interaction between the linear stability analysis and the unsteady solutions. 
Table 2 presents the linear stability analysis where the linear stable points are represented by the bold sign and the 
consecutive of the linear stable and unstable points are represented by the italic sign. Two different types of flow 
velocity such as axial ( )w  and secondary ( )ψ  flow, and isotherms ( )T  are shown in Fig.2. for various Taylor 
numbers. As seen in Fig.2. the axial velocity at the inner wall of the duct is from Tr 10= −  to Tr 450= −  and the 
opposite behavior for the axial velocity is found from Tr 500= −  which is continued till Tr 2500= − . This is 
caused because of the Coriolis force. On the contrary, the secondary flow velocity shows that two up to six-vortex 
are created at the outer wall and inner wall of the duct, respectively, from Tr 10= −  to Tr 450= −  and from 
Tr 500= −  to Tr 2500= − . It is also seen from the secondary streamlines that the dotted lines have been 
generated at the lower wall of the duct consecutively and upper wall from Tr 10= −  to Tr 450= −  and from 
Tr 500= −  to Tr 2500= − . This is due to the effect of the Coriolis force, and the number of vortices is increased 
because of the effects of the duct curvature. It is further remarked that a potential connection is obtained among 
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the axial and the secondary velocity. More explicitly, it is observed at Tr 10= −  that a pair of high-velocity 
regions is generated where the upper region is larger than the lower region and a dumbbell is created at the upper 
region, as a result, an additional two-vortex secondary flow is generated where the upper vortex is larger than the 
lower vortex because the dumbbell of the axial flow is built at the upper region. The same thing occurred for the 
other rotational numbers. Temperature profiles show that the densities of isotherm contours are larger where two 
high-velocity regions of the axial flow and four-, five-, six-vortexes are obtained. So the temperature profiles 
illustrate that isotherms not only demonstrate the enhancement of heat contained at the duct but also describe the 
role of fluid mixing. 

 
Table 2. Linear Stability of the negative solution for .0 001δ = . 

 
Tr  λ  rσ  iσ  Criteria 

-10 .0226198414 . 11 394 10×  . 12 61 10×  Linearly Unstable 
-182.49 .0164892486 . 11 109 10×  0 Linearly Unstable 
-182.50 .0168654054 . 11 02 10−− ×  0 Linearly Stable 
-370.99 .0232515468 -1.1091 0 Linearly Stable 
-371.00 .0232746423 4.2531 0 Linearly Unstable 

-500 .0272618668 . 11 238 10×  . 12 337 10×
 

Linearly Unstable 

-590.91 .0293028924 . 11 0345 10×  .0346 Linearly Unstable 
-590.92 .0293028924 -.020139 0 Linearly Stable 
-912.12 .0346936717 -1.1091 0 Linearly Stable 
-912.13 .0349693671 . 14 6798 10×  . 12 392 10− ×

 
Linearly Unstable 

-1000 .0359468804 . 17 625 10×  . 14 279 10− ×
 

Linearly Unstable 

-1500 .0411072500 . 21 136 10×  . 16 568 10×  Linearly Unstable 
-2000 .0461394361 . 21 359 10×  . 18 416 10×

 
Linearly Unstable 

-2500 .0499782194 . 21 507 10×  . 21 390 10×
 

Linearly Unstable 

 

 
 

Fig.2. Axial ( )w  and secondary ( )ψ flow, and isotherms ( )T  for different Tr. 
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4.2. Time-dependent solutions 
 

Time-dependent behavior of the unsteady solutions is studied here numerically, where the algorithm 
of the time-dependent behavior is codded by adopting the Crank-Nicolson and Adams-Bashforth methods 
alongside the function collocation method. The data is collected from the Code::Blocks, and then the graphs 
are drawn by using TECPLOT 7. In this paper, the unsteady solutions are investigated for a vast range of 
negative rotation ( )10 Tr 2500− ≤ ≤ −  with the fixed Grashof number ( )Gr 100= , curvature ( ).0 001δ = , 
and Dean number ( )Dn 1000= . 

Here, time evolution of the unsteady solution is enumerated for Tr 10= −  and then plotted in Taylor 
number vs. Resistance coefficient plane as shown in Fig.3(a). It is found that the flow characteristics at Tr 10= −  is 
multi-periodic. To explain the multi-periodic flow behavior, the phase space and power spectrum are drawn. The 
phase space of the time evolution is depicted in the λ − γ  plane, where dxdyγ = ψ , as shown in Fig.3(b). It is seen 

that the graph is symmetric about 0γ =  and it has completed multiple orbits before the contour is done. 
Furthermore, the power spectrum of the unsteady behavior is analyzed in the Frequency vs. Amplitude plane as 
shown in Fig.3(c). It shows that the line spectrum frequently oscillates for a fixed range of frequency from 0 to 0.4, 
where the oscillations become weak when the frequency is higher than 0.25 (approximately). Thus, it can easily be 
said that the graph presented in Fig.3(a) is absolutely multi-periodic.  

 

 
 
 

Fig.3. (a) Unsteady flow characteristics, (b) phase space, (c) power spectrum, (d) axial ( )w  and secondary 

( )ψ  flow, and isotherms ( )T ; for Tr 10= − . 
 
To observe vortex generation as well as temperature distribution, streamlines of axial ( )w  and 

secondary ( )ψ  flows, and isotherms ( )T  are obtained as shown in Fig.3(d). The axial velocity demonstrates 
that the flow velocity pushes at the inner side of the duct wall and generates low to exalted-velocity regions 
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near the outer wall. The secondary flows show that two-, three-, four-vortex solutions are created at the outer 
wall of the duct, and the isotherms illustrate that the fluid particles are mixed. This is due to the consequence 
of increasing the temperature and the number of vortexes. It is remarked that there is a strong relationship 
between the flow velocities and the isotherms. At .t 25 10= , the axial velocity consists of two high-velocity 
regions and two dumbbells at the top and bottom portions of the duct respectively. As a result, four-vortex 
stream flow is formed. Again, additional two-vortex structure is observed at the outer wall. It is also seen at 

.t 25 10=  that the upper dumbbells are larger than the lower one, which dominates the size of the lower 
vortexes to be smaller than the upper one. Almost a similar trend is observed for secondary flow and 
isotherms. The isotherms indicate that the density of the streamlines is smaller at the two-vortex solution 
than the four-vortex. The multi-periodic solution that is investigated by the 2D calculation in the study is 
able to specify the presence of three-dimensional (3D) traveling wave solution in real flows which was 
verified by Mees et al. [45], Wang and Yang [46], and in a recent study by Yanase et al. [8]. 

If the number of rotation (Tr) of the duct is prolonged in the negative direction, the multi-periodic 
behavior converts into the steady-state solution, i.e., from .Tr 182 50= −  the steady-state flow starts and this 
behavior is continued up to .Tr 370 99= − , which is also justified by the linear stability analysis (see Table 
2). Figure 4(a) represents the steady-state solutions for Tr 250= − . Two different types of flow velocity such 
as axial ( )w  and secondary ( )ψ flow, and isotherms ( )T  are in Fig.4(b). It is noticed from Fig.4(b) that the 
flow patterns of the steady-state solution do not change with time.  

 

 
 
 

Fig.4. (a) Unsteady flow characteristics, (b) axial ( )w  and secondary ( )ψ  flow, and isotherms ( )T ; for .Tr 250= −  
 

If the Taylor number crosses over .Tr 370 99= − , regular oscillations start again. Figure 5(a) depicts 
the unsteady behavior for Tr 500= −  and it is shown that the unsteady solution is the multi-periodic again. 
The transition of multi-periodic flow characteristics from one state to another is further explained by phase 
space and power spectrum analysis as visualized in Figs 5(b) and 5(c). It is demonstrated from the phase 
space that it has exceeded multiple orbits to reach the origin point. It is also revealed from the power 
spectrum that the vibration of the line spectrums oscillate till 0.05 and then it weakens gradually. It is further 
evident from the phase space and power spectrum that the continuation of the secondary flow stream path 
and the vibration of line spectrums of the frequencies are more unstable than at Tr 10= − . Thus, it can be 
easily said that the multi-periodic oscillation at Tr 500= −  is stronger than Tr 10= − . Two different types of 
flow velocity such as axial ( )w  and secondary ( )ψ  flow, and isotherms ( )T  are shown in Fig.5(d). It is 
observed that the flow velocities display the reverse flow criterion that is found from Tr 10= −  to 
Tr 500= − . It is illustrated that the axial flow velocity produces strong velocity regions at the inner wall 
where the flow velocity pushes to the outer wall of the duct. The additional two vertices (Ekman vortices) are 
generated at the inner wall of the duct and the dotted and solid lines have built at the upper and lower wall 
respectively. This dramatic change of the flow structures occurred because of the Coriolis force of the duct. 
It is also described from the time variation of the secondary flow that the multi-periodic behaviors have 
repeated after 70 seconds (see from .t 23 20=  to .t 23 90= ).  
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Fig.5. (a) Unsteady flow characteristics, (b) phase space, (c) power spectrum, (d) axial ( )w  and secondary 

( )ψ  flow, and isotherms ( )T ; for Tr 500= − . 
 

 
 

 
Fig.6. (a) Unsteady flow characteristics, (b) phase space, (c) power spectrum, (d) axial ( )w  and secondary 

( )ψ  flow, and isotherms ( )T ; for Tr 570= − . 
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The multi-periodic oscillation changes to the chaotic oscillation at Tr 570= − . Figure 6(a) illustrates 
the time-dependent behavior of the chaotic oscillation which is also addressed as transitional chaos (detailed 
in Mondal et al. [6]). The chaotic oscillation is validated with calculating the phase space as well as the 
power spectrum as depicted in Figs 6(b) and 6(c) consecutively. It is evident that at Tr 570= − , the multiple 
orbits of the phase space, which are continued irregularly and the oscillation period of the line spectrums are 
larger for Tr 500= −  in both frequency and amplitude axis. Flow velocities, axial ( )w  and secondary 

( )ψ flow, and isotherms ( )T  are illustrated in Fig.6(d). Here, it is seen that there is no high-velocity region 
in the axial flow, so the secondary flows create only two-vortex solution. 

 

 
 

Fig.7. (a) Unsteady flow characteristics, (b) axial ( )w  and secondary ( )ψ  flow, and isotherms ( )T ; for 
,  -750, -850Tr 650= − . 

 

 
 

Fig.8. (a) Unsteady flow characteristics, (b) phase space, (c) power spectrum, (d) axial ( )w  and secondary 

( )ψ flow, and isotherms ( )T ; for Tr 1000= − . 
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If the Coriolis force speed is increased further in the negative direction, the flow characteristics 
changes. Figure 7(a) reveals unsteady behavior for ,  - ,  -Tr 650 750 850= −  consecutively and it is seen that 
the unsteady flow does not oscillate at the required Taylor numbers and that means the flow is in steady-
state. Flow velocities, axial ( )w  and two vortex secondary ( )ψ  flow, and isotherms ( )T  are shown in 
Fig.7(b) for respective Taylor numbers. 

Now time history analysis for Tr 1000= −  is performed and it is found that the unsteady solution 
exposes periodic flow behavior as shown in Fig.8(a). The phase space is also represented in Fig.8(b) which 
describes that it creates a single orbit in the λ − γ  plane. Furthermore, to observe the flow growth more 
specifically, the power spectrum of the time evolution is calculated as exhibited in Fig.8(c) and it is seen that 
there are no spectrum lines after oscillating one/single. Thus the phase space and power spectrum indicate 
that the flow characteristic in Fig.8(a) is certainly periodic oscillation. Flow velocities such as axial ( )w  and 
secondary ( )ψ  flow, and isotherms ( )T  for periodic solution is exhibited in Fig.8(d) and it is obtained that 
the unsteady solution exposes only two-vortex asymmetric solutions. 

 

 
 

Fig.9. (a) Unsteady flow characteristics, (b) phase space, (c) power spectrum, (d) axial ( )w  and secondary 

( )ψ flow, and isotherms ( )T ; for Tr 1200= − . 
 

At Tr 1200= − , the regular (periodic) oscillation converts into irregular (chaotic) oscillation as 
shown in Fig.9(a) and this chaotic oscillation is continued up to Tr 2500= −  as illustrated in Fig.10(a). From 
the figures, it is evident that the densities of oscillations in the t − λ  plane have increased for raising the 
Taylor number. Thus at Tr 1200= −  is designated as transitional chaos and at Tr 2500= −  is termed strong 
chaos. To justify these irregular oscillations, phase space and power spectrums are enumerated for the 
respective Taylor numbers as shown in Figs 9(b), 9(c); 10(b), 10(c). It is seen that the region of both phase 
space and line spectrums have enlarged for rising the rotational number. Axial flow ( )w , secondary flow 

( )ψ  with two-, three-, four-, five-vortices and temperature profiles ( )T  are shown in Figs 9(d) and 10(d) 
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respectively. The flow characteristics allude that it has allocated symmetrically and the vortices of the 
secondary flows are formed far away from the outer wall of the duct where the remaining streamlines are not 
induced by the Dean vortices. It is further observed that due to the increase of the Taylor number in the 
negative direction, the fluid particles collide and move frequently near the duct walls. At the same time, the 
fluid particles transfer heat from the duct wall to the fluid. Besides, because of the action of centrifugal, 
Coriolis, and buoyancy forces in the duct, the fluid particles collide more; as a consequence, the fluids are 
mixed and this enhances overall heat transfer throughout the fluid and the duct. So it can be easily said that 
there is certainly a connection between the conversion of the periodic, multi-periodic, and chaotic solution 
via steady-state solution which is discussed in what follows in detail. 
 

 
 

Fig.10. (a) Unsteady flow characteristics, (b) phase space, (c) power spectrum, (d) axial ( )w  and secondary 

( )ψ flow, and isotherms ( )T ; for Tr 2500= − . 
 

4.3. Temperature gradients 
 

Here, we obtain the temperature gradients for the heated (bottom) and cooled (top) sidewalls. The influence 

of Taylor numbers on temperature gradients T
x

∂ 
 ∂ 

 for cooled and heated sidewalls in the curved square duct is 

represented in Figs 11(a) and 11(b) respectively. It is seen from Fig.11(a) that T
x

∂
∂

 reduces at the central region 

around y 0=  for an increasing Taylor number. It is also seen from the cooled sidewall that the heat is transferred 
downwards with vibrations from 1−  to .0 5−  at the y - axis and then it moves upwards from .0 5−  to .0 8−  and 
finally it again decreases and at the central of y 0= , the heat transfer reaches in minimum. The same happens from 
y 1=  to y 0= . Therefore it can easily be said that heat is transferred in the symmetric form on the two sides of the 
y 0= . This occurred because two types of forces have acted on it. One is the centrifugal force and the other is 
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temperature. Here, because of the mixing of the fluid, the temperature of the duct becomes high. On the other hand, 

after decreasing of T
x

∂
∂

 from two sides of 1−  to .0 3−  and 1 to .0 3  at the y  plane respectively, for heated 

sidewalls, T
x

∂
∂

 increases monotonically at the central region of y 0= . It is clearly seen that T
x

∂
∂

 is enriched by the 

secondary flow not only in the central region but in other regions within the required range. 
 

 
 

Fig.11. Temperature gradients for ,  ,  = .Dn 1000 Gr 100 0 001= = δ , (a) cooled sidewall, (b) heated sidewall. 
 

4.4. Time evolution and vortex diagram 
 

 
 

Fig.12. (a) unsteady, (b) vortex diagram of secondary flows; for negative rotation at 
. . ,  =0 001 0 5 Dn 1000≤ δ ≤ and Gr 100= . 

 
The time evolution diagram is prezented in Fig.12(a) for a wide range of negative rotation 

( )10 Tr 2500− ≤ ≤ −  and curvature ( ). .0 001 0 5≤ δ ≤ . In Fig.12(a), circle, cross, and triangles represent the 
steady-state, periodic/multi-periodic, chaotic solution respectively. It is known that the Tr − δ  plane that 
nearly all types of flow behaviors such as steady, periodic, multi-periodic and chaotic solutions are found at 

.0 001δ = . Almost the same behavior is obtained except Tr 570= − , i.e., for increasing the curvature the 
chaotic behavior is diminished from that Taylor number. A dramatic change is obseved from .0 001δ =  to 

.0 1δ = . Different types of flow characteristics are found for increasing the curvatures. At .0 1δ = , only periodic 
behavior is obtained for Tr 10= −  which is also converted to steady-state at .0 5δ = . So it can easily be said that 
the flow characteristics depend not only on the Coriolis force but also on the centrifugal force. On the other hand, 
secondary flow structures are also observed for various Taylor numbers as shown in Fig.12(b). It is seen that two-, 
three-, four-, five-, six- vortex solutions are obtained for different Taylor numbers. In the diagram, two-, three-, 
four-, five-, six- vortex are designated by the cross, triangle, square, circle, and diamond respectively. Two 
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different comments can be made on the diagram. The first one is, the number of vortices has increased at regular 
and irregular oscillation more than the steady-state oscillation except for Tr 250= − . The other is, the number of 
vortices has diminished for increasing the curvature of the duct. More explicitly, two up to six vortexes secondary 
flow is generated in .0 001δ =  and .0 01δ =  whereas two up to four vortex solutions are obtained for .0 1δ = , 
and for increasing the curvature more, only two vortex solutions are created for .0 5δ = . 

 
4.5. Numerical vs. experimental validation 
 

The numerical studies are also compared with the experimental results to verify the accuracy. The 
verification is performed not only for the rotational duct but also for the non-rotational duct.  

 

 
 

Fig.13. Experimental (left) vs. numerical (right) results; (i-iii) rotating curved duct by Yamamoto et al. [47], (a-d) 
,Tr 150= −  (e-f) ;Tr 150=  (iv) non-rotating curved duct by (g) Wang and Yang [46], (h) Bara et al. [48]. 

 
Figure 13 shows a comparison of the secondary flow of numerical and experimental data. The left 

side of the figures shows the experimental data where the right side exposes the numerical outcome. The 
experimental results of Figs 13(i) and 13(ii) represent negative and positive rotation successively which is 
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obtained by Yamamoto et al. [47] and Figs 13(iv) and 13(v) illustrate the non-rotating case studied by Wang 
and Yang [46] and Bara et al. [48] respectively. Yamamoto et al. [47] presented experimental data for 
curved duct of square cross section for both positive and negative rotation. They used a water flow tank 
where the dye was injected continuously and this dye and alcohol solution had the same weight as water. 
Firstly, they fixed the duct rotation ( )Tr 150=  in the positive direction for several Dean numbers and took 
photographs at an angle of 180o inlet. The same work was conducted for the fixed negative rotation 
( )Tr 150= − . In our investigation, we change parameters to obtain the same results as Yamamoto et al. [47]. 
After plotting the secondary flow, it is seen from Figs 13(i), (ii) and (iii) that the numerical figures of 
secondary flow are the same as the experimental outcomes. Experimental results for the non-rotating duct are 
given by many scholars. The experimental data in Figs 13(iv) and 13(v) were also considered by Wang and 
Yang [46] and Bara et al. [48] for the non-rotating curved duct. Wang and Yang obtained their experimental 
data by visualization technique at o270  inlet with curvature ratio . .0 4  Bara et al. [48] experimented with 
injecting smoke through the duct and took a photo at o240  inlet. Here, we take Tr 0=  for the non-rotating 
duct, and change the numerical parameters with the same as the experimental data. It is obtained that the 
numerical outcomes found by the authors are evidently similar to the experimental data. 
 
5. Conclusions 

 
 A computation based model for the curved rotating duct is presented and the fluid flow 
characteristics through the duct are investigated for a wide range of values of the Taylor number in the 
negative direction ( )10 Tr 2500− ≤ ≤ − . After an extensive survey, the following outcomes are achieved: 

• Firstly, the linear stability for negative rotation demonstrates that the flow is linearly stable in two 
different regions of Taylor number ( . .182 50 Tr 370 99− ≤ ≤ −  and )-590.92 .Tr 912 12≤ ≤ − . 

• Time-dependent solutions of the unsteady flow illustrate that the flow transition undergoes different 
flow instabilities, “multi-periodic → steady-state → multi-periodic → chaotic → steady-
state → periodic → chaotic” and it is also obtained that the flow transitions become stronger, if the 
Taylor number is raised in the negative direction. A strong connection between the linear stability and 
the unsteady behavior is found, i.e., the unsteady solution totally satisfies the linear stability analysis. 

• Two different flow velocities such as axial and secondary flow and the isotherms are given for various 
Taylor numbers. We obtained that the axial velocity impulses to the inner wall and two up to six vortex 
solutions are generated at the exterior wall of the duct from Tr 10= −  to Tr 250= −  approximately. For 
Tr 300= −  to Tr 2500= − , on the other hand, the axial velocity pushes to the exterior wall of the duct and 
two up to five vortex solutions are generated at the inner wall of the duct. This change of flow structures is 
affected by the Coriolis force and the centrifugal force of the duct. A relation between the axial flows and 
the secondary flows is also developed in study. The isotherms for both cases illustrate that the fluid has 
mixed because of the rotation, as a result, the number of vortices has increased more at the regular and 
irregular oscillation and it has enhanced total heat transfer of the fluid.  

• The unsteady flow and the vortex diagram illustrate that for increasing the curvature of the duct the 
oscillating behavior and the number of vortices decreases. 

• Finally, the numerical results are analyzed with the experimental data and it is observed that numerical 
computations totally agree with the experimental outcomes.  

 
Nomenclature 
 
 Dn  − Dean number      
 d  − half width of the cross section      
 Gr  − Grashof number      
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 h  − half height of the cross section      
 L  − radius of the curvature      
 Pr  − Prandtl number      
 T  − temperature 
 Tr  − Taylor number      
 t  − time     
 u  −velocity components in the x − direction      
 v  − velocity components in the y − direction     

 w  − velocity components in the z − direction     
 x  − horizontal axis     
 y  − vertical axis      
 z  − axis in the direction of the main flow     
 λ  − resistance coefficient     
 ρ  − density 
 κ  − thermal diffusivity  
 ψ  − sectional stream function  
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