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The aim of the study is to analyse the axisymmetric free vibration of layered cylindrical shells filled with a 
quiescent fluid. The fluid is assumed to be incompressible and inviscid. The equations of axisymmetric vibrations of 
layered cylindrical shell filled with fluid, on the longitudinal and transverse displacement components are obtained 
using Love’s first approximation theory. The solutions of displacement functions are assumed in a separable form to 
obtain a system of coupled differential equations in terms of displacement functions. The displacement functions are 
approximated by Bickley-type splines. A generalized eigenvalue problem is obtained and solved numerically for a 
frequency parameter and an associated eigenvector of spline coefficients. Two layered shells with three different 
types of materials under clamped-clamped boundary conditions are considered. Parametric studies are made on the 
variation of the frequency parameter with respect to length-to-radius ratio and length-to-thickness ratio. 
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1. Introduction 
 

 Axisymmetric vibration has been applied widely to thin and laminated cylindrical shell. The 
laminated composite shell is used in industry such as in piping systems, pressure vessels as well as storage 
tanks due to high stiffness and strength to weight ratio. Different theories of shells have been used to 
determine the frequencies of the shell. Moreover, the presence of a liquid in a shell structure significantly 
affects the vibration of the shell structure in terms of frequencies.  

                                                            
* To whom correspondence should be addressed. 
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There are numerous studies on the behaviour cylindrical shells under axisymmetric vibration. 
Forsberg [1] studied the axisymmetric and beam-type vibrations of thin cylindrical shells using Flugge's shell 
equations and the results were compared with exact solutions. Wang et al. [2] investigated a multiple-shell 
model in order to study the axisymmetric and beam vibrations. By applying simply supported end conditions, 
results were obtained which showed that for lower circumferential wave numbers, –n 0 10= , the lowest 
frequency always corresponds to the minimum half-axial wave number m 1= . Furthermore, as the wave 
vector decreases, the lowest frequency decreases and the associated mode shifts from R mode with larger n  
to a coaxial B mode with n 1= . Viswanathan et al. [3] examined the axisymmetric vibrations of layered 
cylindrical shells of variable thickness using spline approximation. Love’s first approximation theory was 
used to determine the frequencies of two-layered cylindrical shells with different types of boundary 
conditions. The axisymmetric free vibration of layered conical shells using the Chebyshev polynomial was 
investigated by Viswanathan et al. [4] to obtain the vibrations of the shell under clamped-clamped boundary 
conditions. Lopatin and Morozov [5] provided a solution of the axisymmetric vibration problem for the 
orthotropic cylindrical shell with rigid weightless end disks. By implementing the clamped-clamped beam 
functions, the shell deflection was determined, and the third derivatives of these functions were used to 
approximate the axial displacement. The solution was solved by using the Ritz method. 

Besides that, studies on axisymmetric cylindrical shells filled with fluid, partially filled with fluid as 
well as submerged shell were made. Lakis and Sinno [6] studied the axisymmetric and beam-like cylindrical 
shells, partially filled with liquid, implemented Sanders’ theory. Free vibration characteristics of anisotropic 
thin cylindrical shells were studied by employing Finite Element Method (FEM). Sinha et al. [7] investigated 
the isotropic cylindrical shell and exact solutions were obtained. Axisymmetric waves propagating along 
fluid-loaded cylindrical shells within the framework of linear elasticity and classical perfect-slip boundary 
conditions at the solid-fluid interface were investigated. Shen et al. [8] examined the beam-mode stability of 
fluid-conveying shell systems with clamped-free (cantilevered) boundary conditions using the Flugge shell 
theory. The problem was solved by using FEM.  

The singular Boundary Method (SBM) was used by Vasyl et al. [9] to analyse the free vibration of 
compound liquid-filled shells. Results obtained with proposed SBM through numerical experiments are in 
good agreement with the Boundary Element Method (BEM) for axisymmetric problems of liquid vibrations. 
It was concluded that the singular boundary method has the essential advantage in CPU time calculations, 
and it does not require thorough gridding and avoids calculation of complicated singular integrals is avoided. 
George and Tatiana [10] examined an axisymmetric vibration of the cylindrical shell loaded with pointed 
masses using the finite element method. The Kirchoff-Love theory with additional inertia in the form of 
“mass belt” of zero width was considered in the study. Axisymmetric wave propagation in an elastic periodic 
cylindrical shell under internal heavy fluid loading was studied by Sorokin et al. [11]. The governing 
equations, which describe propagation of free axisymmetric waves in a pre-stressed isotropic homogeneous 
cylindrical shell with fluid loading were implemented in the study. 

In this study, the problem of axisymmetric vibration of thin elastic circular cylindrical shells filled 
with fluid is considered. The frequencies are determined by the using spline method. The method of spline 
over a two-point boundary value problem with cubic splines is successfully studied by Bickley [12] . Results 
showed that the spline approximation used a lower order approximation, which yields a better accuracy. 
There are numerous studies on the vibrational behavioral of shells with and without fluid using the spline 
method such as the vibration of layered cylindrical shells (using spline method) [13], the vibration of 
antisymmetric angle-ply composite annular plates of variable thickness [14], free vibration of angle-ply 
laminated conical shell with linear and exponential thickness variations [15], free vibration of layered 
cylindrical shells filled with fluid using Love’s first approximation theory [16], free vibration of anti-
symmetric angle-ply layered circular cylindrical shells filled with a quiescent fluid under first order shear 
deformation theory [17], free vibration of cross-ply layered circular cylindrical shells filled with a quiescent 
fluid under first order shear deformation theory [18], free vibration of symmetrically layered angle-ply 
cylindrical shells filled with fluid under first order shear deformation theory (FSDT) [19]. 

Employing Love’s first approximation theory, the governing equations are coupled in the 
longitudinal and transverse displacement components. The layers are considered to be thin, elastic and 
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specially orthotropic or isotropic and assumed to be bonded perfectly together and to move without interface 
slip. The fluid is assumed to be incompressible and the flow of the fluid is inviscid. By assuming the 
displacement components in a separable form, a system of coupled differential equations in displacement 
functions is obtained. Then, the displacement functions are approximated by Bickley-type splines which are 
cubic and quintic. Collocation with these splines yields a set of field equations together with the equations of 
boundary conditions. Hence, it reduces to a system of homogeneous simultaneous algebraic equations on the 
assumed spline coefficients which leads to a generalized eigenvalue problem. The eigenvalue problem is 
solved using eigensolution technique to obtain as many eigenfrequencies as required. From the eigenvectors 
the spline coefficients are computed from which the mode shapes are constructed. In this problem, two layers 
of a composite elastic shell with different types of material such as S-glass Epoxy (SGE), High Strength 
Graphite Epoxy (HSG) and PRD-490 I I I epoxy (PRD) are considered. The parametric study showed the 
effect of length-to-radius ratio and length-to-thickness ratio under clamped-clamped boundary conditions on 
frequency parameters. 
 
2. Theoretical formulation 
 
2.1. Equations of the shell 
 

Consider a thin layered circular cylindrical shell of length ℓ, constant thickness h, radius r. Each 
layer is assumed to be homogeneous, linearly elastic and isotropic or specially orthotropic. The x coordinate 
of the shell is taken along the longitudinal direction, θ and the z coordinate are in the circumferential and 
radial direction, respectively. Equations of motion for the cylindrical shell are written as  
 

  

,
2

x x
2

2 2 2
x x

2 2 2 2

N N1 uh
x r t

M M M N2 1 w ph
r x r hx r t

θ

θ θ θ

∂ ∂ ∂+ = ρ
∂ ∂θ ∂

 ∂ ∂ ∂ ∂+ + − = ρ −  ∂ ∂θ ρ∂ ∂θ ∂ 

 (2.1) 

 
where ,  and x xN N Nθ θ  are the force resultants, ,  and x xM M Mθ θ  are the moments resultants and p  is the 
pressure. They are defined as  
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The strain-displacement relations of the circular cylindrical shell are as follows 
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The stress-strain relations of the k-th layer by neglecting the transverse normal stress and strain are defined as 
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Applying Eq.(2.3) into Eq.(2.4) and then substituting into Eq.(2.2), the force and moment resultants can be 
obtained as 
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where kz  is the distance from the midsurface to the surface of the k-th layer. ,  and ij ij ijA B D are the 
extensional rigidities, the bending-stretching coupling rigidities and the bending rigidities defined by 
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with , , , .i j 1 2 6=   

For a thin shell, k
ijQ  is the reduced stiffness defined as 
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Using Eq.(2.5) in Eq.(2.1), the equations of equilibrium in terms of and u w displacements are obtained in 
the form 
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The differential operators ( ), ; ,ijL i 1 2 j 1 2= =  are the differential operators given as 
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The stress resultants and moment resultants are expressed in terms of longitudinal and transverse 
displacements; ,  u w  of the reference surface. The circumferential displacement v  is neglected since only 
the axisymmetric vibrations are studied. Therefore, the displacement components and u w  are assumed in 
the form of 
 

  
( , ) ( ) ,

( , ) ( )

i t

i t

u x t U x e

w x t W x e

ω

ω

=

=

 (2.7) 

 
where 𝑥 is the longitudinal, 𝜔 is the angular frequency of vibration and 𝑡 is the time. 
 
2.2. Fluid structure interaction equations 
 

The fluid is assumed to be incompressible. Irrotational flow of an inviscid fluid undergoing small 
oscillations is expressed as wave equation. The equation of motion of the fluid can be written in the 
cylindrical coordinates system (x, θ, r) [20]  
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where t is the time, p is the pressure and c is the sound of speed of the fluid. The x and θ -coordinates are the 
same as those of the shell, where the r-coordinate is taken from the x-axis of the shell.  
 
The associated form of the pressure field in the contained fluid, which satisfies Eq. (2.8) is assumed in the 
form of 
 
  ( , , , ) ( ) cos( ) ( ) i t

np r x t x n J r e ωθ = ψ θ  (2.9) 
 
where nJ  is the Bessel function of order n and circumferential modal parameter n. 
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To ensure that the fluid remains in contact with the shell wall, the fluid radial displacement and shell radial 
displacement must be equal at the interface of the shell inner wall and the fluid. This coupling condition then 
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where fρ  is the density of the contained fluid and the prime on the nJ  denotes differentiation with respect to 
the argument r. 
The following non-dimensional parameters are introduced 
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In obtaining equations of shell with fluid, substituting Eq.(2.7) into Eq.(2.6) together with the 
Eq.(2.9) and then applying the non-dimensional parameters, we obtain the equation of the motion of the 
coupled system in symmetric form as 
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where ( ), ; ,ijL i 1 2 j 1 2= =  are the differential operators given as 
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Since the second of Eq.(2.13) contains derivatives of third order in U, the form of Eq.(2.13) is not 

convenient to the solution procedure we propose to adopt. Hence, the equations are combined within 
themselves and a modified set of equations is derived. To modify the equations, the first of Eq.(2.13) is 
differentiated with respect to X and used to eliminate U ′′′(X) in the third equation. Hence, the modified set of 
equations becomes second order in U and fourth order in W and is given by 
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where ( ), ; ,ijL i 1 2 j 1 2= =  are the differential operators given as
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3. Solution procedure 
 
3.1. Bickley-type method 
 
The spline approximation is a lower order approximation which yields a better accuracy than a global higher 
order approximation. Bickley [18] successfully tested the spline collocation method over a two-point 
boundary value problem with cubic splines. The displacement functions ( ) ( ) and U X W X  are 

approximated by cubic and quintic spline functions ( ) ( ) and U X W X∗ ∗ , respectively, as follows 
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Here, ( )jH X X−  is the Heaviside step function. N is the number of intervals in the range of [ ],X 0 1∈  

which is divided. The points of division , ( , , ,... )s
sX X s 0 1 2 N
N

= = =  are chosen as the knots of the splines 

as well as the collocation points. Imposing the condition that the differential equations given by Eq. (2.14) 
are satisfied by these splines at the knots, a set of ( )2N 2+  homogeneous equations into ( )2N 8+  unknown 
spline coefficients , , , , ,i j i j ia b c d e  ( , , , , ; , , ,..., )jf i 0 1 2 3 4 j 0 1 2 N 1= = −  is obtained. 
 
3.2. Boundary conditions 
 

The Clamped-Clamped (C-C) boundary conditions are used to analyse the problem which is 
 

  , , at  and .dWU 0 W 0 0 X 0 X 1
dX

= = = = =  

 
By applying any of boundary conditions, we obtain six more equations on spline coefficients. Combining 
these six equations with the earlier ( )2N 2+  homogeneous equations, we get ( )2N 8+  homogeneous 
equations with the same number of unknowns. Thus, these equations reduce to a system which is called a 
generalized eigenvalue problem of the form 
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  [ ]{ } [ ]{ }2M q P q= λ  (3.2) 
 
where [M] and [P] are matrices of order ( ) ( )2N 5 2N 5+ × + ,{q} is a matrix of order ( )2N 5 1+ × . λ is the 
eigenparameter and eigenvector is the spline coefficient. 
 
4. Results and discussions 
 

Table 1 shows a non-dimensional frequency for an isotropic cylindrical shell filled with a fluid under 
the Clamped-Clamped (C-C) boundary conditions. The results were compared with Zhang et al. [1] and 
Iqbal et al. [2]. To verify the efficiency of the present method comparisons of the results were made. The 
agreement is very good. 
 
Table 1. Comparison of frequency for isotropic cylindrical shell filled with fluid under Clamped-Clamped 

(C-C) boundary conditions ( ),  ,  .L 20 R 1 h 0 01= = = .  
 

Mode Frequency (Hz) 
Circumferential 

Node n 
Axial Mode m Zhang et al. [1] Iqbal et al. [2] Present Results 

2 1 4.93 4.9083 5.45016 
2 2 11.48 11.3512 12.9516 
4 1 18.26 18.23588 18.0586 
4 2 18.73 18.6695 18.8535 
4 3 19.96 19.8425 21.0737 

 
To determine the behavior of the shells, an investigation on two layered cylindrical shells filled with 

the fluid under Clamped-Clamped (C-C) boundary conditions was conducted. Three different types of 
materials considered are High Strength Graphite epoxy (HSG), S-Glass Epoxy (SGE) and PRD-490 III 
epoxy (PRD). The variation of frequency parameters with respect to the thickness of cylinder ( )H  and 
length of cylinder ( )L  was studied. 
 

 
  
Fig.1. Effect of the thickness parameter on the frequency parameter for C-C boundary conditions (HSG-

SGE materials). 
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Fig.2. Effect of the thickness parameter on the frequency parameter for C-C boundary condition (HSG-

PRD materials). 
 

Figure 1 shows the variation of the frequency parameter ( ), ,m m 1 2 3λ =  in the thickness parameter 
H  for two layers HSG-SGE materials under C-C boundary conditions. As for Fig.1(a), the values of the 
circumferential node number n 2= , length L 1=  and relative thickness layer .0 4δ =  are set. Meanwhile, 
the values of ,  n 4 L 1= =  and .0 4δ =  are fixed as depicted in Fig.1(b). Generally, ( ), ,m m 1 2 3λ =  increases 
as H  increases. Moreover, the frequency parameter ( ), ,m m 1 2 3λ =  increases rapidly between .H 0 05=  
and .H 0 06= . In conclusion, the values of ( ), ,m m 1 2 3λ =  are higher for higher values of H .  

Figure 2 depicts how the thickness of the shell, H affects the frequency parameter ( ), ,m m 1 2 3λ =  
for two layers of composite materials with arrangement HSG-PRD under C-C boundary conditions. The 
effect of the frequency parameter is observed by setting the values of the length parameter L 1=  and relative 
layer thickness .0 4δ = . Meanwhile, n 2=  and n 4=  are set for Fig.2(a) and Fig.2(b), respectively. The 
pattern of the frequencies is similar as in Fig.1 in which when the values of H  increase, the frequency 
parameter ( ), ,m m 1 2 3λ =  increases. It can also be seen that in Fig.2(a), ( ), ,m 1 2 3λ  increases rapidly in the 
range . .0 05 H 0 06< < . 

Figure 3 demonstrates the variation of the angular frequency ( )m , ,m 1 2 3ω =  of cylindrical shells 
with respect to the length parameter having two layers which are HSG-SGE materials under C-C boundary 
conditions by fixing the values of H=0.02. Since the frequency parameter that mλ  is explicitly a function of 
the length of the cylinder, hence when studying the influence of the length of the cylinder on its vibrational 
behaviour, the angular frequency ( )m , ,m 1 2 3ω =  is considered instead of mλ . In general, the values of 

( )m , ,m 1 2 3ω =  decrease as the length of the shell increases. 
A comparison of the values ( )m , ,m 1 2 3ω =  is made between Fig.3(a) and Fig.3(b). Results show 

that when n changes from n 2=  to n 4= , the values of ( )m , ,m 1 2 3ω =  in Fig.3b are higher than the values 
of ( )m , ,m 1 2 3ω =  in Fig.3(a). From Fig.3(c) and Fig.3(d), it can also be seen that the values of 

( )m , ,m 1 2 3ω =  in Fig.3(d) are higher compared to Fig.3(c). 
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Fig.3. Effect of the length on the angular frequency for C-C boundary conditions (HSG-SGE materials). 
 

 
  

Fig.4. Effect of the length on the angular frequency for C-C boundary conditions (HSG-PRD materials). 
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Fig.5. Effect of the length on the angular frequency for S-S boundary conditions: (a) HSG-SGE materials, 

(b) HSG-PRD materials). 
 

Figure 4 depicts the variation of the angular frequency ( )m , ,  m 1 2 3ω = with respect to the length 
parameter. HSG-PRD materials were considered under C-C boundary conditions with the circumferential 
node number n 2= , thickness .H 0 02=  and .0 2δ = ; n 2=  and n 4=  for Fig.4(a) and Fig.4(b) are fixed, 
respectively. It has been mentioned (Fig.3.) that the frequency ( )m , ,  m 1 2 3ω = decreases as the length of the 
shell increases. The pattern of the frequency ( )m , ,m 1 2 3ω =  in Fig.4 is similar to Fig.3. 

Figure 5 illustrates to the effect of the length parameter L  on the angular frequency ( ) x 3
m 10 Hzω of 

cylindrical shells having combinations of two layers which are HSG, SGE and PRD materials under C-C 
boundary conditions. The circumferential node number n 2=  relative layer thickness .0 4δ =  and thickness 

.H 0 02=  are fixed. HSG-SGE materials were used in Fig.5(a) whereas HSG-PRD materials were used in 
Fig.5(b). From Fig.5., it is seen that as L  increases mω  decreases for , ,m 1 2 3= . However, it can be 
observed from the figure that the decrease is fast in the range of .0 L 0 75< < , meanwhile ( )m , ,m 1 2 3ω =  
decreases slowly between .0 75 L 2< < .  
 
5. Conclusion 
 

The axisymmetric vibration of a two-layered cylindrical shell filled with a fluid using spline 
approximation was studied. The equations of the shell were considered according to Love’s shell theory, and 
the shells were clamped at both ends. As for the fluid, the fluid is assumed to be incompressible and inviscid. 
The Bickley-type spline was applied to the problem to approximate the displacements. Then, the eigenvalue 
problem was solved to determine the frequency parameters. The impact of the length to thickness ratio and 
length to radius ratio on the frequency parameters was determined. It is concluded that the effects of the 
thickness H on the frequency parameter mλ  is that mλ  increases as H increases. The frequency parameter 
value increases as L increases.  

 
Nomenclature 
 
 , ,x xM M Mθ θ  – moment resultants in the respective directions of the shell 
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 , ,x xN N Nθ θ  – force resultants in the respective directions of the shell 

 p  – pressure 

 ,x θσ σ  – normal stress in the respective directions of shells 

 xθσ  – shear stress in the respective directions of shells 

 ,x θε ε  – normal strain components of the reference surface of the shell 

 xθγ  – shear strain of the reference surface 

 , ,x xθ θκ κ τ  – change in curvature on the reference surface of the shell 

 ( )k
xE  – Young’s modulus along the x  directions of the k-th layer 

 ( )kEθ  – Young’s modulus along the θ  directions of the k-th layer 

 ( )k
xG θ  – shear modulus in the respective directions of the k-th layer 

 ( )k
ijQ  – elements of the stiffness matrix for the material of the k-th layer 

 , ,u v w  – displacements in the x , θ , z direction 

 xθτ  – shear stress in the respective directions of shells 

 n  – number of intervals of spline interpolation 
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