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 The aim of the present paper is to study the impact of diffusion and impedance parameters on the 

propagation of plane waves in a thermoelastic medium for Green and Lindsay theory (G-L) and the Coupled theory 
(C-T) of thermoelasticity. Results are demonstrated for impedance boundary conditions and the amplitude ratios of 
various reflected waves against the angle of incidence are calculated numerically. The characteristics of diffusion, 
relaxation time and impedence parameter on amplitude ratios have been depicted graphically. Some cases of interest 
are also derived from the present investigation. 
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1. Introduction 
 
 Thermodiffusion is an extensive area of research in an elastic solid due to its many applications in the 
field of oil extraction. The coupling between mass diffusion, strain and fields of temperature leads to 
thermodiffusion. The theory of thermodiffusion in an elastic solid for a C-T model was presented by Nowacki 
[1, 2, 3, 4], but it implies the infinite speeds of propagation of thermoelastic waves. Sherief et al. [5] introduced 
the theory of generalized thermodiffusion having one relaxation time, that allows the finite speed of waves in 
an elastic medium. Sherief and Saleh [6] studied a half space problem in the theory of generalized thermoelastic 
diffusion having one relaxation time. Various authors discussed different types of problems in a thermoelastic 
medium [7-11].  
 Kumar and Kansal [12] obtained fundamental solutions and studied wave propagation problems in the 
theory of thermoelastic diffusion. El-Naggar et al. [13] studied the effect of the magnetic field, rotation, 
thermal field, initial stress and voids on the reflection of p-wave with one relaxation time. Marin et al. [14] 
extended the influence theorem to the generalized thermoelasticity in the context of L-S and G-L theories of 
thermoelasticity. Othman and Said [15] studied the effect of diffusion and internal heat source with three phase 
lag in the context of two-temperature theory of thermoelasticity. Saeed et al. [16] investigated the thermal 
effects and relaxation times in poroelastic material using finite element methods under the G-L model. 
 The wave propagation is part of several investigations of seismology as it provides precise results 
which are beneficial for economic activities like tracing of mineral ores, hydrocarbons, construction of dams, 
bridges, roads, the design of highways. The problem of reflection of plane waves has impedance; boundary 
conditions are well postulated as linear combinations of unspecifies functions and their derivatives described 
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on the boundary. The most common use is that such types of problems can be observed in the field of acoustics, 
electromagnetism and in the area of seismology. Tiersten [17] studied the effect of a thin layer of various 
materials over an elastic half-space with the help of impedence boundary conditions. Malischewsky [18] 
investigated the propagation of Rayleigh waves with the help of impedence boundary conditions. Vinh and 
Hue [19] studied propagation of Rayleigh waves in an incompressible elastic half-space having impedence 
boundary conditions. Singh [20] investigated the problem of the reflection of elastic waves at a plane surface 
of an elastic half-space subjected to impedence boundary conditions.  
 In present investigation, the governing equations for a homogeneous isotropic thermodiffusion elastic 
medium are solved to find the amplitude ratios of different reflected waves in the context of the G-L theory 
and CT theory of thermoelasticity for impedence boundary conditions. The effects of impedance parameters 
and relaxation times are shown graphically for incident P-Wave, T-Wave and MD-Wave. The new model can 
be applied to solve problems related to geophysics, earthquake engineering and other fields of science. 
 
2. Statement of the problem 
 

Following Sherief et al. [5] and Green and Lindsay (G-L) [21], the governing equations for isotropic, 
homogeneous, thermodiffusion elastic half-space (without heat sources, diffusive mass sources and body 
forces) in the general Cartesian coordinate system can be written as: 
 
stress-strain-concentration-temperature relation is: 
 

  ,
1

ij ij ij k k 2 1 1t 2 e e 1 C 1 T
t t

    ∂ ∂= μ + δ λ − β + τ − β + τ    ∂ ∂    
, (2.1) 

 
equations of motion: 
 

  ( ) ( ) , ,. 2 1
1 1 i 2 i iu u 1 T 1 C u

t t
   ∂ ∂λ + μ ∇ ∇ + μ∇ − β + τ − β + τ = ρ   ∂ ∂   

   , (2.2) 

 
heat conduction equation: 
 

  *
,

0
E 0 0 1 0 ii

T C eC 1 aT 1 T K T
t t t t t

   ∂ ∂ ∂ ∂ ∂ρ + τ + + τ + β =   ∂ ∂ ∂ ∂ ∂   
, (2.3) 

 
mass diffusion equation: 
 

  , , ,
1

2 ii ii 1 ii
CD e Db 1 C Da 1 T 0

t t t
   ∂ ∂ ∂β − + τ + + τ + =   ∂ ∂ ∂   

 (2.4) 

where 

  ( ) ( ), , , , , ,ij i j j i
1e u u i j 1 2 3
2

= + =  

 
  ( ) ( ),1 t 2 c3 2 3 2β = λ + μ α β = λ + μ α  
 

,λ μ  – Lame's constants, tα  – coefficient of linear thermal expansion, cα  – coefficient of diffusion expansion, 

ρ  – density, EC  – specific heat respectively, *K  – thermal conductivity, T  – temperature distribution, ijt  – 



S.Kaushal, R.Kumar and K.Parmar  101 

components of stress tensor, ije  – components of stain tensor, t – time, ijδ  – Kronecker delta, ,0 1τ τ  – thermal 

relaxation times, ,0 1τ τ  – diffusion relaxation times, C  – concentration, iu  – displacement component, ,a b , 
D – thermodiffusion constants, 0T  – reference temperature. 
For the G-L theory  
 
  1 0 0τ ≥ τ ≥ ,     1 0 0τ ≥ τ ≥ , 
 
for the C-T theory  
 
  1 0

1 0 0τ = τ = τ = τ = . 
 
3. Formulation and solution of the problem 
 
We consider an isotropic, homogeneous thermally conducting diffusion elastic half-space at temperature 0T . 
Consider 3x 0=  as the origin on the surface as well as the 3x - axis pointing normally into the medium (Fig.1.). 
We consider the thermoelastic plane wave in the 1 3x x - plane having a wavefront parallel to the 2x -axis and 
therefore field variables depend only on 1x , 3x , and t . 
For a two dimensional problem, we take 
 
  ( ), ,1 3u u 0 u= . (3.1) 
 
To facilitate the solution, the following dimensionless quantities are introduced: 
 

  ,1
i i

1
x x

c
ω′ =       1 1

i i
1 0

cu u
T

ρ ω′ =
β

,      3i 3i
1 0

1t t
T

′ =
β

,      ' 2
2
1

C C
c

β=
ρ

,  

   (3.2) 

  ' 1
2
1

T T
c

β=
ρ

,      ( ) ( )'', , , , , , , ,0 1 0 1
0 1 1 0 1t t′ ′ ′τ τ τ τ = ω τ τ τ τ ,      ( ),i 1 3=  

 
where 
 

  2
1

2c  λ + μ=  ρ 
 and *

2
2 E 1
1

C c
K

 ρω =   
 

. 

 
The expression relating displacement components ( ), ,1 1 3u x x t  and ( ), ,3 1 3u x x t  to the scalar potential 
functions ( ), ,1 3q x x s  and ( ), ,1 3x x sψ  in a dimensionless form are given by 
 

  1
1 3

qu
x x

∂ ∂ψ= −
∂ ∂

,      3
3 1

qu
x x

∂ ∂ψ= +
∂ ∂

. (3.3) 

 
Assuming the harmonic motion, we can write 
 
  ( ) ( ), , , , , , i tq T C q T C e ωψ = ψ   (3.4) 
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where ω  is known as angular frequency and t is the time. Making use of Eqs (3.1)-(3.4) in Eqs (2.2)-(2.4) 
(suppressing the dashes and bars for ease), we obtain the following equations 
 
  ( ) [ ]2 2 1

1 2 1 21 a q a 1 i T a 1 i C 0   + ∇ + ω − + τ ω − + τ ω =    , 

 
  ( ) ( )2 2 0

3 2 0 4a i q a 1 i i T a 1 i i C 0  ω∇ + + τ ω ω− ∇ − + τ ω ω =    , 

   (3.5) 
  ( ) ( )4 2 1 2

5 6 1 7 8a q a 1 i T a i a 1 i C 0  ∇ + + τ ω ∇ + ω− + τ ω ∇ =    , 

 
  2 2

1a 0 ∇ + ω ψ =   

 
where the values of ia  for i 1 8= −  are given in Appendix-I. 
 Consider a plane wave at ( )3x 0=  propagating through the thermoelastic diffusion solid half space. 
Against each incident wave, one gets a reflected longitudinal displacement wave (P-Wave), thermal wave (T-
Wave), mass diffusive wave (MD-Wave), shear wave (SV-Wave) as represented in Fig.1. 
 

 
 

Fig.1. Geometry of the problem. 
 
The solution of the equations in (3.5) is assumed as 
 
  ( ) ( ) ( )sin cos, , , , , , 1 3i k x x t

0 0 0 0q T C q T C e θ− θ+υψ = ψ  (3.6) 
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where k is the wave number, , , ,0 0 0 0q T Cψ  are constants representing the coefficients of the wave amplitude. 
Inserting the Eq.(3.6) in the set of equations given by Eq.(3.5), yields 
 
  6 4 2F G H 0υ − υ + υ − = , (3.7) 
 
  2

1a 0υ − =  (3.8) 
 

where the values of F, G and H are given in Appendix-II and 
k
ωυ =  is the velocity of waves; ,1 2υ υ  and 3υ  

are the velocities of the waves, namely P-Wave, T-Wave, MD-Wave and 4υ is the velocity of the SV-Wave. 
 
4. Boundary conditions 
 
At surface 3x 0= , the boundary conditions are 
(i)  
  33 1 3t Z u 0+ ω = ,  
(ii)  
  31 1 1t Z u 0+ ω = , 
(iii)    (4.1) 

  
3

T 0
x

∂ =
∂

, 

(iv)  

  
3

C 0
x

∂ =
∂

  

 
where 1Z  and 2Z  are known as impedance parameters. The traction free boundary conditions can be obtained 
by setting 1 2Z Z 0= = . 
 We assume that the values of q, T, C and ψ satisfy the boundary conditions (4.1) as 
 
  [ ] ( ) ( ) ( )( )sin cos sin cos, ,  , , l 1 0 3 0 l 1 0 3 0i k x x i t i k x x i t

l l 0l l1 d f A e A eq T C θ − θ + ω θ − θ + ω+= , (4.2) 

 
  ( ) ( )sin cos sin cos ,4 1 0 3 0 4 1 0 3 0i k x x i t i k x x i t

04 4B e B eθ − θ + ω θ − θ + ωψ +=       l 1 3= −  (4.3) 
 
where the values of ld  and lf  are given in Appendix-III. 0lA  are the amplitudes of various incident waves, 
namely P-Wave, T-Wave, MD-Wave and 04B is the amplitude of the incident SV-Wave. lA  are corresponding 
amplitudes of the reflected waves respectively and 4B  is the amplitude of the reflected SV-Wave. 
Snell's law is given as 
 

  sin sin sinsin sin0 3 41 2

0 1 2 3 4

θ θ θθ θ= = = =
υ υ υ υ υ

 (4.4) 

where 
  1 1 2 2 3 3 4 4 1k k k kυ = υ = υ = υ = ω       at      z 0= , (4.5) 
and 
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, for incident ,
, for incident ,
, for incident ,
, for incident .

1

2
0

3

4

LD wave
T wave
MD wave
SV wave

υ −
υ −υ = υ −
υ −

 

 
Using the potentials as defined by Eq.(3.3) in the boundary conditions (4.1) and with the help of Eqs (4.2)-
(4.5), we get a system of homogeneous equations which can be written as 
 

  
,

4

i j j j
i j 1

a R Y
=

=  

 
where i ja  are defined in Appendix-IV. 
Considering the phase of the reflected waves one can easily write using Eqs (4.2)-(4.3) 
 

  
cos

sin

1
2 2

j 20
0

j j

  θ υ = − θ   υ υ  

. 

 
Following Schoenberg [22], if we write 
 

  ( )
cos cos '

, ,
'

j j j

j j 0

c
i j 1 2 3

2
θ θ

= + =
υ υ πυ

, 

 

  
cos '

Re sin sin
'

1 1
2 22 2

j 2 20 0
0 j m 0

j 0 j j

1 c 2 I

 
       θ υ υ    = − θ + = π − θ          υ υ υ υ         

 

 
where 'jυ  the real phase speed and 'jθ , the angle of reflection is given by  
 

  ( )( )' sin '
sin Re sin

sin

1
2 21

2j j 2 2 2
0 0 4 0

0 0

−
  υ θ   = θ + υ υ − θ υ θ     

 

 
and jc  is the attenuation in a depth and equals the wavelength of particular incident wave, i.e. ( ) /02 πυ ω . 
 
5. Special case 
 
Neglecting diffusion effect a b D 0= = = : we have obtained the corresponding amplitude ratio for the 
generalized theory of thermoelasticity for the incident P-Wave, T-Wave and SV-Wave for the thermoelastic 
half space with the following changed values: 
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  ( ) ,2 2
1 21 a q a T 0 + ∇ + ω − =        ( ) ,2 2

3 2 0a i q a 1 i i T 0 ω∇ + + τ ω ω − ∇ =   

 
  2 2

1a 0 ∇ + ω ψ =         

where 

  , ,3 g l
l 2

g l

a
d l 1 2

1

τ − υ
= =

τ υ −
. 

 
6. Numerical results and discussion 
 
 Following Sherief and Saleh [6], the values of the relevant parameters for numerical computations are 
taken as: 
 
  . 10 1 23 86 10 Kgm s− −μ = × ,      . 10 1 27 76 10 Kgm s− −λ = × , 
 
  0T 293K= ,      38954Kgm−ρ = * . 10 1 1K 1 0 10 Wm K− −= × , 
 
  . deg3 1 1

EC 383 1 10 J Kg− −= × . 
 
Following Thomas [23], diffusion parameters are: 
 
  . 5 1

t 1 78 10 K= −α = × ,      . 4 3 1
c 1 98 10 m K g− − −α = × ,      . 6 5 1 1b 0 9 10 m Kg s− −= ×  

 
  . 4 2 2 1a 1 2 10 m s K− −= × ,      . 8 3D 0 85 10 Kg m− −= × . 
 
The relaxation times are taken as: 
 
  .0 0 2 sτ = ,      .1 0 4sτ = ,      .0 0 1sτ = ,       .1 0 3 sτ = . 
 
The variations of amplitude ratios for plane waves in the thermodiffusion elastic half-space along with 
impedance conditions are shown graphically in Figs 2-13 with the angle of incidence 0 0

00 90≤ θ ≤  for the 
incident P-Wave, T-Wave and MD-Wave. The solid line and dashed line correspond to the case of the coupled 
theory of thermoelasticity for impedance parameter ( 1Z 10=  and 2Z 10= ) and non-impedance parameter 
( 1Z 0=  and 2Z 0= ), whereas the solid line with center symbol 'triangle' and the dashed line with center 
symbol 'diamond' represent the case of the G-L theory of thermoelasticity with impedance parameter ( 1Z 10=  
and 2Z 10= ) , and non-impedance parameter ( 1Z 0=  and 2Z 0= ). 
 
6.1. Incident P-Wave: 
 
 Figure 2 depicts the value of the amplitude ratio 1R , it is observed that initially the value of 1R

increases in the range 0 0
00 18≤ θ ≤ and decreases in the remaining range. It is also noticed that the values of 

1R  for CTNI remain smaller than the values for CTI whereas trends are opposite for the GL theory in the 
whole range. 
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Fig.2. Variation of the amplitude ratio |R1| for  

P-Wave. 
Fig.3. Variation of the amplitude ratio |R2| for 

P-Wave. 
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Fig.4. Variation of the amplitude ratio |R3| for  

P-Wave 
Fig.5. Variation of the amplitude ratio |R4| for 

P-Wave 
 
 Figure 3 is a plot of the amplitude ratio 2R . It is noticed that the trend of curves for CTI is similar to 
CTNI in the entire range with a significant difference in their values, which reveals the impact of the impedance 
parameters. The amplitude ratio 2R  for GLI and GLNI is smaller than that observed for CTI and CTNI, which 
reveals the impact of the relaxation time. 
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 Figure 4 shows the variation of the amplitude ratio of 3R  along with the angle of incidence. It is 
observed that the trend of variation of the amplitude ratio 3R  is similar to that observed for 2R with 
significant difference in their values. 
 Figure 5 depicts that the value of the amplitude ratio 4R  for the CT-theory and GL-theory in the case 

of 1Z 10=  and 2Z 10=  it increases in the range 0 0
00 27≤ θ ≤  and 0 0

045 90≤ θ ≤  whereas trends for the CT-
theory and GL-theory in case of 1Z 0=  and 2Z 0=  are opposite in nature. The value of amplitude ratio for 
CTNI and GLNI decreases in the entire range and approaches zero as the value of 0θ increases. 
 
6.2. Incident T-Wave 
 
 Figure 6 shows that the value of the amplitude ratio 1R  for the CT-theory and GL-theory increases 

in the range 0 0
00 32≤ θ ≤  and then decreases and approaches zero in the remaining range. Also it is observed 

that CTI and CTNI have a steeper slope as compared to GLI and GLNI. 
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Fig.6. Variation of the amplitude ratio |R1| for  

T-Wave. 
Fig.7. Variation of the amplitude ratio |R2| for 

T-Wave. 
 
 Figure 7 shows the amplitude ratio 2R . It is observed that for the GL-theory with impedance and 
non-impedance parameters it is smaller than that observed for the CT-theory which shows the impact of the 
relaxation time. 
 Figure 8 is a plot of the amplitude ratio of 3R  along with the angle of incidence. It is noticed that the trend 
of variation of the amplitude ratio 3R  is similar to that observed for 2R  with notable differences in values.  
 Figure 9 depicts that trend for the 4R .It is observed that for GLI is similar to CTI as both increase in 

the range 0 0
00 27≤ θ ≤  and the trend is opposite in the remaining range and with the increase in 0θ , the values 

tend to zero. Also, it is noticed that there is an overall decrease in the trend in curves for GLNI and CTNI in 
the whole range. 
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Fig.8. Variation of the amplitude ratio |R3| for  

T-Wave. 
Fig.9. Variation of the amplitude ratio |R4| for 

T-Wave. 
 
6.3. Incident MD-Wave 
 
 Figure 10 is a plot of the amplitude ratio 1R . It is noticed that trends of curves for CTI are similar to 
those observed for CTNI with a significant difference in their values, which reveals the impact of impedance 
parameters. The amplitude ratio 1R  for GLI and GLNI is smaller that those observed for CTI and CTNI, 
which reveals the impact of relaxation time. 
 

0 18 36 54 72 90
Angle of incidence

0

2

4

6

8

10

12

14

16

18

20

22

Am
pl

itu
de

 ra
tio

 R
1

CTI
GLI
CTNI
GLNI

0 18 36 54 72 90
Angle of incidence

0

1.5

3

4.5

6

7.5

9

Am
pl

itu
de

 ra
tio

 R
2

CTI
GLI
CTNI
GLNI

  
Fig.10. Variation of the amplitude ratio |R1| for 

MD-Wave. 
Fig.11. Variation of the amplitude ratio |R2| for 

MD-Wave. 
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 Figure 11 shows the variations of 2R  for the CT-theory and GL-theory. It is observed that in both the 

cases the impedance parameter increases in the range 0 0
00 27≤ θ ≤ and vice-versa in the remaining range 

which ultimately approaches zero. It is noticed that the difference between the amplitude ratio for GLI and 
GLNI is smaller than that noticed for CTI and CTNI. 
 Figure 12 is the variation of the amplitude ratio 3R  along with the angle of incidence. It is observed 
that the trend of variation of amplitude ratio 3R  is similar to that observed for 2R  with a significant 
difference in their values. 
 Figure 13 shows the variations of 4R . It is noticed that initially there is a gradual increase for CTI 
and GLI i.e. in case of the impedance parameter whereas the values decrease for CTNI and GLNI i.e. in case 
of the non-impedance parameter in the range 0 0

00 32≤ θ ≤ and with the increase in 0θ the trend changes and 
the values tend towards the origin for the latter case. 
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Fig.12. Variation of the amplitude ratio |R3| for 

MD-Wave. 
Fig.13. Variation of the amplitude ratio |R4| for 

MD-Wave. 
 
7. Conclusion 
 
 The problem of reflection for the impedance boundary condition is studied for a generalized 
thermoelastic diffusion medium in two relaxation theories of thermoelasticity. The following observations can 
be made: 
(i) In case of P-Wave, the values of the amplitude ratio 1R , 2R  and 3R  for the case of the G-L theory 

are greater in the entire range as compared to those obtained for the CT theory of thermoelasticity, whereas 
in the absence of impedance parameter the values for the amplitude ratio 4R show a decreasing trend and 
for the impedance parameter, it is shows an increasing trend in the entire range. 

(ii) It is observed that the values of the amplitude ratio 1R , 2R  and 3R  for the case of T-Wave follows an 
opposite behaviour as observed for P-Wave i.e. the values of amplitude ratios for 1R , 2R  and 3R are 
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greater in case of the CT theory. In the presence of the impedance parameter the values of 4R  are greater 
in comparison to those observed for non-impedance parameter. 

(iii) It is observed that trends of 1R , 2R  and 3R  are similar in nature for impedance and non-impedance 
parameter, whereas an opposite behaviour is observed for the case of 4R  in case of MD-Wave. 

 It is concluded that diffusion and relaxation times have a significant impact on reflection. Also, 
impedance parameters plays a vital role in reflection. The present new model is useful for more realistic models 
of thermo-diffusion elastic solids present in the earth's interior. Therefore, the problem is of geophysical 
interest, particularly for investigations concerned with an earthquake and other phenomena in seismology and 
engineering. 
 
Nomenclature 
 
 , ,a b D   –thermodiffusion constants 

 C  – concentration 

 *K  – thermal conductivity 
 T  – temperature distribution 
 0T  – reference temperature 

 t  – time 
 i jt  – component of stress tensor 

 u  – displacement vector 

 tα  – coefficient of linear thermal expansion 

 i jδ  – Kronecker delta 

 ,λ μ  – Lame’s constants 

 ,C∗ρ  – density and specific heat respectively 

 ,0 1τ τ  – thermal relaxation times 

 ,0 1τ τ  – diffusion relaxation times 
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