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An electro-magnetohydrodynamic (EMHD) two fluid flow and heat transfer of ionized gases through a 

horizontal channel surrounded by non-conducting plates in a rotating framework with Hall currents is 
investigated. The Hall effect is considered with an assumption that the gases are completely ionized and the 
strength of the applied transverse magnetic field is strong. The governing equations are solved analytically for the 
temperature and velocity distributions in two fluid flow regions. The numerical solutions are demonstrated 
graphically for various physical parameters such the Hartmann number, Hall parameter, rotation parameter, and 
so on. It was noticed that an increment is either due to the Hall parameter or the rotation parameter reduces the 
temperature in the two regions. 
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1. Introduction 
 
 The principle of electro-magneto hydrodynamics describes all phenomena associated with the 
interaction of magnetic and electric fields with magnetic or electrically conducting fluids, and it has been 
adopted for various technological as well as in industrial applications. This subject has been known for over 
a century and there are few admirable research papers presented by many scientists [1-13] who highlighted 
the diverse aspects of this expeditiously growing field. 
 Modeling of plasma flows in a rotating frame of reference can also provide significant insights into 
electro-magneto hydrodynamic flows for a single fluid. It has also been reported in the literature that in 
magnetized plasma, the impacts of Hall currents become significant when the vitality of the magnetic field is 
very large. Numerous investigations have been made accessible in the literature on the subject of MHD 
plasma flows with or without rotation effect under the impact of a strong magnetic field in varied 
geometrical situations [14-23].This type of flow turned out to be a significant domain of research for both 
academic and scientific community in view of the enormous applications in aero-space science, engineering, 
technology and in several industrial contexts such as energy conversion systems, extraction of the products 
of oil in the geothermal regions, in designing the thermonuclear fusion reactor, MHD power generation 
model and so forth [24-32]. Likewise, Lohrasbi and Sahai [33] investigated the magnetohydrodynamic heat 
transfer in a two-phase flow between parallel plates. Umavathi et al. [34] studied an oscillatory Hartmann 
two fluid flow and heat transfer in a horizontal channel. The problem of a hydromagnetic two phase flow in a 
channel was discussed by Chamkha [35]. Li et al. [36] investigated the linear stability of two fluid interfaces 
for electro-hydro-dynamic mixing in a channel. Hasnain Qaisrani et al. [37] studied the statistical properties 
of three-dimensional two fluid plasma models. Abd Elmaboud et al. [38] studied an electromagnetic flow for 
two-layer immiscible fluids. Raju [39] investigated the magnetohydrodynamic heat transfer in two ionized 
fluids flow between two parallel plates with Hall currents was investigated. Recently, Raju and Gowri [40] 
studied the effects of Hall currents on unsteady magnetohydrodynamic two-ionized fluid flow and heat 
transfer in a horizontal channel. 
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 It follows from the aforesaid studies that a significance piece of investigation work has been reported 
in the literature with single liquid flow phenomena and very limited theoretical studies exist for channel flow 
system of two - fluid flows of electrically conducting fluids such as, gases and liquids without or with Hall 
and rotation effects. The electro-magnetohydrodynamic two fluid plasma flows in a rotating frame of 
reference is presumed to be the novel model study and has applications in the development of the conceptual 
design of fusion reactors and liquid metal magnetohydrodynamic rotating power generators, etc. So, in this 
article the impacts of Hall currents and Coriolis forces on an EMHD two-fluid flow in a horizontal channel 
bounded by two parallel non-conducting plates is contemplated. The combined effects of the proposed model 
may have applications in the design of the energy extraction framework from the blanket of the 
thermonuclear fusion reactor and in liquid metal MHD rotating power generation models, Hall accelerators 
and the conceptual design of fusion reactors, which may be interested in Engineers. 
 
2. Mathematical model  
 
 The schematic diagram for a steady two-dimensional EMHD two-fluid flow of ionized gases driven 

by a constant pressure gradient p
x

∂−
∂

in a horizontal channel bounded by two parallel rigid plates with Hall 

currents is shown in Fig.1. The two plates are kept at 1y h=  and 2y h=  and are infinitely long in the x-and 
z-directions choosing the origin halfway between the two plates. The x-axis is taken toward the 
hydrodynamic pressure gradient in the plane parallel to the channel plates however not towards the flow.  
 

 
 

Fig.1. Schematic flow diagram. 
 
A constant magnetic field 0B  is imposed in the y-direction, which is transverse to the flow field. The whole 
system is rotated with an angular velocity Ω  about an axis perpendicular to the plates. The plates are 
considered to be electrically non-conducting. The Hall Effect is considered with the assumption that the 
gases are totally ionized and the strength of the magnetic field is strong. In order to disregard the induced 
magnetic field, the magnetic Reynolds number is taken as small. The upper fluid region and lower fluid 
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regions are considered as 10 y h≤ ≤  and 2h y 0− ≤ ≤ , also these fluid regions are labeled as Regions I, II. 
These two regions are involved by two immiscible electrically conducting incompressible fluids with 
different densities ,1ρ ,2ρ viscosities ,1μ ,2μ electrical conductivities 01σ , 02σ and thermal conductivities 1K  
and 2K . The channel plates are kept up at uniform temperature wT , so that w1 w2T T= . It is supposed that the 
thermal boundary conditions affect the infinite channel plates everywhere. The thermal conduction in the 
flow direction and electron heating is also ignored. The interface between the two immiscible fluids is 
preferred as flat, stress-free and undisturbed. 
 To define the governing equations, we assume in the basic equations of EMHD flow that the velocity 
field as ( , , ),i i iV u 0 w=  magnetic field intensity ( , , ),0B 0 B 0= angular velocity ( , , ),0 0Ω = Ω  current density

( , , )=i ix izJ J 0 J since all over the flow field iyJ 0= , and the electric field ( , , ),i ix izE E 0 E= where ( , )i 1 2=  in 
both the upper and lower liquid stream regions. Likewise, the equations designed for x- and z- components of 
the momentum and current as well as the equation of energy in the two fluid areas (namely, Region-I and 
Region-II) are obtained: 
 
Region-I 
 

  ( ) ( ){ },
2

1 11
1 1 1 0 11 1z 1 0 21 1x 1 02

01

d u p2 w 1 s 1 B E u B E w B
xdy

  σ ∂ ρ Ω = μ − − − + −σ + + σ −  σ ∂   
 (2.1) 
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σ ∂

 (2.2) 
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01
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       = − μ + +     σ       
, (2.3) 
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  ( ) ( ) ( )1x1z 11
1z 11 1 21 1

0 0 01 0

EE s pJ u w 1
B B B x

σ ∂= σ + − σ − − −
σ ∂

. (2.5) 

 
Region-II 
 

  ( ) ( ){ ( ) } ,σ ∂
 ρ Ω = μ − − − + −σ + + σ − σ ∂

2
2 12

2 2 2 0 12 2z 2 0 22 2x 2 02
02

d u p2 w 1 1 s B E u B E w B
xdy

 (2.6) 

 

  ( ) ( ){ }
2

2 22
2 2 2 0 12 2x 2 0 22 2z 2 02

02

d w p2 u s B E w B E u B
xdy

σ ∂− ρ Ω = μ + + σ − + σ +
σ ∂

, (2.7) 

 

  
2 22 2

2 2 2 2
2 22

02

d T du dw JK
dy dydy

       = − μ + +     σ       
, (2.8) 
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  22
2x 12 2 x 0 12 2 22 2z 0 22 2

0 02

s pJ E B w E B u
B x

σ ∂= σ − σ + σ + σ +
σ ∂

, (2.9) 

 

  ( ) ( ) ( )2 x2z 12
2z 12 1 22 2

0 0 02 0

EE s pJ u w 1
B B B x

σ ∂= σ + − σ − − −
σ ∂

. (2.10) 

 
 The boundary conditions for Eqs (2.1)-(2.10) are assumed in the form: 
 
  ( ) ( ) ( ) ( ), , , ,1 1 1 1 2 2 2 2u h 0 w h 0 u h 0 w h 0= = − = − =  (2.11) 
 
  ( ) ( ) ( ) ( ), for ,1 2 1 2 1 2u 0 u 0 w 0 w 0 h h= = =  (2.12)  
 

  and at ,1 2 1 2
1 2 1 2

du du dw dw y 0
dy dy dy dy

μ = μ μ = μ =  (2.13) 

 

  
( ) ( ) ( ) ( ), , for ,

at .

1 1 w1 2 2 w2 1 2 1 2

1 2
1 2

T h T T h T T 0 T 0 h h

dT dTK K y 0
dy dy

= = = =

= =

 (2.14) 

 
 In the above equations (2.1)-(2.10) and conditions (2.11)-(2.14), the subscripts 1 and 2 refer to the 
quantities for Region-I and II separately. The quantities u1, u2 and w1, w2 are the x-and z- components of the 
velocity in the two fluid regions, likewise these are known as the primary and secondary velocity 
distributions of the flow field. The quantities T1 and T2 are the temperatures in the two regions, and 

( , )iCp i 1 2= is the specific heat at constant pressure. The quantities ixE and izE , ixJ and izJ ( , )i 1 2=  are the 
x- and z-components of the electric field, and current densities separately. The term /es p p=  is called as 
the proportion of electron pressure to the total pressure. The symbol Ω  denotes the angular velocity, 
likewise the symbols ,11 12σ σ and ,21 22σ σ are the modified conductivities parallel and normal to the 
direction of the electric field separately. 

The under stated non-dimensional quantities are utilized to make the flow equations (2.1)-(2.10) and 
conditions dimensionless: 
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and the Hartmann number is H 2 2
a 01 0 1 1B h= σ μ , the Taylor number or rotation parameter K ρ Ω= μ

2
1 1

1

h  

(i.e., the reciprocal of the Ekman number), the density ratio is , 2

1
ρ = ρ

ρ
 the viscosity ratio is ,1

2

μα =
μ

 the 

height ratio is 2

1

hh
h

= , the electrical conductivity ratio is ,01
0

02

σ
σ =

σ
,12

01
11

σσ =
σ

,22
02

21

σσ =
σ

,11
2

01

1
1 m

σ=
σ+

,21
2

01

m
1 m

σ=
σ+

 the Hall parameter is ,e

e

1 1
m ω

=
 

+ τ τ 

 the Prandtl number is i pi
ri

i

C
P

K
μ

= , the thermal 

conductivity ratio is β 1

2

K
K

=  and the temperature distribution is iθ i wi
2

p 1 i

T -T ,
(u μ /K )

= and eω  is the gyration 

frequency of electrons, τ , eτ  are the mean collision time among electron and ion, electron and neutral 
particles respectively. Likewise, the expression for Hall parameter m is valid in the case of a partially-ionized 
gas agrees with that of completely ionized gas when eτ  approaches infinity. Thus, with the assistance of the 
previously mentioned non-dimensional factors (2.15) and ignoring the asterisks for simplicity, the non-
dimensional type of principal equations (2.1)-(2.10) and conditions in Region-I and Region-II become: 
 
Region-I 

  ( ) ( ) 222
1 1 a1 1 a2 1

1 12 2 2
xz m w mHm u Hd u2K w k

dy 1 m 1 m
−+

= − + +
+ +

, (2.16) 

 

  ( ) ( )2 22
1 1 a 1 1 a2 1

1 22 2 2
x zm w H m u mHd w2K u k
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− +
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, (2.17) 
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Region-II 
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2 22
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0 a 22
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1 d du dw h H I
P dy dydy

     θ β   = − + + σ β    α       
,  (2.23) 

 

  ( ) ( ) 2
2 0 1 2 0 2 0 2

2 2 2 2
a

2x 2z
2x

m w m u m smI
1 m 1 m 1 m H
− σ σ + σ σ σ σ = + −  + + + 

,  (2.24) 

 

  

( ) ( ) ,2 0 22 0 1 0 1 0
2 2 2 2

a

2 2 2
2

2x2z
2z

2x 2z

m w mm u sI 1
1 m 1 m 1 m H

I I I

− σ σ+ σ σ σ σ σ = − + − + + + 

= +

 (2.25) 

 
where 
 

  , , , .
2

0 1 0 2
1 2 3 42 2 2 2

smsm smk 1 k k 1 1 s k
1 m 1 m 1 m 1 m

σ σ σ σ = − = − = − − = − + + + +   
 
The boundary conditions are  
 
  ( ) , ( ) , ( ) , ( ) , ( ) ( ), ( ) ( );1 1 2 2 1 2 1 2u 1 0 w 1 0 u 1 0 w 1 0 u 0 u 0 w 0 w 0+ = + = − = − = = =  

 

  and1 2du 1 du
dy h dy

=
α

      at1 2dw 1 dw y 0
dy h dy

= =
α

, (2.26) 

 

  ( ) ( ) ( ) ( ), - , and at .1 2
1 2 1 2

d d11 0 1 0 0 0 y 0
dy h dy
θ θθ = θ = θ = θ = =

β
 (2.27) 

 
3. Solution to the problem 
 

Equations (2.16)-(2.25) as well as the conditions (2.26) and (2.27) represent a system of linear 
ordinary differential equations and conditions, and these are solved analytically. Firstly, Eqs (2.16), (2.17) 
and (2.21), (2.22) are solved for the velocity employing the prescribed conditions (2.26). Consequently, the 
closed form solutions for temperature in the two-fluid regions and heat transfer rate at the side plates are 
achieved when the plates are made of a non-conducting material. As the side plates are non-conducting, the 
total current should vanish and hence the following conditions are utilized [15, 39]. 
The conditions for the currents are 

 

  
1

1x
0

I dy 0=       and      ,
1

2x
0

I dy 0=  (3.1) 

 
if the plates are kept at a huge distance in the direction of the x-axis.  
Similarly,  
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1

1z
0

I dy 0=       and      
1

2z
0

I dy 0= ,   (3.2) 

 
when the plates are kept at a huge distance in the direction of the z-axis.  
 Using the above conditions (3.1)-(3.2), the constants involved in the solution of velocity distributions 
are determined and then the analytical solutions for ,,  ,  ,  and 1 2 1 2 1 2u u w w I I in the two regions are attained. 
Substituting the expressions of ,,  ,  ,  and  1 2 1 2 1 2u u w w I I in the energy equations (2.18) and (2.23), the 
following resultant ordinary differential equations are attained for the two-fluid regions.  
 
Region-I: 
 

  ( )( )Q Q Q Q
22
a1 1 11

1 112 2
r1

H1 d d d 1 1
P dy dydy 1 m

   θ = − + − −   
+    

. (3.3) 

 
Region-II: 
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2 22

a 02 2 2
2 22 2

r2

h H1 d dQ dQ Q 1 Q 1
P dy dydy 1 m

     βσθ β= +      α +      
 (3.4) 

 
where 
 

  , ,1 2
1 2

1m 2m

q qQ Q
q q

= =       1 1 1q u iw= + ,      ,2 2 2q u iw= +  

 

  , , , ,1 1 1 1 2 2 2 2
1 1 2 2

q q q q q q q qu w u w
2 2i 2 2i
+ − + −= = = =  

 
  , . 1m 1m 1m 2m 2m 2mq u iw q u iw= + = +  
 

 and 1 2Q Q are the complex conjugates of and 1 2Q Q , respectively. The quantities 1q  and 2q are the 
solutions of the velocities; ,1mq 2mq are the corresponding mean velocities. The solutions for 1q and 2q  are 
obtained by solving Eqs (2.16), (2.17), (2.21) and (2.22) utilizing the conditions (2.26). By using these 
solutions, the above stated Eqs (3.3) and (3.4) are solved under the boundary and interface conditions (2.27) 
to obtain the temperature distributions 1θ , 2θ  in the two regions. The rates of heat transfer at the upper and 

lower plate of the channel are given by - at  1
1

dNu y 1
dy
θ= = and at -2

2
1 dNu y 1
h dy

θ= =
β

are also obtained. 

The details of calculation are omitted here as they are lengthy expressions. 
 
4. Results and discussion 
 
 To acquire the physical insight into the problem and to discuss the results, numerical calculations are 
made for both the velocity and temperature fields in the two-ionized fluid regions. The resulted estimates for 
various values of the governing parameters are represented graphically in Figs 2-19. The specific parameters 

. , . ,1 21 2 1 5 1σ = σ = ρ =  and r1 r2P 1 P= = are fixed for all the computations and the impact of auxiliary 
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imperative flow parameters on both the velocity and temperature is studied. As expected, it is also observed 
that the solutions are independent of the ionization parameter s  (that is, the ratio of electron pressure to the 
total pressure). 
 

 
  
Fig.2. Primary velocity for different aH and 

. ,  ,  . ,  . ,  ,  
. ,  ,  .

0 1

2

0 333 2 h 0 8 1 2 m 2
1 5 K 2 1

α = σ = = σ = =
σ = = ρ =

 

Fig.3 Secondary velocity for different aH  and 
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Fig.4. Temperature for different aH and
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Fig.5. Primary velocity for different m and 
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 The impact of varying the Hartmann number aH on velocity and temperature fields in the two fluid 
regions is demonstrated in Figs 2-4. It is seen from Figs 2 and 3 that a rise in the Hartmann's number 
diminishes the primary and secondary velocities in the two regions. This reduction in the velocity 
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components may be due to the presence of a magnetic field in an electrically conducting fluids, introduction 
of a Lorentz force which acts against the flow under the applied magnetic field in the normal direction (that 
is, along the y-direction).  
 

 
  
Fig.6. Secondary velocity for different m and 
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Fig.7. Temperature for different m and  
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Fig.8 Primary velocity  for different K and 
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Fig.9 Secondary velocity for different K and  
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Fig.10. Temperature for different K and 
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Fig.11. Primary velocity for different α  and 
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Fig.12. Secondary velocity  for different α and 
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Fig.13. Temperature for different α and 
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 Hence, the resulting resistive force reduces the fluid velocity. Additionally, the maximum velocity in 
the channel falls below the channel center line close to the region-II for an estimate of the Hartmann number 

aH 10= in the case of the primary velocity component. While in the secondary velocity component, it is 
noticed that the magnitude of fluid velocity is greater in the upper region as compared to that of the lower 
fluid region for an estimate of the Hartmann number aH 2= . It is noticed from Fig.4. that the temperature 
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distribution in the upper fluid region increases up to a specific estimate of the Hartmann number, say 
30aH =  and then it falls beyond this estimate while it improves in the entire lower fluid region. 

 

  
Fig.14. Primary velocity for different h and 
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Fig.15. Secondary velocity for different h and 
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Fig.16. Temperature for different h and 
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Fig.17. Temperature for different β  and 
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Fig.18. Nusselt number 1Nu  for different aH  and 
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Fig.19. Nusselt number 2Nu  for different aH and  
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Figures 5-7 present the impact of the Hall parameter m on the primary flow velocities , ,1 2u u
secondary flow velocities, ,1 2w w  and temperature distributions ,1 2θ θ  in the two fluid regions. It is 
observed from Fig. 5 that increasing Hall parameter values consistently boosts the primary flow in the two 
regions. It indicates that the Hall parameter accelerates velocity of the two fluids in the primary flow 
direction, and this is because of the fact that a rise in the Hall parameter m reduces the effective 
conductivity and hence the magnetic damping force is increased in the flow fields. But, it is noticed from 
Fig.6. that the secondary velocity component increases for minute values of the Hall parameter up to 
m 3=  and it decreases for m 3> . It is additionally seen that the magnitude of the fluid velocity is smaller 
in the lower region compared with that of the upper fluid region as the Hall parameter increases. This kind 
of tendency may be due to the fact that the minimum retarding force acting along the y-direction that is 
created by virtue of the interaction of the applied magnetic field and the Hall current in electrically 
conducting fluids. Figure 7 indicates that a rise in the Hall parameter reduces the temperature field in the 
two regions. It is further noticed that the magnitude of temperature is higher in the lower region in 
comparison to that in the upper region with a rise in the Hall parameter.  
 The effect of the Taylor number K on the velocity and temperature distributions is represented in the 
Figs 8-10. It is seen that an increment in the Taylor number decreases the velocity and temperatures in the 
two regions. The maximal temperature dispersal in the channel tends to move below the channel centerline 
towards the lower region as the Taylor number enhances. We have the larger temperature field in the upper 
fluid region in comparison with the lower region for a rise in the Taylor number. 
 Figures 11-13 display the effect of the viscosity ratio α  on the velocity and temperature fields. It 
seen from Fig.11. that the primary velocity distribution increases up to a specific value of the parameter, say 

.0 333α = , and beyond this estimate it decreases. While the secondary velocity distribution diminishes as the 
viscosity ratio α  increases up to a specific estimate of the parameter, say .0 1α = and beyond the value of this 
parameter, it increases (as is seen in Fig.12.). Likewise, it is seen that the velocity profile is high in the upper 
region when compared to the lower region for smaller values of the viscosity ratio (for .0 05α =  and 0.1). 
That is for smaller values of the viscosity ratio, the viscosity of the lower region becomes thick and hence the 
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velocity in the lower region decreases. From Fig.13., it is noticed that an increment in the viscosity ratio α  is 
to decrease the temperature distributions in the two regions. It is additionally seen that the magnitude of 
temperature is high in the lower region in comparison with the upper region as α increases. This means that 
the magnitude of contraction of temperature is lesser in the lower fluid region when compared to the upper 
region as the viscosity ratio increases. 
 From Fig.14., it is seen that an enhancement in the height ratio h increases the primary velocity in the 
two regions. But from Fig.15., it is seen that an increase in the height ratio h reduces the secondary velocity 
distribution for smaller values of the height ratio up to the value, say, .h 0 3=  and beyond this value it 
increases in both the regions. Also, it is observed that the flow is high in the upper region as compared to the 
lower region for smaller values of the height ratio (for .h 0 1= and .0 3 ). It is noticed that the maximum 
secondary velocity distribution in the channel tends to move above the channel centerline towards the region-
I as the height ratio augments. It is observed from Fig.16. that the temperature in the upper region reduces 
while it enhances in the lower region with an increase in the height ratio. Also, the extreme temperature in 
the channel tends to move beneath the channel centerline towards the region-II for the height ratio .h 0 8=  
and the maximum temperature in the channel moves above the channel centerline towards the region-I for 
the height ratio .h 0 1= . That is, smaller the height of the upper fluid region compared to the lower region, 
larger in the magnitude of the temperature field.  
 Figure 17 portrays the impact of the thermal conductivity ratio β  on the temperature distribution. It 
is seen that the temperature enhances as the thermal conductivity ratio β  increases. This shows that the ratio 
of thermal conductivity accelerates the fluid temperature in the two fluid regions. In like manner, the extreme 
temperature in the channel moves below the channel centerline towards the region-II for the specific values 
of the thermal conductivity ratio (say, .  and  1 5 2β = ), and the extreme temperature in the channel tends to 
move above the channel centerline towards the region-I for smaller values of the thermal conductivity ratio.  
 From Figs 18 and 19 it is seen that an increment either in the Hartmann number or in the Hall 
parameter increases the rate of the heat transfer coefficient at both the plates when all other governing 
parameters are fixed.  
 Further, it is seen that there is no much significant variation in the velocity and temperature as 
electrical conductivity 0σ  increases. 
 The above mentioned results reveal that there is a significant influence on both the velocity and 
temperature fields, as well as the heat transfer rates at the plates. Hence, the present theoretical model may be 
useful in dealing with real engineering problems. 
 
5. Conclusions 
 
 The impact of flow parameters, such as the Hartmann number, the Hall parameter, the Taylor 
number, the ratios of the viscosity, density, height, electrical conductivity and thermal conductivity on the 
velocity and temperature fields in two-fluid regions is studied. The major outcomes of this investigation are 
abridged as follows: 

1. Fluid velocity decreases in the upper and lower fluid regions due to an in increase either in the 
Hartmann number or Taylor number. 

2. An increase in the Hall parameter develops the primary velocity distribution in two regions. 
However, the secondary velocity distribution increases for small values of the Hall parameter for a 
specific value of this parameter and from that point diminishes. 

3. The smaller the value of the viscosity of the fluid in the lower region compared to the upper fluid 
region, the larger the flow field. 

4. A growth in the height ratio increases the primary velocity component in the two regions but 
decreases the secondary velocity component for smaller values of the height ratio and beyond that 
value it increases in the two regions. 

5. Temperature in the upper fluid region increases up to a specific estimate of the Hartmann number 
and then it decreases beyond this estimate while it increases in the entire lower fluid region. 
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6. An increase either in the Hall parameter or the Taylor number or the viscosity ratio reduces the 
temperature distribution.  

7. An increase in the thermal conductivity ratio enhances the temperature distribution. 
8. The rate of heat transfer coefficient increases with an increase either in the Hartmann number or in 

the Hall parameter. 
 
Nomenclature 
 

 0B  – applied magnetic field 
 B  – magnetic flux density  
 ( ),

ipc i 1 2=  – the specific heat at constant pressure in the two-fluid regions 

 E ,ix izE  – applied electric fields in x- and z- directions  
 aH  – Hartmann number 
 h  – ratio of the heights of the two regions 
 1h  – height of the channel in the upper region (Region-I) 
 2h  – height of the channel in the lower region (Region-II) 
 I , I ( , )ix iz i 1 2=  – dimensionless current densities along x- and z- directions in Region-I and Region-II 

 ,  1 2I I  – symbols for currents in two-fluids 

 ( , )=iJ i 1 2  – current density 
 , Jix izJ  – current densities along x- and z- directions in two fluid regions 
 K  – rotation parameter (or Taylor number) 
 ,  1 2K K  – thermal conductivities of the two fluids in region-I and region-II 

 m  – Hall parameter 
 ,ix izm m  – dimensionless electric fields 
 , ; ,1x 1z 2x 2zm m m m  – dimensionless electric field in Region-I and region-II 
 p  – pressure 
 ep  – electron pressure 

 ( ),riP i 1 2=  – Prandtl number of the two fluids 

 Q ,Q1 2  – symbols used for simplicity as Q ,Q1 1 1m 2 2 2mq q q q= =  

 1 2Q ,Q  – complex conjugates of Q ,Q1 2  

 ,1 2q q  – solutions of the velocity distributions for both fluid regions in complex form as 
,1 1 1 2 2 2q u iw q u iw= + = +  

 ,1m 2mq q  – mean velocities in complex notations as 1m 1m 1mq u iw= +  and 2m 2m 2mq u iw= +  

 s  – ratio of electron pressure to the total pressure 
 ( ), :  ,  i 1 2T i 1 2 T T=  – temperatures of the fluids in Region-I and Region-II 

( , ) : ,
i 1 2w w wT i 1 2 T T=  – constant plate temperatures in Region-I and Region-II 

 ,( , ) : ,i 1 2u i 1 2 u u=  – Primary velocity distributions (velocity components along x-axis) in Region-I and Region-II 

 ,1m 2mu u  – primary mean velocity distributions in the two fluid regions 

 pu  – the characteristic velocity 
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 , ( , )=iV i 1 2  – fluid velocity 

 , ( , ) :=i 1w i 1 2 w , 2w  – secondary velocity distributions (component of velocity field along the Z-direction) in the two 
fluid regions 

 ,1m 2mw w  – secondary mean velocity distributions in the two fluid regions 

 ( ),  ,  x y z  – space co-ordinates in rectangular Cartesian co-ordinate system 

 p
x

∂− ∂  – common constant pressure gradient  

Greek symbols 
 α  – ratio of the viscosities 
 β  – ratio of thermal conductivities 

, ( , ) : ,μ = μ μi 1 2i 1 2  – viscosities of the two fluids 
,( , ) : ,σ = σ σ0i 01 02i 1 2 – electrical conductivities of the two fluids 

 0σ  – ratio of the electrical conductivities 

 , , ,11 12 21 22σ σ σ σ  – modified conductivities parallel and normal to the direction of electric field 

 ,1 2σ σ  – symbols for the ratios ,12 22
1 2

11 21

σ σσ = σ =
σ σ

 

 ,1 2ρ ρ  – densities of the two fluids 
 ρ  – ratio of the densities 
 ,1 2θ θ  – dimensionless temperature distributions for two-fluid regions 
 , eτ τ  – mean collision time between electron and ion, electron and neutral particles 
 ω  – frequency of oscillation 
 eω  – gyration frequency of electron 
 Ω  – angular velocity 
Subscripts  
 1, 2 – refers to the quantities in the upper and lower fluid regions (Region-I and Region-II) 
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