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In this study, a general analysis of one dimensional steady-state thermal stresses of a functionally graded hollow 
spherical vessel with spherical isotropy and spherically transversely isotropy is presented with material properties 
of arbitrary radial non-homogeneity. The material properties may arbitrarily vary as continuous or piecewise 
functions. The boundary value problem associated with a thermo-elastic problem is converted to an integral 
equation. Radial and tangential thermal stress components distribution can be determined numerically by solving 
the resulting equation. The influence of the gradient variation of the material properties on the thermal stresses is 
investigated and the numerical results are presented graphically.  
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1. Introduction 
 

Functionally graded materials (FGMs) are composite materials which are designed to present a 
particular spatial variation of their properties. The “first” FGM was developed in Japan in 1984-1985 as the 
result of a space-plane project. FGMs are novel materials whose properties change gradually with respect to 
their dimensions. FGMs have the properties of the two raw materials which are mixed together and the 
component distribution is graded continuously. FGMs have obtained great attention of researchers in the past 
decade due to their graded properties at every single point in various dimensions. FGMs are widely used in 
engineering applications. FGMs can withstand very high thermal gradient, this makes them suitable for use in 
structures and space plane body, rocket engine component, etc. 

Atkinson and Shampine [1] presented the algorithms and user interface of a MATLAB program, that 
solve numerically Fredholm integral equations (FIE) of the second kind on an interval [ ],a b  to a specified, 
modest accuracy. One-dimensional steady-state thermal and mechanical stresses for a hollow thick sphere 
made of functionally graded material was discussed by Eslami et al. [2]. Guven and Baykara [3] considered a 
functionally graded isotropic hollow sphere with spherical symmetry subjected to internal pressure and this 
sphere was considered as a multimaterial sphere composed of a great number of concentric homogeneous 
spheres of different elasticity moduli. Li et al. [4] determined the elastic field of a functionally graded hollow 
spherical vessel with spherically isotropy and spherically transversely isotropy. 

Nayak et al. [5] discussed the general analytical solution of a functionally graded thick spherical vessel 
with the assumption that the material properties vary with the power law of radius and Poisson's ratio remains 
constant. Assuming exponential-varying properties in the radial direction and based on the elasticity theory, 
an exact closed-form analytical solution to elastic analysis of FGM thick-walled cylindrical pressure vessels 
in the plane strain condition was obtained by Nejad et al. [6]. The boundary value problem was converted to a 
Fredholm integral equation to obtain the radial displacement and thermal stresses in a functionally graded 
hollow cylinder as in Peng and Li [7]. Rani et al. [8] studied thermal stresses of a functionally graded hollow 
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thick cylinder due to non-uniform internal heat generation and obtained analytical solutions with radially 
varying properties by using the theory of elasticity.  

Sahu et al. [9] presented a generalized solution for 1-D steady-state mechanical and thermal 
deformation and stresses in a rotating hollow functionally graded spherical body. Spherical shells were treated 
under mechanical and thermal loads in the form of rotational body force with heat generation. Sharma and 
Kaur [10] presented a numerical study of stress field in a functionally graded material hollow cylinder 
subjected to internal pressure and uniform heat generation. It was assumed that thermoelastic material 
properties of an FGM cylinder vary along the radius of the cylinder as an exponential function of the radius.  

Yildirim [11] presented the thermo-mechanical analysis of a sphere made of non-homogeneous isotropic 
materials and proposed the closed form formulas for the elastic fields in a simple-power-law graded spheres 
subjected to steady-state thermal and internal/external pressure loads. You et al. [12] presented an accurate 
method for conducting elastic analysis of thick-walled spherical pressure vessels subjected to internal pressure.  

In this study, we consider a functionally graded hollow spherical vessel with material properties of 
arbitrary non-homogeneity. The present research problem may find applications in the field of engineering. 
Thermo-elastic problem is converted to a Fredholm integral equation and we obtained the expressions for 
radial displacement and thermal stresses. Further solving the resulting equations, the distribution of radial and 
tangential thermal stress components have been obtained. The results of the thermal stresses are presented 
graphically. The obtained results coincide with the results of Li et al. [4] by neglecting the thermal effects and 
Nayak et al [5] for isotropic homogeneous material. The comparison of our results with Li et al. [4] and Nayak 
et al. [5] are also shown graphically in Section-4. 

 
2. Formulation of the problem 
 

Consider a spherical symmetrical problem made of a functionally graded material with an inner radius 
‘a’ and outer radius ‘b’ that has arbitrarily varying material properties in the radial direction as shown in Fig.1. 

 

 
 

Fig.1 Functionally graded sphere. 
 
2.1. Temperature distribution 
 

To obtain desired thermal stresses in the functionally graded hollow sphere, it is natural to first 
determine the temperature distribution in the hollow sphere. To this end, the heat conduction equation without 
heat source for steady state is: 
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  2
2

1 d dTr k 0
dr drr

  =  
,      a r b≤ ≤  (2.1) 

 
and the thermal boundary conditions can be stated as  
 
  ( ) '( )11 12 1C T a C T a f+ = ,      ( ) '( )21 22 2C T b C T b f+ = . (2.2) 
 
Here ( )T r  is the temperature change, ( )k r  is the thermal conduction coefficient, ( , , )ijC i j 1 2=  are the 

constant thermal parameters relative to the conduction and convection coefficient, ( ),jf j 1 2=  are known 
constants on the inner and outer radii, respectively. 
 In particular, two special cases of the above boundary conditions are that heat flux and temperature 
are prescribed. The former corresponds to j1C 0=  and the latter corresponds to j2C 0= . 
 By solving Eq.(2.1), we obtain  
 

  ( )
( )

r

2
a

1T r A d B
k

= ρ +
ρ ρ   (2.3) 

 
where A and B are constants, which can be determined using boundary conditions (2.2) 
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Here we consider two representative cases: 
Case 1. The temperature change at the inner and outer surfaces: 
For this case, taking ,1 a 2 bf T f T= = , using ,11 21 12 22C C 1 C C 0= = = =  and the corresponding temperature 
distribution is  
 

  ( )

( )
( )

r
b a

ab 2
a

2
a

T T 1T r d T
k1 d

k

−
= ρ +

ρ ρ
ρ

ρ ρ




. (2.6) 

 
Case 2. The temperature change at the inner surface is assumed to be prescribed as 1 af T=  and heat flux at 
the outer surface is given as 2f : 
For this case, we have ,11 22 12 21C C 1 C C 0= = = =  and the corresponding temperature distribution is  
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  ( ) ( )
( )

r
2

2 a2
a

1T r b k b f d T
k

= ρ +
ρ ρ , (2.7) 

 
with these solutions of steady-state heat conduction, the thermal stresses in the hollow sphere can be 
determined in subsequent sections. 
 
2.2. Thermoelastic problem 
 

Consider a thermoelastic problem of such a non-homogeneous hollow spherical vessel made of 
functionally graded materials. Adopting a spherical coordinate system, the basic stress-strain relations are: 
 

  

( ) ( )

( ) ( )

,

.

r
rr

r
rr

du 1 2v T r
dr E

u 1 1 v v T r
r E

θθ

θθ

= σ − σ + α

=  − σ − σ  + α 

  (2.8)  

 
where E  is the Young’s modulus, v  is Poisson’s ratio and α  is the coefficient of thermal expansion. These 
are assumed to be depended on r  i.e.  
 
  ( )E E r= ,     ( )v v r= , ( )rα = α ,     a r b≤ ≤ . 
 
These quantities continuously vary in spatial direction for non-homogeneous media. 
 For a functionally graded hollow spherical vessel, the equilibrium equation, in the absence of body 
forces, can be stated as  
 

  ( )rrrr 2d 0
dr r

θθσ − σσ + = . (2.9) 

 
To obtain rrσ  and θθσ , we express them in terms of ru : 
 

  
( ) ( ) ( ) ( )[ ( )] ( )

[ ( )][ ( )] [ ( )]
r r

rr
E r du u E r r T r1 v r 2v r

1 2v r 1 v r dr r 1 2v r
α σ = − + − − + − 

, (2.10) 

 

  
( ) ( ) ( )( )

[ ( )][ ( )] [ ( )]
r rE du u E r r T rv r

1 2v r 1 v r dr r 1 2v rθθ
α σ = + − − − − 

. (2.11) 

 
From Eq.(2.10) we get 
 

  ( ) [ ( )][ ( )] [ ( )] ( ) ( )
( ) [ ( )] ( ) [ ( )]

r r
rr

du 2v r u 1 v r 1 2v r 1 v r r T r
dr 1 v r r 1 v r E r 1 v r

+ − ++ = σ + α
− − −

. 

 
Solving this equation, we obtain 
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  [ ( )][ ( )] [ ( )]( ) ( ) ( ) ( )
( ) [ ( )] ( ) [ ( )]

r

r rr
a

1 1 v s 1 2v s 1 v su C s s s T s ds
r 1 v s E s 1 v s

  + − +
 = + χ σ + α χ − −   

   (2.12) 

 
where C is a constant to be determined through proper boundary conditions and ( )rχ is defined by 
 

  ( )( ) exp
[ ( )]

r

a

2v sr ds
1 v s s

 
 χ =

−  
 . (2.13) 

 
Solving Eqs (2.10)-(2.11), 
 

  ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

r
rr

v r E r u E r r T r
1 v r 1 v r r 1 v rθθ

ασ = σ + −
− − −

. (2.14) 

 
Thus, once rrσ  is determined, ru and θθσ  can be obtained by Eqs (2.12) and (2.14), respectively. 

Clearly, the radial displacement ru  is always continuous, even for piece-wise continuous ( )E r  and ( )v r . 
However, this is not true for tangential stress θθσ , because it has a jump at the interface due to a mismatch of 

( )E r  and ( )v r  at the interface of a multilayered structure. But we have considered a material with 
continuously varying properties. 

Putting Eq.(2.12) into Eq.(2.14), then into Eq.(2.9), we get an integro-differential equation as follows: 
 

  

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )

( )
[

rr
rr 2

r

rr
a

2 1 2v rd 2E r
dr r 1 v r r r 1 v r

1 v s 1 2v s s
C s ds F r

1 v s E s

 − σ  + σ − ×
 −  χ  −    

  +   − χ    × + σ =
 −    


 (2.15) 

where  
 

  ( ) [ ( )] ( ) ( ) ( ) ( ) ( ) ( )( )
[ ( )] ( ) [ ( )]( )[ ( )]

r

2
a

2E r 1 v s s s T s 2E r r T rF r ds
1 v s E s r 1 v rr r 1 v r

+ χ α α= −
− −χ −  . (2.16) 

 
Integrating Eq.(2.15) with respect to r , we can get 
 

  ( ) ( , ) ( ) ( ) ( )
r

rr rr 1
a

r K r d D Cf r F rσ + ρ σ ρ ρ = + +  (2.17) 

with  
 

  [ ( )] [ ( )][ ( )] ( ) ( )( , )
[ ( )] [ ( )] ( ) ( )[ ( )]

r

2
2 1 2v 1 v 1 2v 2E sK r ds

1 v 1 v E s s 1 v sρ

− ρ + ρ − ρ χ ρρ = −
ρ − ρ − ρ ρ χ − , 

   (2.18) 

  ( )( )
( )[ ( )]

r

2
a

2E sf r ds
s s 1 v s

=
χ − , 
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and  

  ( ) ( )
r

1
a

F r F s ds=   

 
where ( , )K r ρ , ( )f r  and ( )1F r  in Eq.(2.17) are known and C  and D   are two unknown constants. 
Furthermore, when considering a pressurized functionally graded hollow spherical vessel with inner and outer 
radii a  and b , respectively, the corresponding boundary conditions can be stated as  
 
  ( )rr ia qσ = −      and     ( )rr 0b qσ = −  
 
where iq  and 0q  are two constants. 
Using the boundary conditions in Eq.(2.17) , C and D can be determined as 
 

  ( ) ( , ) ( )
( ) ( ) ( )

b
i 0 1

rr
a

q q F b 1C K b d
f b f b f b
−

= − + ρ σ ρ ρ , 

 
and iD q= − . 
Now inserting above results in Eq.(2.17) and after solving, we get 
 

  ( ) ( , ) ( ) ( )
b

rr rr
a

r L r d h rσ + ρ σ ρ ρ =   (2.19) 

where  

  ( )

( ) ( )
( ) ( )

( )
( ) ( )

, , , ,

,

, , ,

f r
K r K b r

f b
L r

f r
K b r

f b


ρ − ρ ρ <


ρ = 

− ρ ρ >


  

and 

  ( )( ) ( ) ( ) ( )
( ) ( )

i 01
i 1

q qF bh r q f r f r F r
f b f b

−
= − − − + . 

 
3. Transversely isotropic functionally graded sphere 
 

The results in the preceding section can be extended to a transversely isotropic functionally graded 
sphere. For this purpose, the equilibrium Eq.(2.9) remains unchanged, the only difference is that the following 
stress-strain relations for a spherically transversely isotropic material are used instead of those in Eq.(2.8): 
 

  

*

( ) ( ) ( ),

( ) ( ).

r
rr

r
rr

du 1 2v r T r
dr E

u 1 v v r T r
r EE

θθ

θθ

= σ − σ + α

−= σ − σ + α

 (3.1) 
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Following the same procedure as in the preceding section, we have obtained the expressions for stresses and 
displacement as given below: 
 

  ( ) ( ) ( ) [ ( ) ( )] ( ) ( )
[ ( ) ( )]

r r
rr 2

E r du ur 2v r r 2v r r T r
dr rr 2v r

 σ = λ + − λ + α λ −  
  

 
and  
 

  ( ) ( ) [ ( )] ( ) ( )
[ ( ) ( )]

r r
2

E r du uv r 1 v r r T r
dr rr 2v rθθ

 σ = + − + α λ −  
  (3.2) 

 

where *
( )( ) [ ( )]
( )

E rr 1 v r
E r

λ = − , then we have 

 

  [ ( ) ( )] [ ( ) ( )]( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

r 2

r rr
a

1 s 2v s s 2v su C s s s T s ds
r s E s s

  λ − λ +  = + χ σ + α χ λ λ    
   (3.3) 

 
where  
 

  
*( ) ( ) ( ) ( )( ) exp exp

( ) [ ( )] ( )

r r

a a

2 s v s 2 v s E sr ds 1 ds
s s s 1 v s E s

     λ −
   χ = = −    λ −         
  . 

 
Equation (3.2) can be written as 
 

  ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

r
rr

v r E r u E r r T r
r r r rθθ

ασ = σ + −
λ λ λ

  

 
and from Eq.(2.9), we get  
 

  [ ( ) ( )] ( ) [ ( ) ( )] ( ) ( ) ( )
( ) ( ) ( )( ) ( )

r 2
rr

rr rr2
a

d 2 r v r 2E r s 2v s sC s ds F r
dr r r s E sr r r

 σ λ − λ − χ
 + σ − × + σ =

λ λχ λ   
   (3.4) 

where  

  ( ) [ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

r

2
a

2E r s 2v s s s T s 2E r r T rF r ds
s E s r rr r r

λ + χ α α= −
λ λχ λ  . 

 
Integrating Eq.(3.4) with respect to r , we can get 
 

  ( ) ( , ) ( ) ( ) ( )
r

rr rr 1
a

r K r d D Cf r F rσ + ρ σ ρ ρ = + +   (3.5) 

with  
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*( ) [ ( ) ( )] ( ) ( )( , )

( ) ( ) ( ) ( )[ ( )]

r2

2
2 v 2v 2E sK r 1 ds

E s s 1 v sρ

 ρ λ ρ − ρ χ ρρ = − − ρ λ ρ λ ρ ρ χ −   , 

 

  
*( )( )

( )[ ( )]

r

2
a

2E sf r ds
s s 1 v s

=
χ −   

 
and 

  ( ) ( )
r

1
a

F r F s ds=  . 

 
4. Numerical results and discussions 
 
Defining normalized variables x  and t  such that  
 

  ( ) ( )b a b a xr
2 2
+ −= +  and ( ) ( )b a b a t

2 2
+ −ρ = + ,  

 
Eq.(2.19) can be rewritten as 
 

  ( ) ( , ) ( ) ( )
1

1

x G x t t dt g x
−

σ + σ =   (4.1) 

 

where ( ) ( ), ( ) ( )rrx r g x h rσ = σ =  and ( ) ( , )( , ) b a L rG x t
2

− ρ= . 

In this case, to determine the numerical solution to Eq.(4.1), we invoke the Legendre polynomial method and 
( )xσ  can be expanded as  

 

  ( ) ( )
N

n n
n 0

x c P x
=

σ = ,      1 x 1− ≤ ≤   (4.2) 

 
where ( )nP x  are Legendre polynomials, nc  are unknown coefficients, and the first N+1 terms are chosen, due 
to a negligible contribution of the rest. 
 It is easily shown that nc can be determined by solving a system of linear algebraic equations (Atkinson 
and Shampine [1]): 
 

  , , , , , ,p pn n
2 c l c gp p 0 1 2 3 N

2 p 1
+ = = − − −−

+  ,  (4.3) 

 
with  
 

  ( ) ( , ) ( )
1 1

pn p n
1 1

l P x F x t P t dtdx
− −

=    

and  
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  ( ) ( )
1

p p
1

g P x g x dx
−

=  . 

 
Once ( ) ( )rr r xσ = σ  is obtained, ru  and θθσ  can be obtained from Eqs (2.12) and (2.14) respectively. 

For a transversely isotropic hollow sphere, ru  and θθσ  can be obtained by using a similar procedure.  
For most materials, the Poisson’s ratio is nearly a constant, so we only consider arbitrary radial non-

homogeneity of Young’s modulus.  
In order to show the effectiveness and accuracy of the present method, here we first compare our 

numerical results with existing analytical results for special gradient forms. For this, we consider the Young’s 
modulus in power-law form: i.e. 
 

  ( )
m

i
rE r E
a

 =  
 

,      ( )v r v=   (4.4) 

 
where iE  is the Young’s modulus at the inner surface. 
 For this case, the exact stress distribution induced by internally uniform pressure iq−  and 0q 0=  as 
Guven and Baykara [3]:  
 

  

( )/

( )/ ( )/

( )

( ) ,

3 k m 2 k k

rr i k k

3 k m 2 1 k m 2k k
0 i b a

k k

a b rr q
r b a

E T T a b r a b r
1 v r r b ab a

+ −

+ − − − +

 − σ = − +    −   
 α − − −     − −      − −−       

   (4.5) 

 

  

( )/

( )/

( )/

( )( )
( )( )

( )( )
( )( ) ( )

3 k m 2
k

i k k

3 k m 2
k 0 i a b

1 k m 2k k

k k

a 1 2 1 m k vr q b
r 1 v 1 m k 4vb a

E T T2 1 m k v ar
1 v 1 m k 4v 2 1 v r

b 2r a b 2r
r b ab a

+ −

θθ

+ −

− − +

 − + + σ = − +   − + + −−  

 α −− + −  − − × − + − − −  
 + −   × +    −−      

  (4.6) 

 
where  
 
  ( ) / ( )2k 1 m 8 8mv 1 v= + + − − . 
 

The numerical results of the radial and tangential stresses are evaluated for several different values of 

the gradient index m for .a 0 6
b

= , .v 0 3= , iE 500Gpa= , 6
0 10 10−α = × , iq 500= , 0

aT 0 C=  and .0
bT 10 C=  
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Fig.1. Variations of the elasticity modulus ( )E r  in the radial direction. 

 

 
Fig.2. Variations of the radial stress ( )rr

i

r
P

σ  in the FGM hollow sphere with / . , .a b 0 6 v 0 3= = and ( )E r  given 

by (4.4); numerical results (solid lines) with N 3=  and analytical results (scattered line with asterisks) 
by Eqs (4.5) and (4.6). 

 
Figure 1 illustrates variations of the elasticity modulus ( )E r  in the radial direction of the sphere for ,m 2= −  

m 0=  and m 2= . For m 0= , the elasticity modulus is a constant value in the radial direction. For m 2= −  and 
m 2= , the elasticity modulus decreases approximately linearly throughout, from outer surface to the inner surface 
depending on the function, ( )( ) mE r E r b= . These are used for analytical and numerical solutions. 
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Figures 2 and 3 shows the distribution of ( )rr

i

r
q

σ  and ( )

i

r
q

θθσ . By taking only the first four terms of 

Legendre polynomials ( ) ,N 3=  the obtained results are rather satisfactory. The solid lines correspond to the 
numerical results with N 3=  and scattered lines with asterisks (analytical results) evaluated from the analytical 
expressions given by Eqs (4.5) and (4.6), are coincident. So, from Figs 2 and 3, it is seen that the numerical 
results are quite accurate, and so the method is very efficient. 
 

 
Fig.3. Variations of ( )

i

r
P

θθσ  in the FGM hollow sphere with / . , .a b 0 6 v 0 3= =  and ( )E r  given by Eq.(4.4); 

numerical results (solid lines) with N 3=  and analytical results (scattered line with asterisks) by Eqs 
(4.5) and (4.6). 

 

 
Fig.4. Variation of ( )rr

i

r
P

σ with the radius r of the sphere. 
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Fig.5. Variation of ( )

i

r
P

θθσ  with the radius r of the sphere. 
 

 
 

Fig.6. Variation of ( )

i

r
P

θθσ  with the radius r of the sphere. 

 
In Fig.2., variations of radial stresses ( )rr rσ  obtained from analytical and numerical solutions are 

shown in the radial direction for m 2= − , 0 and 2. These are zero at the outer surface but these are higher at 

radius a br
2
+≈ for m 2= −  and m 2=  and r ab=  for m 0= .  

In Fig.3., variations of tangential stresses ( )rθθσ  are shown in the radial direction for ; ;m 2 0 2= − . In 
the FGM sphere, ( )rθθσ  reaches its maximum tensile stress at the inner surface, then progressively drops 
when r  rises.  
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Validation of present work is carried out on the basis of results obtained by Li et al. [4] and comparison 
is presented in Figs 4 and 5. The results obtained are found to be in good agreement with Li et al. [4]. This 
establishes validity of the mathematical formulation and is further used for the investigation of the functionally 
graded hollow sphere by neglecting thermal effects from the present work with Li et al. [4].  

If we take an isotropic homogeneous material (taking m 0= ) then the results obtained for thermal 
stresses are validated against the results of Nayak et al. [5]. A comparison is presented in Figs 6 and 7.  

 

 
 

Fig.7. Variation of ( )

i

r
P

θθσ  with the radius r of the sphere. 

 
5. Conclusion 
 

The symmetrical problem of an FGM sphere has been studied for spherical isotropy and spherical 
transversely isotropy. In this study, the thermoelastic problem is converted to a Fredholm integral equation. 
By solving the resulting equation, the distributions of the thermal stresses are obtained and presented 
graphically. The results obtained by this approach coincides with the closed-form analytical solution for the 
power-law gradient. The effects of the gradient variation of the material properties on the induced thermal 
stresses are discussed. Further, the obtained results coincide with Li et al. [4] by neglecting thermal effects and 
Nayak et al. [5] for isotropic homogeneous material. 
 
Nomenclature 
 
 a  – inner radius 
 b – outer radius 

 pc  – constant coefficients 

 *, ( ), ( )E E r E r  – Young’s modulus (dependent on r) 

 iE  – Young’s modulus at the inner surface 

 , ( )v v r  – Poisson’s ratio (dependent on r) 

 r rσ  – radial stress 
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 θθσ  – tangential stress 

 , ( )rα α  – thermal expansion coefficient (dependent on r) 

 T  – temperature change 
 aT  – temperature at the inner surface 

 bT  – temperature at the outer surface 

 ,  ,  ,  A B C D  – constants of integration 
 ( , )G r t  – kernel of normalized Fredholm integral equation 

( )f r , ( )F r , ( )1F r  – known functions defined by Eq.(17) 

 ( , )K r t , ( , )L r t  – kernel of Fredholm integral equation 
 iq , 0q  – pressure at the inner and outer surface 

 r  – radial coordinate 
 ,x t  – normalized radial variables 
 ru  – radial displacement 

 p  – gradient index 
 θ – polar angle coordinate 
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