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A weakly nonlinear thermal instability is investigated under rotation speed modulation. Using the 
perturbation analysis, a nonlinear physical model is simplified to determine the convective amplitude for oscillatory 
mode. A non-autonomous complex Ginzburg-Landau equation for the finite amplitude of convection is derived based 
on a small perturbed parameter. The effect of rotation is found either to stabilize or destabilize the system. The 
Nusselt number is obtained numerically to present the results of heat transfer. It is found that modulation has a 
significant effect on heat transport for lower values of ωf  while no effect for higher values. It is also found that 
modulation can be used alternately to control the heat transfer in the system. Further, oscillatory mode enhances heat 
transfer rather than stationary mode. 
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1. Introduction 

 
 The interest in the phenomenon of natural convection under externally modulated hydrodynamic 

configuration has been growing in engineering and thermal sciences in both theoretical and experimental 
studies. An excellent review on thermal convection was written by Chandrasekhar [1] and Drazin and Reid 
[2]. It is required to consider external phenomena, such as rotation, double diffusive convection, magnetic 
field, viscoelastic fluids, etc., for existing oscillatory mode of convection. In the present article, we consider 
rotation, and study Rayleigh-Bénard problem in a rotating fluid layer under rotation speed modulation. 
Donnely [3] was the first to study thermal instability in a rotating fluid layer under rotation speed modulation 
using perturbation method for free-free boundaries. For free-free boundaries conditions the normal velocity 
is zero and the tangential stress is zero at the wall. While calculating the shift in the critical Rayleigh number, 
he found that the system can be destabilized or stabilized by suitably tuning the frequency of rotation speed 
modulation. The rotation speed modulation was the originating idea of thermal (Venezian [4]) and gravity 
(Gresho and Sani [5]) modulations. 
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The effect of temperature modulation and the effect of modulation of rotation speed in the Taylor-
Couette instability have been investigated in detail both theoretically and experimentally by Ahlers et al. [6], 
Niemela and Donnelly [7], Walsh and Donnelly [8]. The studies related to thermal modulation are described 
in [9], [10], [11]. The effect of through flow and thermal modulation on a viscoelastic fluid saturated porous 
medium is investigated by Kiran et al. [9]. A weak nonlinear analysis is used to study the oscillatory mode of 
convection using Ginzburg Landau model. It is found that heat transport can be controlled effectively by a 
mechanism that is external to the system. Bhattacharjee [12] studied the effect of a rotation speed modulation 
of rotating fluid layer and he found that the threshold of convection can be raised or lowered depending on the 
Prandtl number and rotation speed. Om et al. [13] investigated the effect of rotation speed modulation on the 
onset of free convection in a rotating porous layer placed away from the axis of rotation. They found that for 
suitable combinations of values of frequency and amplitude of modulation, it is possible to delay or advance 
the onset of centrifugal convection. Om et al. [14] investigated a non-uniform rotation speed on the onset of 
free convection in a rotating porous layer about the z-axis. They found that the modulated rotation speed has a 
stabilizing effect on the onset of convection for different values of modulation frequency and the other physical 
parameters involved. Bhadauria and Kiran [15] performed a weakly nonlinear thermal instability in a rotating 
fluid layer under rotation speed modulation using the Landau model. They found that instabilities are dominant 
for low frequencies and for small amplitudes. The effect of gravity modulation on an oscillatory convection in 
a rotating fluid layer is investigated by Kiran et al. [16]. 

There are few studies on thermal convection for rotational effects (Rauscher and Kelly [17], 
Malashetty and Swamy [18] and Bhadauria et al. [19]) either for linear and weakly nonlinear stationary 
theories. Thus, it is clear that, not even a single study is reported on weakly nonlinear oscillatory mode of 
convection under rotation speed modulation. Bhadauria and Kiran [20], [21] are the first who investigated a 
weakly nonlinear oscillatory convection for both temperature and gravity modulations. Using a complex 
Ginzburg-Landau equation (involving complex coefficients) they found better results than stationary 
convection. Thermal convection in a rotating fluid layer under the effect of temperature modulation is 
investigated by Kiran and Bhadauria [22]. The complex Ginzburg-Landau model was applied to derive 
amplitude of oscillatory convection. With the same configuration for porous media thermal and gravity 
modulations are developed by Kiran et al. [23], [24]. Their studies show that heat transfer results are enhanced 
by oscillatory case and controlled by modulation. Recently, Kiran and Narasimhulu [25] investigated the same 
problem for porous media saturated with a nanofluid. They used the Fourier series model for finite amplitude 
convection and determined heat transfer results under rotational speed modulation. Kiran et al. [26] 
investigated weakly nonlinear thermal convection using the complex Ginzburg Landau model under magnetic 
field modulation. The literature shows that no model is explained with nonlinear thermal oscillatory convection 
under the effects of time dependent rotational effects. 

The study of weakly nonlinear oscillatory convection in a non-Newtonian fluid saturating a porous 
medium under temperature and gravity modulation is given in [27, 29]. Using the complex Ginzburg Landau 
equation they studied finite amplitude heat and mass transfer [30]. The study of weak nonlinear analysis of 
magneto–convection under magnetic field modulation is given by Bhadaria and Kiran [31]. Thermal instability 
in a rotating media is presented in the studies of [32-34]. The effect of gravity modulation on thermal instability 
in a fluid saturation porous media is given by Siddheshwar et al. [35], Bhadaria et al. [36] and Kiran [37, 38]. 
They investigated g-jitter effect on chaotic convection and binary convection. They found that g-jitter effects 
are found to stabilize the system and delay the chaos in the system. The study of the combined effect of internal 
heating and time periodic gravity modulation on thermal instability in a viscoelastic fluid layer is given by 
Bhadauria et al. [39]. Using a complex non-autonomous Ginzburg-Landau equation weak non-linear stability 
analysis was performed. It is found that overstability advances the onset of convection more with internal 
heating, hence increases heat transfer. It is also found that modulation has a destabilizing effect at low 
frequencies and a stabilizing effect at high frequencies. The effect of sinusoidal concentration modulation on 
thermal convection is investigated by Kiran [40]. The finite amplitude analysis is given by using the Landau 
equation.  

For a stationary case, the effect of rotation speed modulation is investigated by Bhadauria and Kiran 
[15]. They investigated the sensitivity of viscosity and internal heating on heat transfer under rotational speed 
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modulation. The weak nonlinear study was employed using the stationary Ginzburg Landau equation under 
thermal modulation. Recently, Kiran et al. [22], investigated an oscillatory convection under rotational effect. 
While deriving the complex Ginzburg-Landau equation finite amplitude convection is discussed. They found 
the condition for the existence of the model on Pr<1, and other constraints to oscillatory critical Rayleigh 
number.  

No data are reported on the study of rotational speed modulation on thermal convection for 
oscillatory mode. This paper is aimed to study heat transfer results in a rotating fluid layer while considering 
rotation speed modulation for an oscillatory mode of convection. Using the complex Ginzburg Landau model 
an oscillatory mode of thermal instability is demonstrated under rotational speed modulation.  

 
2. Mathematical formulation 
 

 Consider an incompressible horizontal viscous fluid layer of thickness d, confined between two 
parallel plates at z = 0 and z = d. The layer is heated from below and cooled from above. The Cartesian frame 
of reference is considered in such a way that the origin lies on the lower plane and the direction of the z-axis 
is vertical upward. 

 

 
 

Fig.1. Physical representation of the problem.  
 

The fluid layer is rotating with variable rotation speed   , ,0 0 t   about its z-axis. The fluid layer 

is of Boussinesq approximation where the density variations in the system are sufficiently small to be 
neglected, except where they appear in terms multiplied by gravity. Under these assumptions, the governing 
equations of the problem are given by Chandrasekhar [1] 
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where  , ,u v wq

 
is the fluid velocity, T is temperature, p is the reduced pressure, T  is the thermal 

diffusivity tensor, T  is the thermal expansion coefficient,   is the dynamic viscosity of the fluid,   is the 
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kinematic viscosity,   is the density, 0  and 0T  are the reference density and temperature, respectively, g  is 

the gravity field ( , , )0 0 g  and t is the time. The considered rotation speed vector (angular velocity vector 
( , , ( )))0 0 t  which is varying sinusoidal with time, is defined as (given by Om et al. [14] and Bhadauria et al. 
[19]) 

 

  
   ˆ( ) cos ,2

0 ft 1 t k      
 

(2.5) 

 
where   is the small amplitude of modulation, f  is the modulation frequency. The equations are then 

non-dimensionalized using the physical variables:    , , , ,x y z d x y z   , 
2
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and *T T T   while eliminating the pressure term, introducing the stream function   we obtain the 
following dimensionless governing system (Bhadauria et al. [15, 19]) 
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The definition of dimensionless numbers: Prandtl number Pr
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. The stream function representation used in Eqs (2.6) - 

 (2.8) is based on Bhadauria et al. [15, 19]. The disturbances are accounted here in the x and z directions. It is 
not that the perturbations in the y-direction can not be neglected, in general they cannot, but there is a plane 
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 with x-direction that depends on Ω where the 

stream function exists. On this tilted plane there is no velocity component normal to the plane, and therefore 
this is regarded as the oblique plane containing the streamlines [see Chandrasekhar [1] (page 109 for a 
graphical description of the convection pattern in the oblique plane) and Veronis [34]]. The wavenumber in 
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a function of the Taylor number), in contrast to the corresponding problem in pure fluids, where the wavelength 
in the oblique plane containing the streamlines was found to be identical to the value obtained for convection 
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 Introducing a small perturbation parameter   that shows deviation from the critical state of onset of 

convection, the variables for a weak nonlinear state may be expanded as a power series in terms of   (as in 
Venezian [4], Bhadauria and Kiran [27, 28, 36-39] and Malkus and Veronis [30] to consider effects of finite-
amplitude convection) 
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where R0  is the critical Rayleigh number at which the onset of convection takes place in the absence of 
temperature modulation. By using the definition   the Rayleigh number may be expanded as

  ,2
0Ra R 1    where R0 is the critical Rayleigh number for a layer heated from below and subjected to 

modulation. 
 
3. Bifurcation of periodic solution 
 
 For anticipated frequency shift along the bifurcation solution (Kim et al. [27]), we introduce the fast 
time scale of time τ and the slow time scale of s. Therefore, the scaling of time variable is such that 

2

t s

  
  

  
. In the first order problem, the nonlinear term in energy equation will vanish. Therefore, the 

first order problem reduces to the linear stability problem for oscillatory mode of convection. 
 
3.1. Lowest order system 
 
 In this order we obtain the following system of matrix (which is similar to the linear theory problem) 
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. (3.1) 

 
 The solution of the lowest order system subject to the boundary conditions given in Eq.(2.9), is chosen 
as in Kim et al. [27], see also [27, 28, 36, 37] 
 

  1  ( 1A (s)eiωΤ+ 1A  (s)e-iωΤ)sinax sinπz,  (3.2) 
 

  1T  ( 1B (s)eiωΤ+ 1B (s)e-iωΤ)cosax sinπz,    (3.3) 
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  1V  ( 1 (s)eiωΤ+ 1B  (s)e-iωΤ)sinax cosπz.      (3.4) 
 
 The undetermined amplitudes in Eqs (2.2)-(3.4) are functions of slow time scale and are related by the 
following relation 
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where c = a2 + π2. The values of the critical Rayleigh number and the corresponding frequency of periodic 
convection are 
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 It is obvious from the above expression Eq.(3.11) that   becomes a complex quantity when Pr exceeds 
one, since   must be a positive real quantity (for the oscillatory convection to be possible), Pr values are 
considered less than one. Therefore, for pure fluids, overstability is possible only for values of the Prandtl 
numbers less than 1 to obtain real frequencies. For stationary mode of convection, we obtain the critical 
Rayleigh number when (  = 0) 
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which is the result obtained by Bhadauria et al. [17]. It can be observed that the mode of oscillatory convection 
exists when the Taylor number satisfies the following inequality 
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 The wave number corresponding to the Rayleigh numbers can be obtained by minimizing the Rayleigh 
number with respect to the critical wave number. 
 
3.2. Second order 
 
 At this state the nonlinear effects are accounted in terms of the Jacobian. It is given by the following 
equation 
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 The solution of the above equation depends on the first order solutions. From the above relation, we 
can deduce that the velocity and temperature fields have the terms having frequency 2ω and independent of 
past time scale. Thus, we write the second order temperature term as follows 
 

  T2={T20+T22e2iωτ+T22e−2iωτ}sin2πz                                                 (3.12) 
 

where T22 and T20 are temperature fields with the terms having the frequency 2ω and independent of fast time 
scale, respectively. The solutions of the second order problem are 
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 For large-scale zonal velocity V, it is necessary to capture the shear that builds up across convection 
and enters at O(χ); its inclusion is a consequence of the phase-like quality of the variable V, i.e. the invariance 
of Eqs (2.1)-(2.4) with the boundary conditions Eq.(2.9). We consider Eq.(3.16) for solving the system. 
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 The solutions of the above equation are obtained as 
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 The horizontal Nusselt number Nu for an oscillatory mode of convection is defined by [19]-[28] 
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 Substituting the expression of T2, given in Eq.(3.12) and bT 1 z   one can simplify Eq.(3.19) as 
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 It is clear from the relation Eq.(2.5) that the rotation speed modulation is effective at the third order 
and affects Nu through A(s), which is evaluated at the third order. We also calculate the horizontally averaged 
Nusselt number, for the oscillatory mode of convection for understanding the results better 
 

  Nu Nu .
2

0

1
ds

2




   (3.21) 

 
3.3. Third order 
 
 At this order finding solutions is very difficult due to complexity of the resultant equations. For the 
third-order system, the following relations are obtained 
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  The expressions for R31, R32 and R33 given in Eq.(3.22) are 
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 Using the expressions of R31, R32 and R33 and applying the following solvability condition (Bhadauria 
and Kiran [20, 21]) for the existence of a third order solution, we have 
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 Simplifying the above equation yields the complex Ginzburg-Landau equation for unknown complex 
amplitude A(s) of the convection 
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 The coefficients given in Eq.(3.27) are defined by 
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 Writing A1(s) in the phase-amplitude form, we get A1(s)=|A1(s)|eiφ and substituting in Eq.(3.27), we get 
the following equation for the amplitude equations in terms of |A1(s)| 
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where γ1
−1F(s)=pr+ipi, γ1

−1k1=lr+ili and ph(.) represents the phase shift. We solve Eq.(3.29) using the inbuilt 
solution NDsolve of Mathematica 8, subjected to the condition (0)=a0 where a0 is chosen initial amplitude of 
convection. In our calculations we may use R2= R0 to keep the parameters to the minimum. The reader may 
also find an amplitude equation for stationary (ω = 0) mode of convection, with time-periodic coefficients 
(Bhadauria et al. [15], [19] for the case of Ri= VT=0. 
 

4. Results and discussions 
 

 Since a comprehensive study of modulation (like thermal [4], [9], [10], [22], [23], [28], [29], gravity 
[5], [36], [37], [39] rotational [15], [16] and magnetic field [31] modulations) has been investigated while 
considering weak nonlinear stationary mode of convection. But, there is scarcity being observed (by [20], 
[21], [27], [28]) in the direction of non linear oscillatory convection. A close observation of modulation of 
Rayleigh-Bénard convection is to find external adjusting parameters which control the convective 
phenomenon in the system. It is also being identified by numerous authors; the rotating fluid layer reduces 
(stabilizing effect on the system) heat transfer drastically for the stationary mode of convection. Keeping this 
in mind, it is quite important to study thermal instability in a rotating fluid layer under oscillatory mode of 
convection. Hence, the present article is to track instability in a rotating fluid layer under time dependant 
rotation speed modulation. Following the earlier works of Bhadauria et al. [15], [19] and Malashetty and 
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Swamy [18], the present article investigates a weakly nonlinear oscillatory mode of convection using the 
complex form of Ginzburg−Landau equation [27]. 

 Bhadauria et al. [19], pointed that the oscillatory mode of convection exists for a certain range. [for 
a certain parameter range the overstability is a preferred mode [27] whereas for a stationary case no condition 
is required] of the system parameters where the Taylor number, Ta, and Prandtl number Pr, satisfy Eq.(3.10). 
With this relation, it is quite important to consider Pr<1 for the present model, hence the effect of the local 
acceleration term affects the momentum equation. Vadász [32] pointed that only for low values of Pr, 
oscillatory mode of convection is possible for a fluid layer, whereas for a porous medium, it is not limited to 
a particular domain of the Prandtl number. We consider low values of amplitude δ and frequency ωf of 
modulation, as at low values of modulation, heat transfer is maximum. 

 

 
 

Fig.2. Effect of the Prandtl number on heat transfer. 
 

 
 

Fig.3. Effect of the Taylor number on heat transfer for the range (Ta< 6000) where Ta has a stabilizing effect 
hence reduces heat transfer. 

 
 The results corresponding to modulation have been depicted in Figs 2-10, where we have drawn 

graphs for Nu versus slow time s. For lower values of time s, there is only a conduction state mass transfer 
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showing Nu=1. The Nusselt number increases with time s and exceeds the value 1, indicating that convective 
process occurs in the system. 

 Since Prandtl number takes values between 0 to 1, thermal diffusivity dominates over momentum 
diffusivity. Especially, the Prandtl number controls the relative thickness of the momentum and thermal 
boundary layers. When Pr is small, it means that the heat diffuses quickly compared to the velocity. This 
means that for liquid metals the thickness of the thermal boundary layer is much bigger than the velocity 
boundary layer. When the Prandtl number increases (between 0 to 1), the critical value of the Rayleigh number 
decreases significantly, hence the Prandtl number has a tendency to destabilize the system. 

 

.  
Fig.4. Effect of the Taylor number on heat transfer for the range (6000<Ta) where Ta has a destabilizing 

effect, hence enhances heat transfer. 
 

 In Fig.2, upon increasing the value of Pr there is an increment in heat transfer. These results are 
compatible with the results obtained by Bhadauria et al. [15], [29] while considering low viscous fluids for 
the stationary and oscillatory mode of convection.   
 

 
 

Fig.5. Effect of amplitude of modulation on heat transfer. 
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 In Fig.3 the effect of the Taylor number reveals that Ta stabilizes the system for a certain finite range 
of the Taylor number (up to 6000 nearly). These results are quite natural and conform with the results of 
Bhadauria et al. [15], [19]. But, suddenly an opposite behavior may be noticed for large values of Ta 
(Ta>6000) presented in Fig.4. This behaviour confirms the results of Rauscher and Kelly [17]. In general or 
practically, considering higher values of Ta is not possible. It is also observed that Ta is multiple of 
modulation coefficient δ cos(ωf s)) given in Eq.(3.27) in terms of F(s). 

 As the Taylor number Ta varies more than 6000, heat transfer is greater and an amplitude of 
modulation also increases, these results conform with the results of Bhadauria and Kiran [15] and Kiran and 
Bhadauria [22]. 

 

 
 

Fig.6. Effect of frequency of modulation on heat transfer. 
 

 The effect of amplitude δ and modulation frequency ωf on heat transfer is presented in Fig.5 and 6. 
It is found that for certain ranges of frequencies the value of Nu is high, thus destabilizing the system, and 
low values stabilize the system. It is observed that the amplitude of modulation enhances heat transfer, but an 
opposite effect is observed for ωf. From Fig.6, it is found that the effect of rotation speed modulation decreases 
as ωf increases; and, finally, when ωf is very large, the effect of modulation disappears altogether, thus 
confirming the results given in [4], [15]. A comparison of oscillatory and stationary mode of convection is 
presented in Fig.7. It is found that heat transfer is greater for the oscillatory mode of convection than for the 
stationary mode. The reason behind this is that for the oscillatory mode of convection, an additional quantity 
oscillatory frequency (the growth rate of disturbances) plays a critical role in the Rayleigh number and in the 
amplitude of convection. It is observed that 
 

Nust< Nuosc 

 
for the same wave number. This implies that oscillatory instabilities can set in before the stationary mode. 
Similar results have been obtained by Kim et al. [27], Bhadauria and Kiran [20], [21] and Kiran and Bhadauria 
[22]. Finally, for a better understanding of our results a comparison is made for different modulations. While 
adapting the works of Bhadauria and Kiran [20], [21], [35]-[38] for gravity modulation and Bhadauria and 
Kiran [28], [29] for thermal modulation, the comparison with rotation speed modulation is presented in Fig.8. 
It is observed that the results of gravity modulation coincide with the results of temperature modulation when 
the lower boundary is modulated. 
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Fig.7. Comparison of stationary and oscillatory mode of convection. 
 
But, for rotation speed modulation it is quite interesting to see that heat transfer is less for the current 

model than other modulations. This confirms that rotation speed modulation has a stabilizing effect and 
reduces heat transfer more than other two models. The results corresponding to modulated and un-modulated 
systems are presented in Fig.9.  

 

 
 

Fig.8. Comparison of various modulations. 
 

 For anun-modulated system the amplitude of modulation is obtained from Eq.(3.30), and no 
oscillations are found in Fig.9. This reveals that an unmodulated system do not alter heat transfer in the 
system. These results are similar to the case of in-phase modulation for thermal modulation [28, 29].  
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Fig.9. Comparison of modulated and un-modulated system. 
 

 
 

Fig.10. The effect of Pr and Ta on mean Nusselt number Nu. 
 
The mean Nusselt number (Nu) is derived as a function of R0 from Eq.(3.21) and the corresponding 

results are presented in Fig.10. A similar effect of Pr and Ta on the mean Nusselt number is found. They 
enhance and reduce heat transfer, respectively, and it can be concluded that Pr destabilizes and Ta stabilizes 
the system. These results confirm to the results obtained by Kumar and Bhadauria [33]. 

 
5. Conclusions 

 
 The effect of rotation speed modulation is investigated for the oscillatory mode of convection by 

performing a weakly nonlinear stability analysis resulting in the complex Ginzburg-Landau model. The 
following conclusions are made from our analysis: 
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1. The effect of Pr is to enhance the heat transfer. 
2. The rotation has dual effects either to diminish (for Ta <6000) or enhance (for Ta >6000) heat transfer. 
3. Only for lower values of ωf heat transfer is maximum. 

4. The effect of amplitude δ of modulation is to enhance heat transfer. 
5. Heat transfer is greater for the oscillatory mode of convection than for the stationary mode. 
6. Rotation speed modulation reduces heat transfer more than gravity and thermal modulations. 
7. The effect of both modulation and rotation disappear for higher values of ωf. 
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Nomenclature 
 
 A  − amplitude of convection 
 a − wavenumber 
 b − basic state 
 c − critical 
 d − depth of the fluid layer 
 g − acceleration due to gravity 
 k − vertical unit vector 
 Nu − Nusselt number 
 Pr − Prandtl number 
 p − reduced pressure 
 q − fluid velocity 
 Ra − thermal Rayleigh number 
 R0 − critical Rayleigh-number 
 s − slow time 
 T − temperature 
 Ta − Taylor number 
 t − time 
 αT − coefficient of thermal expansion 
 δ − amplitude of rotation speed modulation 
 Ω − angular velocity vector 
 ν − kinematic viscosity 
 Ѱ − stream function 
   − perturbation parameter 
 κT − effective thermal diffusivity 
 μ − dynamic viscosity of the fluid 
   − fluid density 
 ω − dimensionless oscillatory frequency 
 ωf − frequency of modulation 
 0 − reference value 
 / − perturbed quantity 
 * − dimensionless quantity 

 2  − ∂2∕∂x2+∂2∕∂y2+∂2∕∂z2 
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