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The effect of magnetic field dependent (MFD) viscosity on the thermal convection in a ferrofluid layer 
saturating a sparsely distributed porous medium has been investigated by using the Darcy- Brinkman model in the 
simultaneous presence of a uniform vertical magnetic field and a uniform vertical rotation. A correction is applied 
to the study of Vaidyanathan et al. [11] which is very important in order to predict the correct behavior of MFD 
viscosity. A linear stability analysis has been carried out for stationary modes and oscillatory modes separately. 
The critical wave number and critical Rayleigh number for the onset of instability, for the case of free boundaries, 
are determined numerically for sufficiently large values of the magnetic parameter 1M . Numerical results are 

obtained and are illustrated graphically. It is shown that magnetic field dependent viscosity has a destabilizing 
effect on the system for the case of stationary mode and a stabilizing effect for the case of oscillatory mode, 
whereas magnetization has a destabilizing effect. 

 
Key words: ferrofluid, convection, rotation, magnetic field dependent viscosity, porous medium. 

 
1. Introduction 

 
 Synthetic magnetic fluids, also known as ferrofluids, are colloidal suspensions of solid single- 
domain ferromagnetic nano-particles, with typical dimensions of 10 nm, dispersed in an organic carrier (e.g. 
kerosene or ester) or water. In recent years, the studies on ferrofluids have attracted attention due to their 
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manifold applications in the areas such as acoustics, vacuum technology, lubrication, instrumentation, metals 
recovery, vibration damping, etc. The research studies have led to many commercial uses of ferrofluids 
which include medicine, chemical reactor, novel zero-leakage rotary shaft seals used in computer disk drives, 
contrast enhancement of magnetic resonance imaging (MRI), high speed silent printers, pressure seals of 
compressors and blowers, cooling of loud speakers (Rosensweig [1], Odenbach [2]). 

 Ferrohydrodynamics, the study of the magnetic properties of colloidal suspensions has drawn 
considerable attention since the 1930s (Elmore [3]), but the research on ferroconvection intensified 
noticeably, starting from the fundamental paper of Finlayson [4]. Currently, a significant body of literature 
exists devoted to ferroconvection. For a broad overview of the subject one may be referred to Shliomis [5], 
Odenbach [6], Suslov [7], Rahman and Suslov [8] and Sekar and Murugan [9]. 

 The most specific property of ferrofluids is the possibility to exert a significant influence on their 
flow and physical properties by means of moderate magnetic fields (Odenbach [2]). The effect on the fluid’s 
viscous behavior due to the presence of an external magnetic field seems to be most prominent and is one of 
the most challenging topics of magnetic fluid research. Several research papers have been published by 
eminent researchers. The effect of a homogeneous magnetic field on the viscosity of a fluid with solid 
particles possessing intrinsic magnetic moments has been investigated by Shliomis [10]. Vaidyanathan et al. 
[11] studied the influence of MFD viscosity on ferrofluid-inducing convection in a sparsely distributed 
porous medium heated from below for stationary and oscillatory modes using linear stability analysis. 
Ramanathan and Suresh [12] investigated the effect of magnetic field on the viscosity of ferroconvection in 
an anisotropic porous medium using Darcy model. Prakash and Gupta [13] derived upper bounds for the 
complex growth rate of oscillatory motions in ferromagnetic convection with MFD viscosity in a rotating 
fluid layer. Prakash [14] also derived a sufficient condition for the validity of the principle of the exchange of 
stabilities for ferromagnetic convection with MFD viscosity in a rotating porous medium. 

 It is worth mentioning here that in the above cited papers on MFD viscosity, these researchers have 
carried out their analysis by describing MFD viscosity in the form ( . )1 1    B , where 1  is the fluid 

viscosity in the absence of magnetic field B and   is the variation coefficient of viscosity. They resolved   

into components x , y  and z , which is technically incorrect, since  , being a scalar quantity, cannot be 

decomposed in such a manner. Undoubtedly, they studied a very important problem of ferrohydrodynamics, 
but their results cannot be relied upon due to the wrong assumption. Recently, Prakash and Bala [15] and 
Prakash et al. [16]-[18] have rectified the above problem for some ferromagnetic convection configurations 
with MFD viscosity. In the present communication, the emphasis has, particularly, been put on the above 
cited paper by Vaidyanathan et al. [11] on ferromagnetic convection in a rotating sparsely distributed porous 
medium with MFD viscosity. Keeping in view the above fact, the basic equations have been reformulated 
accordingly and then mathematical and numerical analysis has been carried out to remedy the weaknesses in 
the existing results and to give a correct interpretation of the problem. It is also important to point out here 
that the role of viscosity for stationary convection is observed to destabilize the system which is in agreement 
with the result obtained by Chandrasekhar [19] for the case of ordinary fluid. 

 
2. Mathematical formulation 

 
 Consider a ferromagnetic Boussinesq fluid layer of infinite horizontal extension and finite vertical 

thickness d saturating a rotating (with uniform angular velocity   about the vertical) sparsely distributed 
porous medium heated from below which is kept under the action of a uniform vertical magnetic field H. 
The flow in the porous medium is described by the Darcy- Brinkman’s law. 

 The fluid is assumed to be incompressible having a variable viscosity, given by  .1 1    B , 

where 1  is the viscosity of the fluid when there is no magnetic field applied,   is the magnetic field 

dependent viscosity and B is the magnetic induction. The variation coefficient of viscosity   has been taken 
to be isotropic, i.e. 1 2 3       . The effect of shear dependence on viscosity is not considered, since it 
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has a negligible effect on a mono dispersive system of large rotation and high field. As a first approximation 
for small field variation, linear variation of magneto viscosity has been used (Vaidyanathan et al. [11]). 
 The basic governing equations for the above model are given by Vaidyanathan et al. [11] 
 
  . ,0 q  (2.1) 
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where q,  20p p
2


    r ,  , , , ,0 0 g  H g ,  , ,0 0   and 0k denote, respectively, the velocity, 

pressure, magnetic field, variable viscosity, acceleration due to gravity, the angular velocity and permeability 
of the porous medium. ,V HC  is the heat capacity at constant volume and magnetic field, 0  is the magnetic 

permeability, T is the temperature, M is the magnetization, 1K  is the thermal conductivity and Φ  is the 
viscous dissipation containing second order terms in velocity. 
 The density equation of state is 
 

   0 01 T T        (2.4) 

 
where   is a coefficient of volume expansion and 0  is the density at some properly chosen mean 

temperature 0T . 
 For a non-conducting fluid with no displacement current, the Maxwell equations are given by 
 
  . 0 B ,         ,0 H  (2.5a,b) 
 
where the magnetic induction is given by 
 
   .0  B H M  (2.6) 

 
 Combining Eqs (2.5a) and (2.6), we get  
 
   . .0  H M  (2.7) 

 
 We assume that the magnetization is aligned with the magnetic field, but allows a dependence on the 
magnitude of the magnetic field as well as the temperature as 
 

   , .M H T
H

   
 

H
M  (2.8) 

 
 The linearized magnetic equation of state is 
 
      ,0 0 2 0M M H H K T T       (2.9) 
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where 0M  is the magnetization when the magnetic field is 0H  and temperature 0T , 
,0 0H T

     
M

H
 is a 

magnetic susceptibility, 
,0 0

2
H T

K
T

    
M

 is the pyromagnetic coefficient. 

 The basic state is assumed to be a quiescent state and is given by 
 
  b 0 q q ,         ρ ,b bz p p z   ,       b 0T T z z T    ,  

   (2.10) 
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 Only the spatially varying parts of 0H  and 0M  contribute to the analysis, so that the direction of the 
external magnetic field is unimportant and the convection is the same whether the external magnetic field is 
parallel or antiparallel to the gravitational force. 
 Now following Finlayson [4] and Prakash et al. [18], and using the linear stability theory we obtain 
the following linear non-dimensional governing equations 
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   2 2
3D a M D    .                                                                                            (2.14) 

 
 Since 2M  is of very small order (Finlayson [4]), it is neglected in the subsequent analysis and thus 
Eq.(2.12) takes the form 
 

    /Pr .2 2 1 2D a aR w                 (2.15) 

 
 The constant temperature boundaries are considered to be free. Hence the boundary conditions are 
 

  at and ,2w 0 D w D D z 0 z 1           (Both the boundaries are free)       (2.16) 
 
where z is the real independent variable such that 0 z 1  , D is differentiation with respect to z, 2a  is square 
of the wave number, Pr 0  is the Prandtl number,   is the complex growth rate, R 0  is the Rayleigh 
number, Ta 0  is the Taylor number,  1M 0  is the magnetic number which defines the ratio of magnetic 

forces due to temperature fluctuation to buoyant forces,  2M 0  is a non-dimensional parameter which defines 

the ratio of thermal flux due to magnetization to magnetic flux,  3M 0  is the measure of the nonlinearity of 



146                          J.Prakash, P.Kumar, S.Manan and K.R.Sharma 

magnetization, r ii      is a complex constant, in general, such that r  and i  are real constants and as a 

consequence the dependent variables        r iw z w z iw z  ,        r iz z i z    ,        r iz z i z     

and        r iz z i z     are complex valued functions of the real variable z  such that 

             ,  ,    , ,  ,  ,  r i r i r i rw z w z z z z z z      and  i z  are real valued functions of the real variable .z  

 It may further be noted that Eqs (2.11) and (2.13) -(2.16) describe an eigenvalue problem for   and 
govern ferromagnetic convection, with MFD viscosity, in a rotating sparsely distributed porous medium 
heated from below. 

 
3. Mathematical analysis 
 

Following the analysis of Finlayson [4], the exact solutions satisfying the boundary conditions (2.16) 
are given by 

 

  sin , sin , cos , sin , cos , sin , 
C D

w A z B z z D C z z D D z                  
 

 

where A , B , C  and D  are constants. Substitution of the above solutions in Eqs (2.11) and (2.13) - (2.15) 
yields a system of four linear homogeneous algebraic equations in the unknowns A , B , C  and D . For the 
existence of non-trivial solutions of this system, the determinant of the coefficients of A , B , C  and D  
must vanish. This determinant on simplification yields 
 
  U 3 +V 2 +W+X=0 (3.1)                     
where 
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and    2 2 2k a   . 
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By substituting ii    in Eq.(3.1), we obtain marginal state of convection. Further, when i 0  , 
the condition for stationary convection is determined which in turn yields the Rayleigh number for stationary 
convection as 
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        (3.6) 

 
 In the expression (3.6), if we put ,Ta , 00 0 k     , we obtain the Rayleigh number for classical 

ferroconvection (Finlayson [4]). If we put ,Ta0 0   , we obtain the Rayleigh number for ferroconvection 
in a sparsely distributed porous medium with constant viscosity (Vaidyanathan et al. [20]). If we put Ta 0 , 
we obtain the Rayleigh number for ferroconvection in a sparsely distributed porous medium with MFD 
viscosity (Prakash et al. [18]). If we put ,Ta ,30 M 0     we obtain the Rayleigh number for classical 

rotatory hydrodynamic convection (Chandrasekhar [19]) and if we put ,Ta ,30 M 0     we obtain the 
Rayleigh number for convection in an ordinary fluid heated from below (Chandrasekhar [19]). If we put 

,Ta , ,30 0 M 0     we obtain the Rayleigh number for ferroconvection in a rotating ferrofluid saturated 

porous layer (Shivakumara et al. [21])and if we put ,Ta , , ,3 00 0 M 0 k       we obtain the Rayleigh 
number for ferroconvection in a rotating ferrofluid layer (Venkatasubramanian and Kaloni [22]). 

When 1M  is very large, the magnetic thermal Rayleigh number 1N RM  for stationary mode can 
be obtained from Eq.(3.6) as 
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 To find the minimum value of N  (the critical magnetic Rayleigh number) with respect to the wave number 

a , Eq.(3.7) is differentiated with respect to 2a  and equated to zero and the following polynomial in a  is obtained. 
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The above equation is solved numerically for various values of 3M  (see Tabs 1 and 2) using the 

software scientific workplace and the minimum value of a  is obtained each time, hence the critical wave 
number is obtained. Using this in Eq.(3.7), we obtain the critical magnetic Rayleigh number cN , above 
which the instability sets in as stationary convection. 
 
Table 1.  Marginal stability of magnetic field dependent viscosity of a ferrofluid saturating a rotating 

sparsely distributed porous medium heated from below for stationary mode having , 1M 1000

. ,0k 0 10 Ta  and .5 710 10  
 

Taylor no. Ta  Coefficient of 
viscosity   

Magnetization 

3M  
Critical wave no.

ca  
Critical magnetic Rayleigh no. 

  c 1 c
N RM  

510  0.01 1 8.4988 23574 

  3 8.2366 21553 

  5 8.1294 21058 

  7 8.0498 20791 

 0.05 1 8.3830 23428 

  3 7.9062 21055 

  5 7.6116 20262 

  7 7.3675 19741 

 0.09 1 8.2730 23292 

  3 7.6190 20640 

  5 7.1939 19658 

  7 6.8518 19010 
710  0.01 1 18.881 4.2130×105 

  3 18.666 4.1116×105 

  5 18.524 4.0714×105 

  7 18.396 4.0405×105 

 0.05 1 18.633 4.1640×105 

  3 17.972 3.9722×105 

  5 17.443 3.8538×105 

  7 16.975 3.7548×105 

 0.09 1 18.397 4.1174×105 

  3 17.367 3.8513×105 

  5 16.568 3.6791×105 

  7 15.898 3.5400×105 
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Table 2.  Marginal stability of magnetic field dependent viscosity in a ferrofluid saturating a rotatory 
sparsely distributed porous medium heated from below for stationary mode having 

,  . ,1 0M 1000 k 0 01  Ta  and .5 710 10  
 

Taylor no. Ta  Coefficient of 
viscosity   

Magnetization 

3M  
Critical wave no.

ca  
Critical magnetic Rayleigh no. 

  c 1 c
N RM  

510  0.01 1 6.1271 21831 

  3 5.5647 18567 

  5 5.3692 17803 

  7 5.2515 17439 

 0.05 1 6.0368 21866 

  3 5.3155 18483 

  5 4.9874 17657 

  7 4.7594 17287 

 0.09 1 5.9525 21915 

  3 5.1105 18509 

  5 4.7059 17768 

  7 4.4304 17561 
710  0.01 1 16.964 3.9077×105 

  3 16.677 3.7934×105 

  5 16.510 3.7490×105 

  7 16.363 3.7152×105 

 0.05 1 16.693 3.8556×105 

  3 15.911 3.6439×105 

  5 15.310 3.5148×105 

  7 14.782 3.4069×105 

 0.09 1 16.436 3.8062×105 

  3 15.241 3.5138×105 

  5 14.333 3.3258×105 

  7 13.569 3.1735×105 
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Fig.1.  Variation of the magnetic Rayleigh number ( )cN  versus the variation coefficient of viscosity ( )  

for stationary convection for a medium of permeability .0k 0 10  and Taylor number Ta 510 . 
 

 
 

Fig.2.  Variation of the magnetic Rayleigh number ( )cN  versus the variation coefficient of viscosity ( ) 

for stationary convection for a medium of permeability .0k 0 01  and Taylor number Ta 510 . 
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Fig.3.  Variation of the thermal magnetic Rayleigh number ( )cN  versus the variation coefficient of 

viscosity ( )  for stationary convection for a medium of permeability .0k 0 01 , .0k 0 10  and 

Taylor number Ta 510 . 
 

When i 0  , we have a case of oscillatory convection. From Eq.(3.1), the Rayleigh number for 
oscillatory convection can be easily written as 
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 When 1M  is very large, the magnetic thermal Rayleigh number 1N RM  for oscillatory mode can 
be obtained from Eq.(3.8) as 
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To find the minimum value of N  (the critical magnetic Rayleigh number) with respect to wave 

number a , Eq.(3.9) is differentiated with respect to 2a  and equated to zero and the following polynomial in 
a  is obtained. 
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The above equation is solved numerically for various values of 3M  (see Tabs 3 and 4) using the 

software scientific workplace and the minimum value of a  is obtained each time, hence the critical wave 
number is obtained. Using this in Eq.(3.9), we obtain the critical magnetic Rayleigh number, above which 
the instability sets in as oscillatory convection. 
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Table 3.  Marginal stability of magnetic field dependent viscosity in a ferrofluid saturating a rotatory 
sparsely distributed porous medium heated from below for oscillatory mode having 

,  . ,1 0M 1000 k 0 01  Ta  and .5 710 10  
 

Taylor no. Ta  Coefficient of 
viscosity   

Magnetization 

3M  
Critical wave no.

ca  
Critical magnetic Rayleigh no. 

  c 1 c
N RM  

510  0.01 1 4.2881 24180 

  3 3.7994 19354 

  5 3.6379 18589 

  7 3.5510 18469 

 0.05 1 4.2880 25315 

  3 3.7787 22111 

  5 3.5903 23026 

  7 3.4736 24669 

 0.09 1 4.2872 26465 

  3 3.7552 24989 

  5 3.5379 27186 

  7 3.3906 31567 
710  0.01 1 8.0489 66091 

  3 7.8621 61566 

  5 7.8175 61556 

  7 7.7965 62211 

 0.05 1 8.0501 68778 

  3 7.8546 68912 

  5 7.7961 73583 

  7 7.7574 78944 

 0.09 1 8.0503 71473 

  3 7.8397 76310 

  5 7.7581 85741 

  7 7.6913 95925 
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Table 4.  Marginal stability of magnetic field dependent viscosity in a ferrofluid saturating a rotatory 
sparsely distributed porous medium heated from below for oscillatory mode having 

,  . ,1 0M 1000 k 0 10  Ta  and  .5 710 10  
 

Taylor no. Ta  Coefficient of 
viscosity   

Magnetization 

3M  
Critical wave no.

ca  
Critical magnetic Rayleigh no. 

  c 1 c
N RM  

 510  0.01 1 3.9462 6239.7 

  3 3.6118 4647.8 

  5 3.5078 4355.0 

  7 3.4573 4265.5 

 0.05 1 3.9653 6500.0 

  3 3.6521 5219.2 

  5 3.5643 5234.2 

  7 3.5265 5454.5 

 0.09 1 3.9832 6762.1 

  3 3.6855 5800.5 

  5 3.6053 6135.9 

  7 3.5702 6682.6 

 710  0.01 1 7.5480 31161 

  3 7.3734 28589 

  5 7.3379 28471 

  7 7.3263 28716 

 0.05 1 7.5675 32394 

  3 7.4217 31911 

  5 7.4087 33885 

  7 7.4142 36226 

 0.09 1 7.5855 33630 

  3 7.4602 35247 

  5 7.4566 39328 

  7 7.4642 43780 
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Fig.4.  Variation of the thermal magnetic Rayleigh number ( )cN  versus the variation coefficient of 

viscosity ( )  for oscillatory convection for a medium of permeability .0k 0 01  and Taylor number 

Ta .510  
 

 

 

Fig.5.  Variation of the thermal magnetic Rayleigh number ( )cN  versus the variation coefficient of 

viscosity ( )  for oscillatory convection for a medium of permeability .  0k 0 10 and Taylor number 

Ta .510  
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Fig.6.  Variation of the thermal magnetic Rayleigh number ( )cN versus the variation coefficient of viscosity

( )  for oscillatory convection for a medium of permeability .0k 0 10 , .0k 0 01 and Taylor number 

Ta .510  
 

4. Discussion and conclusion 
 

 In the present paper the influence of magnetic field dependent viscosity on the thermal convection in 
a rotating ferrofluid layer heated from below saturating a porous medium in the presence of a uniform 
vertical magnetic field has been investigated using the Darcy Brinkman model. The permeability values are 
used as proposed by Walker and Homsy [23]. The magnetization parameter 1M  is considered to be 1000 

(Vaidyanathan et al. [24]). The value of 2M , being negligible (Finlayson [4]), has been taken as zero. The 

values of the parameter 3M  are varied from 1 to 7. The values of the coefficient of magnetic field dependent 

viscosity  , has been varied from 0.01 to 0.09. 
 Emphasize has been given to a paper published by Vaidyanathan et al. [11]. These researchers have 

performed their analysis by considering MFD viscosity as  .1 1   B . But they further resolved   into 

components x , y  and z  along the coordinate axes which is technically wrong. This is because  , being 

a scalar quantity, cannot be resolved into components. Thus a correction to their analysis is very much 
sought after in order to give a correct interpretation of the problem. Keeping in view the above facts, the 
basic equations have been reformulated and then mathematical and numerical analysis has been performed. 
The results obtained herein have significant variations from the existing results which were otherwise 
obtained by using wrong assumptions. 

 From Tabs 1 and 2 and from Figs 1-3, it is evident that as the magnetization parameter 3M  

increases, the critical value of the magnetic Rayleigh number,  c 1 c
N RM  decreases. Hence the 

magnetization has a destabilizing effect on the system. The physical interpretation of this may be given as 
follows: As the value of 3M  increases the departure of linearity in the magnetic equation of state increases 
resulting in an increase in the velocity of the ferrofluid in the vertical direction favoring the manifestation of 
instability. Thus the magnetization parameter destabilizes the system. This increase in magnetization releases 
extra energy, which adds up to thermal energy to destabilize the flow more quickly. A similar result is also 
obtained by Vaidyanathan et al. [11], but the difference in the values of cN  is quite significant and increases 

with the increase in the value of  . It is also evident from Figs 1-3 that for stationary convection, the value of 
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the magnetic Rayleigh number decreases as the MFD viscosity parameter increases, predicting the destabilizing 
behavior of the viscosity parameter  . This unexpected result that ‘the role of viscosity is inverted in the 
presence of rotation’, has also been predicted by Chandrasekhar [19] for the case of ordinary fluid. 

It is also found from Tabs 1 and 2 and Figs 1-3, that the magnetic Rayleigh number increases with an 
increase in the values of permeability 0k  of the porous medium. Thus permeability has a stabilizing effect on 
the system. Again, the difference in the existing values (Vaidyanathan et al. [11]) and the values obtained 
herein is significant. 

It is interesting to note from Figs 4 and 5 that for the case of oscillatory motions the value of the 
magnetic Rayleigh number increases as the MFD viscosity parameter   increases, thus resulting in the 
postponement of instability. Thus, MFD viscosity has a stabilizing effect on the system for the case of 
oscillatory convection, which is a result also obtained by Vaidyanathan et al. [11]. 

Further, we may note from Figs 4 and 5 that for the case of oscillatory convection also, 3M  

prepones the onset of convection. Thus magnetization 3M  has a destabilizing effect on the system. Figure 6 

predicts the destabilizing behavior of the permeability 0k  for oscillatory convection. 
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Nomenclature 
 

 2a  −.square of wave number 
 B − magnetic induction   
 D  − differentiation w .r. t.   z    
 g − acceleration due to gravity 
 H − magnetic field                                          

 1K  − thermal conductivity                                

 2K  − pyromagnetic coefficient   

 0k  − permeability of the porous medium       

 M − magnetization                                         

 1M  − buoyancy magnetization                        

 3M  − magnetic parameter    

 Pr − Prandtl number                    

 p  − pressure              

 R  − thermal Rayleigh number                       

 T  − temperature  
 Ta − Taylor number 

 0T  − temperature at the lower boundary 

 1T  − temperature at the upper boundary 

 q − velocity 
 z  − vertical co-ordinate 

   − coefficient of volume expansion 

   − variable viscosity 

 0  − magnetic permeability 

 
'  − perturbed magnetic potential 

   − magnetic susceptibility 

   − density 

   − complex growth rate 
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