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In this paper, a theoretical analysis has been made to study the effect of mixed convection MHD oscillatory 
Couette flow in a vertical parallel channel walls embedded in a porous medium in the presence of thermal 
radiation, chemical reaction and viscous dissipation. The channel walls are subjected to a constant suction 
velocity and free stream velocity is oscillating with time. The channel walls are embedded vertically in a porous 
medium. A magnetic field of uniform strength is applied normal to the vertical channel walls. The nonlinear and 
coupled partial differential equations are solved using multi parameter perturbation techniques. The effects of 
physical parameters, viz., the radiation absorption parameter, Prandtl number, Eckert number, dynamic viscosity, 
kinematic viscosity, permeability of porous medium, suction velocity, Schmidt number and chemical reaction 
parameter on flow variables viz., temperature, concentration and velocity profile have been studied. MATLAB 
code is used to analyze theoretical facts. The important results show that an increment in the radiation absorption 
parameter and permeability of porous medium results in an increment of the temperature profile. Moreover, an 
increment in the Prandtl number, Eckert number and dynamic viscosity results in a decrement of the temperature 
profile. An increment in suction velocity results in a decrement of the velocity profile. An increment in the 
Schmidt number, chemical reaction parameter and kinematic viscosity results in a decrement of the concentration 
profile. 
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1. Introduction 

 
 An unsteady free and forced convection MHD flow past a vertical channel wall embedded in a 

porous medium has been studied widely because of its applications in aeronautics, aerodynamics, petroleum, 
chemical industry, thermal insulation, cooling of nuclear reactors. The combined free and forced convection 
flow of water from a vertical plate with variable temperature has been studied in [1]. The combined free and 
forced convection in a porous medium has been investigated in [2]. The effects of MHD unsteady free 
convection flow past an infinite vertical plate with constant suction and heat sink have been analyzed in [3]. 
The radiation effects on mixed convection along a vertical plate with a uniform surface temperature using the 
Rosseland flux model are investigated in [4]. The effect of MHD on free convection oscillatory Couette flow 
when the temperature and concentration oscillate with time in the presence of the thermal radiation and 
chemical reaction has been studied in [5]. The effect of thermal radiation, chemical reaction and viscous 
dissipation on MHD flow has been studied in [6]. The steady hydromagnetic mixed convection flow in a 
vertical channel with symmetric and asymmetric wall heating conditions in the presence or absence of heat 
generation or absorption has been studied in [7]. The combined effects of natural convection and a uniform 
transverse magnetic field when the magnetic field is fixed relative to the plate or fluid have been discussed in 
[8]. The effects of thermal diffusion, magnetic field and viscous dissipation on unsteady mixed convection 
flow past a porous plate with chemical reaction have been investigated in [9]. The effects of thermal 
radiation on mixed convection flow of an optically dense viscous fluid along a vertical porous plate have 
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been studied in [10]. The influence of thermal radiation on the laminar natural and forced convection 
boundary layer flow of a non-absorbing fluid with variable thermo-physical properties flowing around a heat 
emitting surface and the solutions for the small and large values of thermal radiation parameter have been 
investigated in [11]. The effect of radiation on mixed convection from a vertical plate in a saturated porous 
medium has been studied in [12]. The effect of temperature-dependent viscosity on the mixed convection 
flow from vertical plate has been investigated in [13]. 

 The study of mixed convective mass and heat transfer on a stretching permeable surface has 
applications in many engineering processes with industrial applications, viz., polymer extrusion, drawing of 
copper wires, artificial fibers, paper production, hot rolling, wire drawing, glass fiber, metal extrusion, metal 
spinning and continuous stretching of plastic films. Heat and mass transfer on a stretching sheet with suction 
or blowing have been examined in [14]. Exact analytical solutions for the flow and heat transfer near the 
stagnation point on a stretching/shrinking sheet in a Jeffrey fluid were studied in [15]. Heat transfer in a 
viscoelastic boundary layer flow over a stretching sheet with viscous dissipation and non uniform heat source 
is derived in [16]. Analytic solutions of unsteady boundary flow and heat transfer on a permeable stretching 
sheet with non-uniform heat source/sink have been investigated in [17]. 

The effect of thermal radiation, chemical reaction and viscous dissipation on free convection MHD 
flow has been studied in [6]. In this study the combined effect of free and forced convection and permeability 
of porous medium were not considered. 

The main objective of this paper is to study the combined effect of free and forced convection MHD 
oscillatory flow embedded in a porous medium with periodic temperature and concentration in the presence 
of thermal radiation, chemical reaction and viscous dissipation. 

 
2. Mathematical analysis 

 
 Consider two dimensional mixed convection Couette flows of unsteady, incompressible, viscous, 

electrical conducting, Newtonian, chemical reacting and thermal radiating fluid. The fluid flow is bounded 
by two infinite vertical channel walls separated by a distance  h  embedded in a porous medium. 
Furthermore, the fluid is considered to be a gray in color, to have radiation absorbing emitting nature, but it 
is a non-scattering medium in the optically thick limit. The Rosseland approximation is used to describe the 
radiative heat flux in the energy equation. It is also assumed that the radiation heat flux in the 'x  direction is 
negligible as compared to that in 'y  direction. 

 

 
 

Fig.1. Flow configuration and coordinate system of the model. 
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The flow configuration and coordinate system of the model are shown in Fig.1. The '  x  axis is taken 

along the infinite vertical channel wall and the 'y  axis is taken normal to the channel wall. The vertical 

moving channel wall is located at 'y 0  along the 'x  axis where the temperature is ' wT  and the 

concentration is '   wC . The other stationary channel wall is located at 'y h  where the temperature is '
hT  and 

the concentration is '  hC . 

Initially, at '  t 0 , the stationary channel wall and the fluid are at the same temperature '  hT  and 

concentration level of the fluid '
hC  is the same at all points. At a later time   't 0  the temperature of the 

moving wall and concentration of the fluid do raise to '  wT  and '  wC , respectively, and are maintained 
constant thereafter. 
 Free stream velocity oscillates with time and has the form  

 

 
   ' '' '       .i t

oU t U 1 e                                                                                                (2.1) 

 

 In Eq.(2.1),  0U  is the mean constant free stream velocity, '     is the frequency and '   t  is the time. 
To derive the governing equations of the model the following assumptions are made: 

(1) All fluid properties are constant except the influence of the density variation with temperature and 
concentration in the body force term. 

(2) The Eckert number and magnetic Reynolds numbers are small so that the induced magnetic field of 
the fluid is negligible. 

(3) The external electric field is zero and the electric field due to the polarization of charges is 
negligible. 

(4) Viscosity is also considered with the constant permeability of a porous medium.  
(5) There exists a homogeneous chemical reaction of first order with constant rate between diffusing 

concentration and the fluid in the moving plate.  
(6) A uniform magnetic field is applied in the direction perpendicular to the channel walls. 
(7) The channel wall is subjected to a constant suction velocity. 
(8) All the physical variables are independent of '.x  

Based on the model assumptions and following Sahoo et al. [3] and Soundalgekar (1974), the 
governing equations of mixed convective flow and heat transfer take the following form: 
 The continuity equation of the problem has the form 
 

  
'

.
'

v
0

y





                (2.2) 

 
 The momentum equation of the problem has the form 
 

     
'

' '
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' ' ' '   
   '  ' .

' ' ' '
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       
                     

             (2.3) 

 
In Eq.(2.3), the vector cross product  JxB  represents the Lorentz force. This term is a body force 

corresponding to magneto hydrodynamics flow. The total magnetic field is represented by B . The density of 

the current is represented by  J  and ' k  denotes the permeability of the porous medium. The minus sign in 
the sixth term of the right hand side indicates that the fluid flows from higher to lower potential. 
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As mentioned by Hayat et al. (2008), the expression for the Lorentz force reduces and takes the form as 
 

  '2JxB B u  .                                                                                                (2.4) 
 
In view of the result (2.4), Eq. (2.3) reduces to  
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   
            (2.5) 

 
The energy equation of the model can be expressed as  
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The concentration equation of the model can be expressed as 
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t y y

   
         

                                                                     (2.7) 

 
Equations (2.2), (2.5) - (2.7) govern the present model. Here 'u  and 'v  denote the velocity 

component in the 'x  and 'y  direction, respectively,   thermal diffusivity,    the density of the fluid, 

g   the acceleration due to gravity,    the thermal expansion coefficient, c   the concentration expansion 

coefficient, 'T   the temperature of the fluid in the boundary layer, 'wT   the temperature of the moving 

channel wall, '
hT   the temperature of the stationary channel wall, pC   the specific heat capacity at 

constant pressure,    the dynamic viscosity,    electric conductivity, rq   the local radiative heat flux, 

B   the magnetic induction, 'C  the concentration of the fluid in the boundary layer, '
wC  the 

concentration of the moving channel wall, ' hC  the concentration of the stationary channel wall, D  the 

molecular diffusivity,  rK  the chemical reaction parameter. 
Since the free stream velocity, temperature and concentration fluctuate with time the boundary 

conditions of the model have the form 
 

  ' ',  ,   '0y 0 v v u     ' '   ,i t
oU 1 e                                                                   (2.8) 

 

In Eq.(2.8), v0 denotes suction velocity where .0v 0  
 

    ' '' ' ' '     ,i t
w w hT T T T e                                                                          (2.9) 

 

    ' '' ' ' '   ,i t
w w hC C C C e                                                                                          (2.10) 

 

  ' ' ' ' ' ',   ,  , .  h hy b u 0 T T C C                                                                           (2.11) 
 

The Rosseland approximation for radiative heat flux is given by 
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                                                                                                (2.12) 

 
In Eq.(2.12), the parameters     and sk represent the Stefan Boltzmann constant and the Rosseland 

mean absorption coefficient, respectively. 

Taking the Taylor series expansion of '  4T and neglecting terms with higher powers, we have  
 

  ' ' '' .4 3 4
h hT 4T T 3T                                                                                                 (2.13) 

 
In view of Eqs (2.12) and (2.13), Eq. (2.6) reduces to 
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     (2.14) 

 
 In Eq.(2.14), the third term denotes viscous dissipation. 
 
3. Non dimensionalization of the model 
 
 The dimensionless form of the model is found by introducing the following non-dimensional 
quantities 
 

    ' ' ' ' ' / ;   / ;   / ; / ; ' / ;  / ;3 2 2
0 h s 0 0 0 0y v y Ra 4 T k u u U U U U t t v 4 4 v             
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      ' ' ' '
h w hT T T T      ;     ' ' ; / ; 2 2 2

0 0 h sk k U Q 16 T k        . 

 
Substituting the non-dimensional quantities in Eqs (2.2), (2.5) - (2.7) the equations is reduced to 

 

   Gr Gc
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0
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0
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4 t y 4 t y kv
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,         `                           (3.1) 
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The non-dimensional boundary conditions Eqs (2.8) - (2.11) are 
 

   , , , ,it it ity 0 u 1 e 1 e C 1 e                                              (3.4) 
                                                   
  , , , .y 1 u 0 0 C 0                                                                     (3.5) 

 
The systems of Eqs (3.1) - (3.3) together with the boundary conditions (3.4) - (3.5) constitute the 

non-dimensional form of the model. 
 

4. Analytical solution to the problem       
 
 To find an analytical solution of the non-dimensional form of the present model we consider Eqs 

(3.1) - (3.5). When the amplitude of oscillations  1  is very small we can assume the solutions of flow 

velocity   u , temperature field   and concentration C  near the moving channel wall as 
 

       , ,it
0 1u y t u y u y e                                                                                         (4.1) 

 

       , ,it
0 1y t y y e                                                                                              (4.2) 

 

       , .it
0 1C y t C y C y e                                                                                           (4.3) 

 

In Eqs (4.1) - (4.3), u0, 0  and   0C represent mean velocity, mean temperature and mean 
concentration, respectively. 

Also, the non-dimensional free stream velocity takes the form  
 

  .itU 1 e                                                                                                                    (4.4) 
 

Substituting Eqs (4.1) - (4.4) into Eqs (3.1) - (3.3), equating harmonic and non-harmonic terms and 
neglecting higher orders of   the following system of equations is obtained 

 

   " ' Gr Gc ,
2

0 0
0 0 0 0 0 2 2

0

u U
u u C M u 1 0

kv
       


                                                    (4.5) 

 

  " Gr Gc ,1 1 1 1
i i

u M u C M 0
4 4

         
 

                                                          (4.6) 

 

   " ' Ec ,
Pr

2
0

0 0 0
1 3Rak u

0
y

               
                                                                (4.7) 

 

  " ' Ec ,
Pr

2
1 1

1 1 1
1 3Rak u i

0
y 4

                 
                                                          (4.8) 
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 
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Further, the boundary conditions corresponding to Eqs (3.4) - (3.5) are obtained as 
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  , , , , , , ,0 1 0 1 0 1y 0 u 1 u 1 1 1 C 1 C 1                                            (4.11)    
                                                     
  , , , , , , .0 1 0 1 0 1y 1 u 0 u 0 0 0 C 0 C 0                                (4.12)  
            
 The variables , , , ,0 1 0 1 0u u C   and 1C are still coupled in Eqs (4.5) - (4.10). In the case of 
incompressible fluids, Ec is always very small and it is assumed that 

    

        Ec Ec2
0 1F y F y F y o   .  

 
Here F  stands for any variable   , , , ,  and 0 1 0 1 0 1u u C C  . These variables can be expanded in powers 

of Ec as follows 
 

       Ec ,0 00 01u y u y u y                                                                                         (4.13) 

 

       Ec ,1 10 11u y u y u y                                                                                          (4.14) 

 

       Ec ,0 00 01y y y                                                                                         (4.15) 

 

       Ec ,1 10 11y y y                                                                                             (4.16) 

 

       Ec ,0 00 01C y C y C y                                                                                         (4.17) 

 

       Ec .1 10 11C y C y C y                                                                                           (4.18) 

 
Upon substituting Eqs (4.13) - (4.18) in to Eqs (4.5) - (4.10) and equating terms free from Ec and 

with coefficients Ec and neglecting higher orders of Ec the following equations are obtained 
 

  " ' Gr Gc ,
2

00 0
00 00 00 00 00 2 2

0

u U
u u C Mu 0

kv
      


                                                         (4.19)  

 

  " ' Gr Gc ,
2

01 0
01 01 01 01 01 2 2

0

u U
u u C Mu 0

kv
      


                                      (4.20)                     

 

  " Gr Gc ,10 10 10 10
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Equations (4.19) - (4.30) are subjected to the boundary conditions 
 

  , , ,00 10 00 10 00 10 01 11 01 11 01 11y 0 u u C C 1 u u C C 0                   (4.31) 
 

  , .00 01 10 11 00 01 10 11 00 01 10 11y 1 u u u u C C C C 0                       (4.32) 
   

 Solving Eqs (4.18) - (4.29) together with the boundary conditions (4.31) - (4.32), the analytical 
solutions are obtained 
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                                                                    (4.33) 
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    ,y y
00 1 2y f e f e                                                                                                  (4.37) 

 

    ' ' ,y y
01 1 2y f e f e 0                                                                                     (4.38) 
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    ,y y
10 1 2y g e g e                                                                                               (4.39) 

 

    ' ' ,y y
11 1 2y g e g e 0                                                                                    (4.40) 
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    ,y y
10 1 2C y k e k e                                                                                                 (4.43) 

 

    ' ' .y y
11 1 2C y k e k e 0                                                                                       (4.44) 

 

In Eqs (4.33) - (4.44) we used the following notations 
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5. Simulation study of the model 
 
 This study analyzes the combined effect of free and forced convection on MHD oscillatory flow 

embedded in a porous medium with periodic temperature and concentration in the presence of thermal 
radiation, chemical reaction and viscous dissipation. The effects of physical parameters, viz., the radiation 
absorption parameter, Prandtl number, Eckert number, dynamic viscosity, kinematic viscosity, permeability 
of porous medium, suction velocity, Schmidt number and chemical reaction parameter, on flow variables, 
viz., temperature, concentration and velocity profile have been studied.   

 Here only the graphical representations of the temperature profile of the model for different values of 
the radiation absorption parameter, Eckert number, Prandtl number, permeability of porous medium and 
dynamic viscosity. Moreover, concentration profiles of the model problem for different values of chemical 
reaction parameter, kinematic viscosity and Schmidt number and also velocity profile of the model for 
different values of suction velocity have been presented. 
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Figure 10 is a graphical representation of the influence of permeability of the porous medium on the 
temperature profile. From the graph it can be concluded that an increment in permeability of the porous 
medium results in an increment of temperature. Physically, this means that the resistance dominated by the 
porous medium reduces as the permeability of the medium increases because of which the velocity increases 
and consequently the temperature increases. 

 
6. Conclusion  

 
 This paper studies the effect of mixed convection on a magneto hydrodynamics oscillatory flow 

embedded in a porous medium with periodic temperature and concentration in the presence of thermal 
radiation, chemical reaction and viscous dissipation. The effects of various physical parameters, viz., the 
radiation absorption parameter, Prandtl number, Eckert number, dynamic viscosity, kinematic viscosity, 
permeability of porous medium, suction velocity, Schmidt number and chemical reaction parameter, on flow 
variables, viz., temperature, concentration and velocity profile have been studied. Important results of the 
simulation study are: 

(1) An increment in suction velocity results in a decrement of the velocity profile.  
(2) An increment in both the radiation absorption parameter and permeability of the porous medium 

results in an increment of the temperature profile. 
(3) An increment in the Prandtl number, Eckert number and dynamic viscosity results in a decrement of 

the temperature profile. 
(4) An increment in the Schmidt number, chemical reaction parameter and kinematic viscosity results in 

a decrement of the concentration profile. 
 

7. Application of the model problem    
 
The model problem can be applied to MHD flow of blood in a permeable capillary as follows: 

(1) When suction velocity increases the velocity of blood in the capillary decreases. 
(2) When the Prandtl number increases the temperature of the blood in the boundary layer decreases. 
(3) The temperature of blood in the capillary increases with an increment of permeability of the porous 

medium. 
(4) As thermal radiation increases, the thermal boundary layer also increases. Minimizing the radiation 

absorption parameter helps to treat patients with blood cancer and tumor by using thermal therapy. 
 
Nomenclature 
 
 C   − dimensionless concentration 

 'hC   − concentration at channel wall at  y h  

 
 pC

  
− specific heat at constant pressure 

 'wC   − concentration at channel wall at  y 0  

 D   − mass diffusivity 
 Ec  − Eckert number 
 Gr  − thermal Grashof number 
 Gc  − modified Grashof number 

 g   − acceleration due to gravity 

 J   − electric current density 

 rk   − chemical reaction parameter 

 M  − Hartmann number; 
 Pr  − Prandtl number 

 rq   − radiative heat flux 

 Ra   − radiation absorption parameter 
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 Sc  − Schmidt number 

 
'T   − temperature of the fluid in the boundary layer 

 'wT   − temperature of the moving channel wall 

 'hT   − temperature of the stationary channel wall 

 t  − time 

 
'U   − free stream velocity 

 U   − dimensionless free stream velocity 

 
'u   − velocity component in 'x  direction 

 
'v   − velocity component in 'y  direction 

 0v   − suction velocity 

  , x y   − dimensionless Cartesian coordinates 

 
' ',  x y   − Cartesian coordinates 

    − thermal diffusivity 

    − thermal expansion coefficient 

 c   − concentration expansion coefficient 

    − amplitude of free stream velocity 

    − dimensionless temperature 

    − thermal conductivity 

    − dynamic viscosity 

    − kinematic viscosity 

    − electric conductivity 

    − frequency of oscillation 
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