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The effect of magnetic field dependent viscosity on ferrofluid flow due to a rotating disk is studied in the presence of a 
stationary magnetic field. The results for velocity profiles for various values of MFD viscosity parameter are shown 
graphically. These results are compared with the ordinary case when the applied magnetic field is absent. Besides, the shear 
stress on the wall of the disk and its surface is calculated numerically.  
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1. Introduction 
 
 Ferrofluids are stable suspensions of colloidal ferromagnetic particles of the order of 10nm in 
suitable non-magnetic carrier liquids. These colloidal particles are coated with surfactants to avoid their 
agglomeration. Because of the industrial applications of ferrofluids, the investigation on them fascinated the 
researchers and engineers vigorously since the last five decades. One of the many fascinating features of the 
ferrofluids is the prospect of influencing flow by a magnetic field and vice-versa [1, 2]. Ferrofluids are 
widely used in the sealing of hard disc drives, rotating x-ray tubes under engineering applications. Sealing of 
the rotating shafts is the most known application of the magnetic fluids. The major application of ferrofluids 
in the electrical field is that controlling heat in loudspeakers which makes its life longer and increases the 
acoustical power without any change in the geometrical shape of the speaker system. Magnetic fluids are 
used in the contrast medium in X-ray examinations and positioning tamponade for retinal detachment repair 
in eye surgery. Therefore, ferrofluids play an important role in biomedical applications also. In the presence 
of the uniform magnetic field, the magnetization characteristics depend on the particle spin but do not 
depend on the fluid velocity. Convection of ferromagnetic fluid is gaining much importance due to their 
astounding physical properties.  
 There are rotationally symmetric flows of the incompressible ferrofluids in the field of fluid 
mechanics, having all three velocity components; radial, tangential and vertical in space different from zero. 
In such types of flow, the variables are independent of the angular coordinates. Detail accounts of magneto 
viscous effects in ferrofluids have been given in a monograph by Odenbach [3]. Flow for an incompressible 
ferrofluid, the plate is subjected to the magnetic field  , ,r zH 0 H  using, Neuringer-Rosensweig model [4]. 

This model has been used by Verma et al. [5, 6, 7] for solving paramagnetic Couette flow, helical flow with 
heat conduction and flow through a porous annulus. Rosensweig [8] has given an authoritative introduction 
to the research on magnetic liquids in his monograph and studied the effect of magnetization, resulting in 
interesting information.  
 A study of flow within the boundary layer and its effect on the general flow around the body, in 
detail, are given in Schlichting [9]. Karman’s [10] rotating disc problem is extended to the case of flow 
started impulsively from rest and also the steady-state is solved to a higher degree of accuracy than 
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previously done by a simple analytical method which neglects the resembling difficulties in Cochran’s [11] 
well-known solution. The pioneering study of ordinary viscous fluid flow due to the infinite rotating disc was 
carried by Von Karman. He introduced the famous transformation which reduces the governing partial 
differential equations into ordinary differential equations. Cochran obtained asymptotic solutions for the 
steady hydrodynamic problem formulated by Von Karman. Benton [12] improved Cochran’s solutions and 
solved the unsteady case. Attia [13] studied the unsteady state in the presence of an applied uniform 
magnetic field. The steady flow of ordinary viscous fluid due to the rotating disc with uniform high suction 
was studied by Mithal [14]. Attia [15] discussed flow due to an infinite disk rotating in the presence of an 
axial uniform magnetic field by taking Hall effect into consideration.  
 Using linear instability analysis, Venkatasubramanian and Kaloni [16] discussed the effects of 
rotation on the onset of convection in a horizontal layer of ferrofluids rotating about its vertical axis, heated 
from below and in the presence of a uniform vertical magnetic field. The effect of an alternating uniform 
magnetic field on convection in a horizontal layer of a ferrofluid within the framework of a quasi-stationary 
approach is studied by Belyaev [17]. 
 The effect of the magnetic field along the vertical axis on thermo-convective instability in a 
ferromagnetic fluid saturating a rotating porous medium has been studied by Sekar et al. [18] by using the 
Darcy model. Attia [19] studied the steady flow of an incompressible viscous fluid above an infinite rotating 
disk in a porous medium with heat transfer and also discussed the effect of porosity of medium on the 
velocity and temperature distribution. Frusteri and Osalusi [20] examined the laminar convective and slip 
flow of an electrically conducting Newtonian fluid with variable properties over a rotating porous disk. 
 In general, magnetization is a function of the magnetic field, temperature and density of the fluid. 
This leads to convection of ferrofluid in the presence of the magnetic field gradient. Nanjundappa et al. [21] 
studied Benard-Marangoni Ferroconvection in a ferrofluid layer in the presence of a uniform vertical 
magnetic field with magnetic field dependent (MFD) viscosity. Ram et al. [22] solved the non-linear 
differential equations under Neuringer-Rosensweig model for ferrofluid flow by using power series 
approximations and discussed the effect of magnetic field-dependent viscosity on the velocity components 
and pressure profile. Negative viscosity effects due to an alternating magnetic field are studied by Ram and 
Bhandari [23]. 
 In the present study, the effect of magnetic field dependent viscosity on unsteady ferrofluid flow due 
to a rotating disk is studied in the presence of a stationary magnetic field. When we apply the externally 
applied field on the ferrofluid, the viscosity of the fluid increases and depend on the intensity of the magnetic 
field. We take cylindrical coordinates , , ,r z  where the z-axis is normal to the plane and this axis is 
considered as the axis of rotation. Let rv , v  and zv  are the radial, tangential and axial components of 

velocity, respectively and the disk is rotating with uniform angular velocity  . Neruinger-Rosensweig 
model is used in the problem formulation and this problem is considered with the assumptions that the fluid 
and the disk are both electrically non-conducting, Magnetic field affects viscosity only and flow is taken 
axisymmetric. 
 
2. Formulation of the problem  
 
 The constitutive set of equations is as follows: 
The equation of momentum 
 

       . . 2
0

v
v v p M H 1 B v

t

              
. . (2.1) 

 
The equation of continuity 
 
  .v 0  .                             (2.2) 
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Maxwell equations 
 
  H 0  ,         . H M 0         with      M H  . (2.3) 

 
 Here   is the density of the fluid, v  is the fluid velocity, p is the pressure, M is the magnetization, H 

is the magnetic field intensity, 0  is the permeability of free space,   is the reference viscosity of the fluid, 
  is the linear measurement in the viscosity due to applied magnetic field, B is the magnetic induction,   is 
the magnetic susceptibility, t is the time. 
 For the flow due to a rotating disk, the Eqs (2.1) and (2.2) can be written in the cylindrical form as 
 

  
22 2

r r r r r r
1 r z2 2

vv v v v v v1 p
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r r r t r z rr z
                                 


, (2.4) 

 

  
2 2

r
1 r z2 2

v v v v v v v v
v v

r r t r z rr z
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,  (2.5) 
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
,         (2.6) 

 

  r r zv v v
0

r r z

 
  

 
. (2.7) 

 
 In Eqs (2.4) and (2.6), p  is the reduced pressure due to the magnetization force i.e. 

 .0p p M H     , and 
 .

1
1 B  

 


 is the magnetic field dependent viscosity. 

 If the magnetization and the magnetic field intensity are parallel to each other, then the reduced 
pressure can be calculated as 
 

  
'

' ' '
HH H 2 2

0 0 0

H H
p p MdH p H dH p p

2 2

 
           

  
  . (2.8) 

 
 For the flow due to a rotating disk about z-axis with a constant angular velocity  , the boundary 
conditions used by both Attia and Ariel [15, 24] are given as follows 
 
at      z=0;      , ,r zv 0 v r v 0            at      ; ,rz v 0 v 0   ; 
 
at       t=0,     , ,r zv 0 v 0 v 0   . (2.9) 
 
           Now, we use the similarity transformation to convert Eqs (2.4)-(2.7) in dimensionless form as [10, 11] 
 

   rv r E   ,    v r F    ,    zv G   ,   ( )p P   ,   z


 


,   dt t  . (2.10) 
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 Here   is the dimensionless axial distance from the disk,  E  ,  F  ,  G   are the dimensionless 

components of radial, tangential, axial velocities respectively, ( )P   is the dimensionless pressure profile,   

is the kinematic viscosity and dt  is the dimensionless time parameter. 
 Using similarity transformations Eq.(2.10), Eqs (2.4)-(2.7) are transformed to the following 
differential equations 
 

  
2

2 2
2

d

E E E
k G E F 0

t

  
    

 
,                   (2.11) 
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d

F F F
k G 2EF 0

t

  
   

 
,       (2.12) 

 

  
2

2
d
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k G 0

t

   
   

  
,       (2.13) 

 

  
G

2E 0


 


.       (2.14) 

 
 Here k denotes the magnetic field dependent (MFD) viscosity parameter and mathematically it can 

be written as, .1 1 B k


   


. In the absence of magnetic field, the magnetic fluid behaves as an ordinary 

fluid which follows Newton’s law, however, in the presence of an externally applied magnetic field, viscous 
properties are controlled by the strength of the applied magnetic field.  
 Here, the transformed boundary conditions are 
 
       , , , , ,d d dE t 0 0 F t 0 1 G t 0 0   ;       ,dE t 0  ,        ,dF t 0   and  

 
   ,E 0 0  ,       ,F 0 0  ,     ,G 0 0  .    (2.15) 

 
3. Solution procedure 
 
 Equations (2.11)-(2.14) are nonlinear coupled partial differential equations. These equations are 
solved with the help of Flex PDE after a suitable coordinate transformation. Here, if we solve (2.11)-(2.14) 
directly, the solution oscillates due to discontinuity which occurs between initial and boundary conditions in 
Eq.(2.15). Therefore, the Eqs (2.11)-(2.14) are transformed into appropriate form by taking a suitable 

coordinate transformation / d2 t    as suggested by Attia in the similar kind of problems [13]. Now, the 

transformed equations are 
 

  
2
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    
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  
,       (3.1) 

                       

  
2

2
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    
    
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,       (3.2) 
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  d
G

4 t E 0


 


.                                  (3.3) 

 
 The above equations are solved in Flex PDE for various values of k and dt  these results are shown 
graphically here. If the flow is considered steady, the Eqs (2.11)-(2.14) reduces to ordinary nonlinear coupled 
differential equations as 
 

       
2

2 2
2

d E dE
k G E F 0

dd
      


, (3.4) 

 

       
2

2

d F dF
k G 2E F 0

dd
     


,       (3.5) 

 

   
2

2

dP d G dG
k G 0

d dd
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 
,       (3.6) 

 

     'G 2E 0    .       (3.7) 

 
Here,        , ,E 0 0 F 0 1 G 0 0         and      ( ) ( )E F 0    .    (3.8) 

 
 The resulting system of equations is solved numerically by applying a shooting iteration technique 
combined with a fourth-order Runge-Kutta method. Therefore, we reduce the Eqs (3.4)-(3.7) into first-order 
differential equations by using the following transformation as 
 

     1E y   ,     2
dE

y
d

 


,      3F y   ,     4
dF

y
d

 


,      5G y   . (3.9) 

 
 Let  2y 0 a  and  4y 0 b , we get an Initial Value Problem 1. We will find a and b later. 

 
i. Initial Value Problem 1 

 

  1
2

dy
y

d



;       1y 0 0 , (3.10) 

 

   2 22
2 5 1 3

dy 1
y y y y

d k
  


;         2y 0 a ,       (3.11) 

 

  3
4

dy
y

d



;      3y 0 1 ,  (3.12) 

 

   4
1 3 5 4

dy 1
2 y y y y

d k
 


;       4y 0 b ,  (3.13) 
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  5
1

dy
2y

d
 


;       5y 0 0 .       (3.14) 

 
 Differentiating Eqs (3.10)-(3.14) partially with respect to a as 
 

  i
i

y
Y

a





,        for       i=1, 2, 3, 4, 5. 

 
We get the Initial Value Problem 2 as: 
 
ii. Initial Value Problem 2 

 

  1
2

dY
Y

d



;       1Y 0 0 , (3.15)  

     

   2
5 2 5 2 1 1 3 3

dY 1
Y y y Y 2 y Y 2 y Y

d k
   


;       2Y 0 1 , (3.16) 

 

  3
4

dY
Y

d



;           3Y 0 0 ,                                 (3.17) 

 

   4
1 3 1 3 5 4 5 4
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d k
   


;       4Y 0 0 ,       (3.18) 

 

  5
1

dY
2Y

d
 


;         5Y 0 0 .       (3.19) 

 
 Again, differentiating Eqs (3.10)-(3.14) partially with respect to b such as 
 

  i
i

y
Z

b





,       for       i=1, 2, 3, 4, 5. 

  
We get the Initial Value Problem 3 as: 
 
iii. Initial Value Problem 3 

 

  1
2

dZ
Z

d



 ;         1Z 0 0 ,       (3.20) 

 

   2
5 2 5 2 1 1 3 3

dZ 1
Z y y Z 2y Z 2y Z

d k
   


 ;         2Z 0 0 ,       (3.21) 
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dZ
Z

d



 ;       3Z 0 0 ,        (3.22) 
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   4
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   


 ;       4Z 0 1 ,       (3.23) 

 

  5
1

dZ
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d
 


;    5Z 0 0 .      (3.24) 

 
Let         ; , ; , 1 n n 1 n n 1f a b y a b y        ; , ; , 1 n n 1 n ny a b 0 y a b      (3.25) 

 
and              ; , ; , 2 n n 3 n n 3f a b y a b y        ; , ; , 3 n n 3 n ny a b 0 y a b     . (3.26) 
 
 Now, we can find a  and b  as follows 
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. (3.27)   

 

 Here a  and b  can be chosen positive or negative and depends on the values of E  and F . In our 
problem, E  increases for increasing values of  , however, F  decreases for increasing values of  . 

Therefore, a  and b  are taken positive and negative, respectively.  
 From Eq.(3.6), the reduced pressure can be calculated for different values of k  as 
 

       ' 2
0

1
P P kG G

2
           (3.28) 

 

where 0P  is the constant of integration and represents the initial pressure. 
 The boundary layer displacement thickness is calculated as 
 

   
0 0

1
d v dz F d

r

 

   
        (3.29) 

 

 The expressions for shear stress on the wall of the disk  w  and its surface  s  are as follows 
 

  

   

,z z r
w s

z 0 z 0

v 1 v v v

z r r z


 
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.     (3.30)   

 

 By using similarity transformation, the skin friction coefficient in the tangential direction  wc  and 

in the radial direction  sc  can be calculated as 
 

  

 
 

 
 ' ',w s

w s1 1
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c F 0 c E 0
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 
   

   

       (3.31) 
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Table 1. Skin friction coefficients wc  and sc  for various values of k .                                               
 

 k 1  .k 1 1  .k 1 2  .k 1 3  

wc  0.6179 0.5888 0.5634 0.5409 

Sc  0.5042 0.4805 0.4596 0..4411 

 
4. Results and discussion 
  
 Figures 1-4 shows the radial velocity profile for various values of the time dt  and magnetic field 
dependent (MFD) viscosity parameter k . For k 1 , the problem reduces to an ordinary case where there is no 
effect of field-dependent viscosity on the radial velocity profile as shown in Fig.1. In this case, the fluid reaches 
the steady-state region faster than Fig.2 and much faster than Figs 3, 4. These results indicate that the flow of 
the fluid is radially outwards throughout the motion since, in all the cases, the radial velocity remains positive. 
It also clear from the figure that the radial velocity gets higher peak values for ,  dt 1 3  in comparison to 

. ,  dt 0 5 5 . However, the variable viscosity parameter k  also increases the peak value of the radial velocity. 

 Figure 13 is plotted for a steady flow of ferrofluid, i.e. 0
t





, for various values of k . Here at 

k 1  the problem reduces to the ordinary case [11, 12]. This result indicates that for k 1 , the radial 
velocity converges to the steady-state region faster in comparison to ferrofluid. 
 Figures 5-8 represents the tangential velocity profile. It is clear from the results that, the MFD 
viscosity parameter does not have much impact on the tangential velocities. However, at .dt 0 5 , the 

tangential velocity reaches the steady-state region faster than at dt 1  and much faster than at ,  dt 3 5 . In 
this problem, the disk is rotating with the uniform angular velocity   at z 0 , therefore, the tangential 
velocity near the disk is maximum since the flow of fluid is influenced by the disk. However, at far from the 
disk, it decreases continuously, and finally reaches the steady-state region.  
 In case of the steady flow of ferrofluid, Fig.14 indicate the behaviour of tangential velocity for 
various values of at k 1 , the problem reduces to the ordinary viscous flow due to a rotating disk and the 
results marches with Cochran [11]. However, for . , . , .k 1 1 1 2 1 3 , the effect of MFD viscosity parameter can 
be seen clearly. 
 Figures 9-12 depicts the axial velocity profile. Figure 9 is obtained for ordinary viscous flow where 
there is no effect of MFD viscosity parameter on the axial velocity. These figures indicate that at dt 3 , the 

axial velocity gets large axial velocity at a large distance from the disk in comparison to . , , dt 0 5 1 5 . For 
increasing the values of the parameter k  increases the axial velocity. Negative values of the axial velocity 
reflect that the flow is towards the disk. In all the cases, the axial velocity gets a finite value at far from the disk. 
 If the flow is steady, the axial velocity for various values of k  taking the form as shown in Fig.15. In 
the case of MFD viscosity, ferrofluid gets large axial velocity in comparison to an ordinary viscous fluid, 
however, a stationary magnetic field is applied on the fluid. 
 Figure 16 shows the pressure profile for different values of k . It is the reduced pressure due to the 
magnetization force. The original pressure can be determined if the strength of the magnetization force is 
known. In the case of ferrofluid, the pressure gets higher values in comparison to ordinary viscous fluid with 
increasing the dimensionless axial distance  . At large distances from the disk, where the fluid is free from 
the influence of the disk, the fluid gets constant pressure. 
 We have also calculated the boundary layer displacement thickness here. In the ordinary case, the 
thickness of the boundary layer is .1 2297 , however, for . , . , .k 1 1 1 2 1 3  the boundary layer thickness is 

. ,  . ,  .1 2819 1 3311 1 3931 , respectively. These values indicate that the fluid is thickened due to variable viscosity. 
The thickness of the boundary layer is calculated by Simpson’s One-Third Rule of numerical integration. 
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Further, the skin friction on the wall of the disk and its surface is calculated numerically. For increasing values 
of MFD viscosity parameter, the tangential and the radial skin friction coefficients decrease.  
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[Fig.1. Radial velocity profile for various values of time at 1k . 
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Fig.2. Radial velocity profile for various values of time at .1 1k . 
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Fig.3. Radial velocity profile for various values of time at .1 2k . 
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Fig.4. Radial velocity profile for various values of time at .1 3k . 
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Fig.5. Tangential velocity profile for various values of time at 1k . 
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Fig.6. Tangential velocity profile for various values of time at .1 1k . 
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Fig.7. Tangential velocity profile for various values of time at .1 2k . 
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Fig.8. Tangential velocity profile for various values of time at .1 3k . 
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Fig.9. Axial velocity profile for various values of time at 1k . 
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Fig.10. Axial velocity profile for various values of time at .1 1k . 
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Fig.11. Axial velocity profile for various values of time at .1 2k . 
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Fig.12. Axial velocity profile for various values of time at .1 3k . 
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Fig.13. Steady-state radial velocity profile for various values of k . 
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Fig.14. Steady-state tangential velocity profile for various values of k . 
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Fig.15. Steady-state axial velocity profile for various values of k . 
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Fig.16. Pressure profile for various values of k . 
 
5. Conclusions 

 
  The magnetic field dependent viscosity parameter plays an important role in flow characteristics. It 
creates an additional resistance on the velocity distributions. Increasing magnetic field dependent viscosity 
increases the skin friction coefficient in ferrofluid flow.   
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Nomenclature 
 
 B  − magnetic induction  T  

 d  − boundary layer displacement thickness 
 E − dimensionless component of radial velocity 
 F − dimensionless component of tangential velocity 
 G − dimensionless component of axial velocity 

 H  − magnetic field intensity  /A m  

 k  − ratio of kinematic variable viscosity and kinematic viscosity 

 M  − magnetization  /A m  

 p  − fluid pressure  / 2N m  

 p  − reduced pressure due to magnetization force  / 2N m  

 r  − radial direction  m  

 t  − time (s) 

 dt  − dimensionless time 

 v  − velocity of ferrofluid  /m s  

 rv  − radial velocity  /m s  

 zv  − axial velocity  /m s  

 v  − tangential velocity  /rad s  

 z  − axial direction  m  

   − dimensionless distance parameter 

 δ  − linear measure of the viscosity variations with the applied magnetic field  1T   

   − reference viscosity of fluid  /kg ms  

 0  − magnetic permeability of free space  /H m  

   − tangential direction  rad  

   − kinematic viscosity without magnetic field  /2m s  

 1  − kinematic variable viscosity with magnetic field  /2m s  

   − fluid density  / 3kg m  

 s  − shear stress on surface 

 w  − shear stress on wall  

   − magnetic susceptibility 

   − angular velocity  /rad s  

   − gradient operator  1m  
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