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This paper deals with the investigation of time dependent boundary layer flow of a modified power-law fluid 
of fourth grade on a stretched surface with an injection or suction boundary condition. The fluid model is a 
mixture of fourth grade and power-law fluids in which the fluid may display shear thickening, shear thinning or 
normal stress textures. By using the scaling and translation transformations which is a type of Lie Group 
transformation, time dependent boundary layer equations are reduced into two alternative ordinary differential 
equations systems (ODEs) with boundary conditions. During this reduction, special Lie Group transformations 
are used for translation, scaling and combined transformation. Numerical solutions have been carried out for the 
ordinary differential equations for various fluids and boundary condition parameters. As a result of numerical 
analysis, it is observed that the boundary layer thickness decreases as the power-law index value increases. It was 
also observed that for the fourth-grade fluid parameter, as the parameter increases, the boundary layer thickness 
decreases while the velocity in the y direction increases. 
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1. Introduction 

 
Many models have been developed to determine non-Newtonian behavior of fluids. The most 

important of these are of differential type, power-law and rate type models. Along with many flow problems, 
boundary layer theory has been successfully applied to these models. Both non-Newtonian fluids and the 
boundary layer theory have many industrial applications, such as the production of paper in the 
manufacturing of materials by an extrusion process, spinning of metal, blowing of glass, and so on. For the 
solution of mathematical models for the flow of non-Newtonian fluids, the Lie Group theory is widely used. 
Applications of Lie Groups to differential equations in search of exact solutions have been well-established 
for over a century. The method has been applied to a wide range of problems in fluid mechanics, elasticity, 
quantum mechanics, heat transfer, differential geometry and astronomy, etc. In the method of group theory, 
partial differential equations are generally reduced to ordinary differential equations by finding the 
symmetries of the equations. The algebra involved in the analysis becomes quite complicated, especially, 
when the number of variables or the order of differential equation increases. However, the existing 
algorithms run in a straightforward manner and cannot handle cases when there are arbitrary functions 
involved in the equations. For some specific forms of these arbitrary functions, the symmetries of the 
differential equations are richer and determination of these specific forms turns out to be a group 
classification problem. For problems having arbitrary functions, several independent and dependent 
variables, or higher orders of differentiation, one practical approach might be to use special group 
transformations such as scaling, translation, spiral, Galilean, etc. to produce quick results. As an example, in 
boundary layer problems, we know that scaling, translation and spiral group of transformations are the most 
common ones yielding physical solutions [1-16]. Hence, for a new boundary layer problem, the initial 
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attempt might be to try these special transformations before applying the general Lie group analysis. 
Motivated by the previous work on boundary layers of non-Newtonian fluids [1-16], we propose here a 
transformation which includes scaling, translation and spiral group of transformations as its special cases. 
Like the other special transformations, this transformation would be useful especially for an applied oriented 
researcher who is seeking a physical solution of his problem without involving deeply into the theory. We 
apply the transformation to time dependent boundary layer equations for a modified power-law fluid of 
fourth grade. By using a few special Lie Group transformations, the time dependent boundary layer equation 
system is reduced into an ordinary differential equation system. Moving surface or stretched sheet and 
suction or injection surface boundary condition are considered, and a Runge-Kutta shooting method is used 
to solve the equations. 

 
2. Equation of motion 
 

A non-Newtonian fluid model, power-law, second, third and fourth grade fluids are largely used by 
investigators. The basic stress equation for the modified power-law fluid of fourth grade is as follows 
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where T is the Cauchy stress tensor, I is identity tensor, p is the pressure, µ is the dynamic viscosity, 1 and 
2 are second grade fluid material constants, 1, 2, 3 are third grade fluids material constants. i = 1, 2, 3, 4, 
5, 6, 7, 8 are fourth grade fluid material constants, m is the power-law fluid index. A1, A2, A3 and A4 are 
Rivlin-Ericksen tensors defined by 
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where  L V , V=(u, v) is the velocity vector and () is the material time derivative. For this model, if 

m=0, the equations reduce to those of fourth grade fluids, whereas, if 1=2=0, 1=2=3=0, i =0 and m=0 
then the fluid is a Newtonian fluid. The fluid is known to show shear thickening behavior when m >0, shear 
thinning behavior when m<0.  
 Mass conservation and momentum equations are 
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 To derive the unsteady boundary layer equations, we will set a coordinate system in which x is the 
coordinate along the boundary and y is the coordinate normal to it. Substituting Eqs (2.1) and (2.2) into Eqs 
(2.3) and (2.4), and under the usual boundary layer, the assumption that one finally obtains is the continuity 
and unsteady boundary layer equations for the modified fourth grade fluid.  
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  x yu v 0  , (2.4) 
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where V(x, t) is the x component of the velocity outside the boundary layer. The dimensionless parameters 
are defined as 
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where  is kinematic viscosity. According to the usual assumptions in the boundary layer theory, x and u is 
O(1) and v is of order  (O()). The dimensionless parameters must be as follows 
 

  , , , ,m 2 2 4 4 4
1 1 1 1
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 Equation (2.7) is used for unsteady boundary layer Eqs (2.4) and (2.5). New equations are obtained 
as follows 
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 In this section, the time dependent boundary layer equations for the modified fourth order fluids 
were obtained.  
 
3. Symmetry analysis of boundary layers equations 

 
If Eq.(2.1) is also taken as 1=0, =0, 1=0, the equations obtained are written as follows 
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 In Eq.(2.9), 1, ,  and 1 refer to the second-grade fluid parameter, the third-grade fluid parameter, 
the fourth-grade fluid parameter and fluid effects, respectively. In the equation of motion, there are two 
fourth-order fluid parameters, solutions for the other parameter, that is (), are produced by selecting 1 = 0. 
 Here, the second, third and fourth grade parameter terms refer to the grade of a non-Newtonian fluid. 
As the grade of a non-Newtonian fluid increases, the non-Newtonian character also increases. Equation (3.1) 
defines the continuity equation, while Eq.(3.2) refers to the boundary layer equation consisting of a 
combination of power-law and fourth-order fluid model for unsteady flow. Equation (3.3) describes the 
boundary conditions of the movement. Taking into account an unsteady boundary layer flow on a moving 
surface or stretched sheet surface with suction or injection, we can write the general boundary conditions as 
 

  ( , , ) ( , ), ( , , ) ( , ), ( , , ) ( , )u x t 0 C x t v x t 0 D x t u x t V x t    . (3.3) 
 

 Two type of reductions for Eqs (3.1) and (3.2) with boundary condition Eqs (3.3) will be presented. 
In the first, the reduction scaling transformation and in the other, translation transformation will be used.  
 
3.1. Scaling transformation 

 
We will present that the boundary layer equations admit scaling symmetry and reduce the equations to 

two independent partial differential equations in a more systematic way. Consider now the following scaling 
transformation  
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where  is the transformation parameter. Substituting (3.4) into Eqs (3.2) and (3.3), dividing the equation by 
coefficient of the leading term, we have 
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 (3.6) 

 
 Comparing the transformed Eqs (3.5) and (3.6) with the original equation, we write the invariance 
condition 

 
             a4+a3-a5-a2=0,       a2-a1-a4=0,       a3-a1-a5=0,       m(a3-a4) +2a3-a1=0, 
   (3.7) 
  4a3+a2-a1-3a4=0,       a4-a6=0,       a2+a4-a1-2a6=0. 

 
Solving Eqs (3.7), we find as follows  
 
  a1=a3(2-m),     a2= a3(4-m),     a4=2 a3,     a5= a3(m-1),     a6=2 a3. (3.8) 
 
 We set a3=1 in Eq.(3.8). The equations for similarity transformations are 
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 Using the method of characteristics for solving (3.9), we have 
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 We assume the arbitrary function C(x, t) and D(x, t) in Eq.(3.3) as follows 
 

  

( )
( , ) ( ), ( , )

2

2 m
m 1

m 2

D
C x t t C D x t

t






   . (3.11) 

 

 Substituting (3.10) and (3.11) into the Eqs (3.1), (3.2) and (3.3), we reduce a three-independent-
variable partial differential system to a two-independent-variable partial differential system 
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3.2. Translation transformation 

 
Consider now the following translation transformation for Eqs (3.1) and (3.2) is 
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 Substituting (3.15) into Eqs (3.2) and (3.3), we obtain a4= a5= a6=0. There are no restrictions on the 
parameters a1, a2 and a3. For a special condition, we set a3=0. We obtain 
 

  1 2

dt dx dy du dv dV

a a 0 0 0 0
     . (3.16) 

 
Using the method of characteristics for solving Eq.(25), we have 
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where n=a1/a2, substituting (3.17) into the Eqs (3.1), (3.2) and (3.3), we reduce a three-independent-variable 
partial differential system into a two-independent-variable partial differential system for the second time 
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 Thus, two different boundary layer equations having the two independent variable partial differential 
equations were obtained in this section. 
 
4. Further symmetry analysis  
 

Two independent variable partial differential equations obtained by using similarity transformations in 
the previous section will be reduced to ordinary differential equations in this section. 

 
4.1. Translation transformation 
 

 Firstly, Eqs (3.12) and (3.13) will be discussed. The following translation transformation is 
considered for the equations 
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Substituting (4.1) into Eqs (3.12) and (3.13), we obtain 
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if a1=a2=1 is selected, we obtain 
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when the Eq.(4.3) is solved, we have 
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 We assume the arbitrary function C() and D() in Eq.(3.1423) as follows 
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 Substituting (4.4) and (4.5) into the Eqs (3.12), (3.13) and (3.14), we reduce a two-independent-
variable partial differential system to an ordinary differential equations system 
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4.2. A combined transformation 

 
Consider now the following special Lie Group transformation 
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b1=b2=b3=b4=b5=0 corresponds to the scaling transformation, a1= a2= a3= a4= a5=0 corresponds to the 
translation transformation and a1=b2=b3=b4=b5=0 corresponds to the spiral group transformation. 
Substituting Eqs (4.8) into Eqs (3.12) and (3.13) and dividing the equation by the coefficient of the leading 
term, we obtain 
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if b1=b2=0 and a2=1 are selected, we obtain 
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when the Eq.(32) is solved, we have 
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 We assume the arbitrary function C() and D() in Eq.(3.20) as follows 
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 Substituting Eqs (4.11) and (4.12) into the Eqs (3.18), (3.19) and (3.20), we reduce a two 
independent variable partial differential system to an ordinary differential equations system 
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  ( ) , ( ) , ( )1 2S 0 c K 0 c S c    . (4.15) 
 
 In this section, time dependent boundary layer equations have been reduced to the form of ordinary 
differential equations with two alternative approaches.  
 The shear stress expression for the fourth grade and power-law fluid model is as follows. 
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 (4.16) 

 

 As can be seen from the equation above, the 6 parameter has no effect on shear stress. 
 

5. Numerical results  
 

 By using a Runge-Kutta shooting technique, Eqs (4.13) and (4.14) are integrated, subjected to the 
boundary conditions (4.15). In Fig.1, S function related to the x-component of velocity is drawn for different 
m (m<0 shear thinning) values. In Fig.2, the variation of the K related to the y-component of the velocity 
under the same conditions is shown. The decrease in x velocity component values, as shown in Fig.1, is 
related to the decrease in m values. It is concluded that the boundary layer becomes thicker with decreasing 
m value. Figure 2 shows the velocity component decrease with the increase in the power-law index m. In 
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Fig.3, S function and in Fig.4, K function related to the x and y components of the velocities are represented 
for shear thickening of m values (i.e. m > 0). An increase in S function which is related to the x-component 
of the velocity leads to an increase in m value and the thickness of the boundary layer decreases. In Fig.4, a 
case opposite to Fig.3 is observed. In other words, the velocity component decreases as m increases. In Figs 
5 and 6, the effects of the fourth-grade fluid parameter for the positive and negative values of m are shown. 
In both figures it is seen that the boundary layer thickness decreases with the increase in the value of the 
parameter. Figures 7 and 8 show the effects of the c parameter. In both figures, c=1 that means injection 
boundary condition, c=-1 means suction boundary condition. In the case of c=1, it is observed that the 
boundary layer thickness is greater than that of c=-1. In Fig.8, it is seen that the velocity component is higher 
for c = 1. For the positive values of m, the change of c parameter is the same as for Figs 7 and 8.  

 

 
 

Fig.1. The effect of a parameter m on the x-component of velocity for m <0 (=1, n=1, c=1, c1=1, c2=2). 
 

 
 

Fig.2. The effect of a parameter m on the y-component of velocity for m <0 (=1, n=1, c=1, c1=1, c2=2). 
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Fig.3. The effect of a parameter m on the x-component of velocity for m>0 (=1, n=1, c=1, c1=1, c2=2). 
 

 
 

Fig.4. The effect of a parameter m on the y-component of velocity for m>0 (=1, n=1, c=1, c1=1, c2=2). 
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Fig.5. The effect of a fourth grade fluid parameter on the x-component of velocity (m=-0.2, n=1, c=1, c1=1, c2=2). 
 

 
 

Fig.6. The effect of a fourth grade fluid parameter on the x-component of velocity (m=0.2, n=1, c=1, c1=1, c2=2). 
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Fig.7. The effect of c parameter on the x-component of velocity (=1, n=1, m=-0.2, c1=1, c2=2). 
 

 
 

Fig.8. The effect of c parameter on the y-component of velocity (=1, n=1, m=-0.2, c1=1, c2=2). 
 
 Equation (4.6) is numerically integrated, subjected to the boundary conditions (4.7). The functions P 
and G are plotted in Figs 9-12. The shear thinning and shear thickening cases (i.e., m<0 and m>0) are 
shown. A decrease in the velocity component value was observed with an increase in m in both the Figs 10 
and 12. Figure 9 is similar to Fig.11 where the shear thinning and shear thickening velocities approach the 
edge velocity as an inverse law, whereas in other figures, the velocity change is exponential [4]. 
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Fig.9. The effect of m parameter on the x-component of velocity (=0.01, c=1, c1=1, c2=2). 
 

 
 

Fig.10. The effect of m parameter on the y-component of velocity (=0.01, c=1, c1=1, c2=2). 
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Fig.11. The effect of m parameter on the x-component of velocity (=0.001, c=1, c1=1, c2=2). 
 

  
 

Fig.12. The effect of m parameter on the y-component of velocity (=0.001, c=1, c1=1, c2=2). 
 
6. Concluding remarks  
 

In this study, the time dependent boundary layer flow of a modified power-law fluid of fourth grade on 
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law fluid of fourth grade were determined by power-law index, fourth grade fluid and suction and injection 
parameters. Classical single deck unsteady boundary layer equations are derived from the stress tensor. 
Using scaling and translation transformations, the time dependent partial differential system is transferred to 
two separate two-independent-variable-partial differential equation system. One of the obtained partial 
differential equations was reduced to the ordinary differential equation form by using further translation 
transformation. The other partial differential equation was reduced to the form of ordinary differential 
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equation using a combined transformation. Two ordinary differential equations were numerically solved. The 
effect of the non-Newtonian coefficient and power law index m on the solutions is investigated. The increase 
in the non-Newtonian coefficient results in a thinner boundary layer. In one of the equations, the usual 
solutions for m parameter were obtained. In the other equation, the qualitative behavior of unsteady 
boundary layers of the modified fourth grade fluid looks similar to that of a power law fluid for shear 
thinning and shear thickening cases.  

 
Nomenclature 
 
 A1, A2,  A3, A4 − Rivlin-Ericksen tensors 
 a1…6 − similarity index 
 b1…6 − similarity index 
 c, c1, c2 − boundary value parameters 
 I − identity tensor 
 K, N, F, Q, P, G, S, K − similarity function 
 m − power-law index 
 n-a1/a2  
 p − pressure 
 T − stress tensor 
 u − velocity component in the x direction into the boundary layer 
 V − fluid velocity outside the boundary layer 
 V − velocity vector 
 v − velocity component in the y direction into the boundary layer 
    − dimensional second grade fluid parameters 
  − dimensionless third grade fluid parameters 
     − dimensional third grade fluid parameters 
  − viscous parameter 
  − dimensionless second grade fluid parameters 
   − dimensionless fourth grade fluid parameters 
   − dimensional fourth grade fluid parameters 
  − density 
  − viscosity 
       − similarity transformations 
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