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This paper deals with numerical investigation of a natural convective flow in a horizontal annular space 
between a heated square inner cylinder and a cold elliptical outer cylinder with a Newtonian fluid. Uniform 
temperatures are imposed along walls of the enclosure. The governing equations of the problem were solved 
numerically by the commercial code Fluent, based on the finite volume method and the Boussinesq 
approximation. The effects of Geometry Ratio GR and Rayleigh numbers on fluid flow and heat transfer 
performance are investigated. The Rayleigh number is varied from 103 to 106. Throughout the study the relevant 
results are presented in terms of isotherms, and streamlines. From the results, we found that the increase in the 
Geometry Ratio B leads to an increase of the heat transfer coefficient. The heat transfer rate in the annulus is 
translated in terms of the average Nusselt numbers along the enclosure's sides. Tecplot 7 program was used to 
plot the curves which cleared these relations and isotherms and streamlines which illustrate the behavior of air 
through the channel and its variation with other parameters.  The results for the streamlines, isotherms, local and 
average Nusselt numbers average Nusselt numbers are compared with previous works and show good agreement. 
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1. Introduction  

 
 Natural convection in a horizontal annulus kept at constant surface temperatures has been the subject 
of interest of many researchers due to its theoretical interest and its various engineering applications such as 
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convection in buildings, fluid movement in solar energy collectors, cooling of electronic circuits, and cooling 
of nuclear reactors, heat exchangers. Kuehn and Goldstein [1]; [2] studied experimentally the effect of 
vertical eccentricity of the inner cylinder on the local and overall heat transfer coefficients. Their 
experimental data is commonly used to validate most of the recent numerical studies for Rayleigh numbers 
from 2.2 × 102 to 7.7 × 107. Manal et al. [3] investigated laminar mixed convection and radiation through an 
inclined rectangular duct with an interior circular tube numerically for a thermally and hydrodynamicaly 
fully developed flow. The two heat transfer mechanisms of convection and radiation are treated 
independently and simultaneously. Lacroix and Joyeux [4] conducted a numerical study of natural 
convection heat transfer from two horizontal heated cylinders confined to a rectangular enclosure having 
finite wall conductance. They indicated that wall heat conduction reduced the average temperature 
differences across the cavity, partially stabilized the flow and decreased natural convection heat transfer 
around the cylinders. Mohammed et al. [5] numerically studied the natural convection heat transfer in a two-
dimensional region formed by a constant heat flux horizontal flat tube concentrically located in a cooled 
horizontal cylinder. The model was solved using the FLUENT (computational fluid dynamics) package. The 
numerical simulations covered a range of hydraulic radius ratio equal to 5, 7.5, and 10 at orientation angles 
from 0o up to 90o. Lee et al. [6] studied natural convection in enclosures with irregular walls and reviewed 
the schemes useful for numerical predictions. Cheng and Chao [7] investigated the buoyancy-driven flow in 
the annulus between two horizontal eccentric elliptical cylinders. Bouras et al. [8]; [9] investigated double 
diffusive natural convection in an annular space between two elliptical cylinders of confocal horizontal axes. 
They used the thermal Rayleigh numbers up to 5x105. In addition, they examined the influence of the 
Rayleigh number and Prandtl number on isotherms, isoconcentrations and streamlines. Li and Tong [10] 
studied natural convective heat transfer in the inclined rectangular cavities using three-dimensional 
numerical simulations and experimental measurements. Awasarmol and Pise, [11] experimentally 
investigated natural convection heat transfer enhancement of the perforated rectangular fin array at different 
angles of inclination. They observed that the perforation of fins enhances the heat transfer dissipation rates 
and the optimum perforation diameter depends on the inclination angle. El Shamy et al. [12] studied 
correlation for laminar natural convection between confocal horizontal elliptical cylinders. Bouras et al. [13] 
analyzed natural convective heat transfer from a heated horizontal elliptical cylinder to its coaxial square 
enclosure. Zhang et al. [14] analyzed natural convection heat transfer in a cylindrical envelope with an 
internal concentric cylinder with slots. Yu et al. [15] studied the effect of the Prandtl number on laminar 
natural convection heat transfer in a horizontal equilateral triangular cylinder with a coaxial circular cylinder. 
The Prandtl number was varied over a wide range from 10−2 to 105. 

Farooq et al. [16] studied the laminar natural convection inside a square enclosure containing 
different cross section inner pipes (circular, square and triangular) which have the same peripheral area with 
internal heat generation. Mehrizi et al. [17] carried out lattice Boltzmann simulation of natural convection in 
an elliptical-triangular annulus for different Rayleigh numbers Ra = 103 -105. Xing et al. [18] numerically 
investigated natural convection in horizontal concentric annuli of varying inner shape where the inner and 
outer surfaces are kept at a constant temperature. The simulation was categorized into four groups based on 
the shape of the inner entity, which was either cylindrical, elliptical, square, or triangular. The present 
contribution presents a simulation of the problem as a mathematical model, which was solved numerically 
using the FLUENT-CFD. In this work we investigate the effect of the Rayleigh number and Geometry Ratio 
GR of the square heated on natural convection heat transfer. 
  

2. Description of the problem 
 

Figure 1 shows a cross section of the system. In this system, we consider the elliptical annular space 
characterized by the eccentricity of the outer elliptical tube (e = 0.7). The inner cylinder presents a heated 
square characterized by the dimension h. The outer cylinder presents a cold elliptic. The annular space is 
closed and contains an incompressible fluid with a kinematic viscosity ν and thermal diffusivity α. The outer 
wall and the inner wall generate a vertical gradient in temperature (active walls), with Geometry Ratio GR 
=L/b. 
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Fig.1. Schematic presentation of the physical model. 
 

3. Physical model and mathematical formulation  
 
3.1. Simplifying hypotheses 
 

The flow of natural convection is caused by the thermal forces of pushes and remains laminar. It is 
supposed that the physical properties are constant except for the density of the mixture which depends on its 
temperature according to the relation of the approximation of Boussinesq 
 

   ( ) 0 t 0T 1 T T       .                                                          (3.1) 

 
 In these conditions, we admit that the problem is two-dimensional, permanent and laminar. 
The characteristic quantities used to describe the problem are: the temperature differences ΔT = TH-TC 
between the walls of the system and the thermal diffusivity α of the fluid. 
 The mathematical model includes the continuity equation, the momentum equations and energy 
equation. 
 The equation of continuity is written as follows 
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0
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 
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.                                                                                  (3.2) 

 
The momentum equations are written as follows 
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The equation of energy is written as follows 
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The initial condition is 

 
  U V 0  ,                                                                                                        (3.6) 
 
  c c     .                                                                                              (3.7) 

 
 In addition, the boundary conditions on the system are defined in the internal cylinder as follows 
 

  U V 0  ,                                                                                                              (3.8) 
 
  h   .                                                                                                                  (3.9) 
 

However, in the external cylinder (ellipse), we can write 
 

  U V 0  ,                                                                                                                     (3.10) 
 
  c   .                                                                                                                        (3.11) 
 

 The dimensionless parameters that govern the problem are the thermal Rayleigh (Rat), Prandtl 
number (Pr) and Nusselt numbers (Nu). 
 The thermal Rayleigh number for this problem is defined by 
 

  
( ) 3

h c
t

g T T b
Ra

 
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
                                                                             (3.12) 

 
where b is the characteristic length, which is chosen as the space between the two cylinders. 
 The number of Prandtl is defined as follows 
 

  Pr





.                                                                                                               (3.13) 

 
 The local Nusselt number is defined on the characteristic length L by 
 

  NuL
wall

L



n

,                                                                                        (3.14) 

 
here n  is a normal vector on the wall and ф is the dimensionless temperature. The perimeter of the ellipse Pe 
and the perimeter of the square P were chosen as the characteristic length L. 
 The average Nusselt number for the ellipse and the square can be evaluated by 
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of isotherms and of streamlines for two different Rayleigh numbers, as shown in Fig.3. Moreover, the local 
Nusselt number was compared with the results of El Shamy et al. [12] for different Rayleigh numbers 
extending from 104 to 105 (Fig.4). In the case of two elliptic horizontal confocal, the eccentricity of the inner 
and outer wall are taken 0.9 and 0.4, respectively, and the Rayleigh number equal to 104 (Fig.2). The local 
Nusselt numbers of the inner and outer cylindrical ellipse for two Rayleigh numbers are plotted in Fig.4. The 
result indicates an acceptable agreement with the results which are presented by El Shamy et al. [12]. In 
every case, the results show that two symmetrical cells of recirculation are formed on the right and left of the 
vertical symmetry of the cavity. It is due to the strength of buoyancy produced by the gradient of 
temperature. In these conditions, the fluid is raised on the side of the inner cylinder, and the flow becomes 
fresh and denser by the outer cylinder. 
 

 
 

(a) Present study                                         (b) El Shamy et al. [12] 
 

Fig.3. Streamline (left half) and isotherms (right half) at Ra=104. 
 

 
 

Fig. 4. Comparison of the local Nusselt number along the inner and outer ellipses with previous results [12]. 
 
4.1. Effect of thermal Rayleigh number 
 

 Figures 5, 6, 7 and 8 show the current lines and the isotherms distribution for different values of the 
Geometry Ratio GR and Rat. From these results, it can be seen that the flow is symmetrical with respect to 
the median vertical axis passing through the center of the inner square cylinder. The flow over the square 
cylinder creates a recirculation zone on both sides of the cavity for all values of GR and Rat. The flow is 
organized into two main counter-rotating cells. The cell on the left rotates in the counter clockwise direction 
while the right cell rotates clockwise. This is due to the displacement of the particles of the fluid towards the 
top of the chamber under the effect of buoyancy, by heating up along the hot wall. Then they move towards 
the bottom of the enclosure under the effect of gravity by cooling along the cold wall. For Rat = 103, laminar 
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convection is weak, the values of the current function are very low and almost similar. In this case, the heat 
transfer is mainly by conduction. For Rat = 104, with GR = 0.8, we are always in a pseudo-conductive 
regime. The thermal transfers are therefore essentially conductive. The values of the current function 
appearing on these different figures are always small, convection is relatively weak. But with a Geometry 
Ratio GR different to GR = 0.8, the isothermal lines change and eventually adopt the shape of a mushroom. 
The values of the current functions increase which means that convection intensifies. For Rat = 105 and Ra = 
106, the increase in the thermal Rayleigh number presents in an intensification of natural convection. 
 

   
 

(a) GR =0.2                                                                              b) GR = 0.4 

   
c) GR=0.6                                                                        d) GR=0.8 

 
Fig.5. Current lines and isotherm distribution for Rat = 103. 

 
 
 
 
 
 
 
 
 
 

a) GR=0.2                                                                    b) GR=0.4 
 
 
 
 
 
 
 
 
 
                                         c) GR=0.6                                                                        d) GR=0.8 

 

Fig.6. Current lines and isotherm distribution for Rat = 104. 
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a) GR=0.2                                                                    b) GR=0.4 
 
 
 
 
 
 
 
 
                                         c) GR=0.6                                                                        d) GR=0.8 
 

Fig.7. Current lines and isotherm distribution for Rat = 105. 
 
 
 
 
 
 
 
 
 

a) GR=0.2                                                                    b) GR=0.4 
 
 
 
 
 
 
 
 
 
 
                                         c) GR=0.6                                                                        d) GR=0.8 

 
Fig.8. Current lines and isotherm distribution for Rat = 106. 

 
4.2. Effect of Geometry Ratio (GR) 

 
For the value of the Rayleigh number Rat = 103, it can be said that most of the heat transfer is done 

by conduction at the level of the heated wall. However, the value of the Geometry Ratio GR, for Rat = 104, 
when GR = 0.8, the free space between the two exchange surfaces is small. This fact promotes the 
conductive transfer with the decrease of the Geometry Ratio GR. This free space expands to favor the 
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convective transfer which remains relatively low. For Rat = 105 and Rat = 106, the heat transfer rate and the 
value of the current function are higher. Then, it has been noted that when the thermal Rayleigh number 
increases, the rate of heat transfer also increases. By increasing the value of the Geometry Ratio GR, there is 
a reduction in the free space between the two exchange surfaces. This leads to an intensification of natural 
convection. The regime of the flow remains single-celled for a Rayleigh number Rat = 103 and Rat = 104 
regardless of the value of GR. The flow regime becomes multicellular when Rat ≥ 105 and GR = 0.8. These 
results clearly illustrate the bifurcations with the four additional cells each rotating in the opposite direction 
of its neighboring cell. The increase of the Geometry Ratio GR allowed switching to another flow regime 
which is a multicellular flow. 
 
4.3. Local Nusselt number on the elliptical outer wall 
 

Figure 9 illustrates the variation of the local Nusselt number on the outer elliptical wall. This 
variation confirms that the increase in the thermal Rayleigh number generates an intensification of natural 
convection which implies an increase in the values of the local Nusselt numbers. For GR = 0.2, GR = 0.4 
and GR = 0.6, the variation of the local Nusselt number shows the existence of maximum values at the 
position α = 90° in the upper half of the annular space. This is due to the particles of the fluid moving 
upwards under the action of buoyancy forces of Archimedes. The juxtaposition of two counter-rotating cells 
at this position brings the fluid to the cylindrical wall. A minimum value appears in the lower half of the 
annular space between 240° ≤ α ≤ 310° However, for GR = 0.8 the variation of the local Nusselt number 
shows the existence of three maxima and two minima in the upper part of the annular space (45° <α<135°) 
due to the transition of a bicellular regime towards a multicellular regime. This fact confirms the appearance 
of four counter-rotating cells which bring the fluid to the cylindrical wall (case of the maxima) and move 
away from it (case of the minima). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.9. Variation of the number of local Nusselt on the outer wall. 
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4.4. Local Nusselt number on the square inner wall 
 
 Figure10 illustrates the variation of the local Nusselt number as a function of the thermal Rayleigh 

number. We always notice that the increase of the thermal Rayleigh number causes an intensification of 
natural convection which implies an increase in the values of the local Nusselt numbers, which is obvious. 
Convective transfer intensifies and the rate of exchange between the walls and the fluid increases. For GR = 
0.2, GR = 0.4 and GR = 0.6, the number of local Nusselt is greater on the corners of the square tube. In fact, 
it has been observed that the local Nusselt number is larger at the two lower corners than at the two upper 
corners The curves have only one minimum in the middle of the upper side of the square for GR ≠ 0.8. 
Whereas for GR = 0.8 the curves have three minima and two maxima on the upper side of the square. This 
fact is due to bifurcations which give rise to four cells each turning in the opposite direction of its 
neighboring cell. These pairs of cells bring the fluid to the upper wall of the square (case of maxima) and 
move it away from it (case of the minima). 

 

      

    
 

Fig.10. Variation of the local Nusselt number on the inner wall. 
 
4.5. Variation of the average Nusselt number as a function of the Rayleigh number 

 
 Figure 11 illustrates well the variation of the average Nusselt number as a function of the thermal 

Rayleigh number for different values of the Geometry Ratio GR. From these results it can be seen that the 
average Nusselt number increases with increasing the Geometry Ratio. Also, it increases with increasing of 
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Rayleigh number. This means that the rate of heat transfer increases with increasing the aspect ratio and 
thermal Rayleigh number. 
 

 
 

Fig.11. Variation of the average Nusselt number. 
 

4. Conclusion 
 

The effects of geometry ratios GR and Rayleigh number on Nusselt numbers, current lines, and 
isotherms are studied numerically to characterize the natural convective flow in a horizontal annular space 
between a heated and square inner cylinder and a cold elliptical outer cylinder. 

 From this study; we can draw the following conclusions: 
• For Rat = 103, the laminar convection is weak, the values of the current function are very low and 

almost similar. So, the heat transfer is mainly by conduction. 
• For Rat = 105 and Rat = 106, the increase of the Rayleigh number results in an intensification of natural 

convection. 
• When the Geometry Ratio is equal to GR = 0.8, the free space between the two exchange surfaces is 

small and it favors the conductive transfer.  However, with the decrease of the geometry ratio B, the 
free space will expand to favor the convective transfer that remains relatively low.  

• The flux regime remains single-celled for a Rayleigh number Rat = 103 and Rat = 104 irrespective of 
the value of the Geometry Ratio GR. However, the flow regime becomes multicellular when Rat ≥105 
and GR = 0.8. 

• The average Nusselt number increases with the increase of the geometry ratio GR. 
 In the future, it is interesting to study the effects of the other main controlling parameters, such as the 

inclination of the enclosure and the Prandtl number (Pr) on the flow structure and heat transfer. 
 
Nomenclature 
 

 A  major axe of the elliptic cylinder, [m] 

 B  minor axe of the elliptic cylinder, [m] 

 E  eccentricitie of ellipse 

 GR  geometry ratio 

 Nu  local Nusselt number, [-] 

 Nua  average Nusselt number, [−] 

 P  pressure, [N/m2] 

 Pr  Prandtl number, [-] 
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 p  length or width of the square enclosure, [m] 

 Ra  Rayleigh number, [−] 

 T  local temperature, [K] 

 T0  reference temperature, [K] 

 Tc, Th  cold and hot wall temperature, [K] 

 ΔT  temperature difference, [K] 

 t   time [s] 

 U  dimensionless velocity component in the x-direction 

 U  velocity component in the x- direction, (m/s) 

 V  dimensionless velocity component in the y-direction 

 v  velocity component in the y- direction, (m/s) 

 X  dimensionless coordinate in the horizontal direction 

 x  Cartesian coordinate in the horizontal direction, (m) 

 Y  dimensionless coordinate in the vertical direction 

 y  Cartesian coordinate in the vertical direction, (m) 

 α   Elliptic angle, [o] 

 β   volumetric coefficient of thermal expansion, (K−1) 

 θ   dimensionless temperature 

 ρ  local fluid density, [kg m−3] 

 ρ0  characteristic density at reference temperature, [kgm−3] 
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