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Mathematical modeling of a thin circular plate has been made by considering a nonlocal Caputo type time 
fractional heat conduction equation of order 0 2   , by the action of a moving heat source. Physically 
convective heat exchange boundary conditions are applied at lower, upper and outer curved surface of the plate. 
Temperature distribution and thermal deflection has been investigated by a quasi-static approach in the context of 
fractional order heat conduction. The integral transformation technique is used to analyze the analytical solution 
to the problem. Numerical computation including the effect of the fractional order parameter has been done for 
temperature and deflection and illustrated graphically for an aluminum material. 
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1. Introduction 
 
 The classical Fourier law of heat conduction relates heat flow and the temperature change of a solid. 

It is observed that the above law is not so accurate for many physical situations and materials like 
amorphous, dielectrics, polymers, colloids, glassy, transient loading, etc. This leads to the generalization of 
thermoelasticity in which a fractional heat conduction model of non-integer order derivative is involved. This 
fractional heat conduction model is more useful in physical problems as compared to the classical approach. 
Povstenko [1] investigated a quasi-static uncoupled theory of thermoelasticity which is based on the time-
fractional heat conduction equation of order . Also, he derived the expression of thermal stresses for a one-
dimensional and two-dimensional Cauchy problem. Povstenko [2] generalized the Fourier law and studied 
the thermal stress behaviour based on the heat conduction equation involving time and space fractional order 
derivatives. Youssef [3] constructed a new model of thermoelastic theory in the context of fractional order 
heat conduction, as well as proved its uniqueness theorem. Further, he studied a one dimensional thermally 
shocked problem for a half-space made of an elastic material by using the Laplace transform and state-space 
techniques.  

 Povstenko [4] investigated thermal behaviour in an infinite body by using the concept of Caputo 
time-fractional order derivative. Jiang and Xu [5] used the theory of fractional calculus to obtain a time 
fractional Fourier law and built a time-fractional derivative heat conduction equation in the orthogonal 
curvilinear coordinate system. Ezzat [6] constructed a new model which is based on the theory of magneto-
thermoelasticity in the context of fractional order derivative. He also solved a one-dimensional 
thermoelectric elastic problem for half space by using state-space and the Laplace transform technique. 
Povstenko [7] formulated the theory of thermal stresses by following (Compte and Metzler) generalized 
Cattaneo-type equations with time-fractional derivatives. Ezzat [8] did mathematical modeling of the 
thermoelectric MHD theory in the context of fractional orders heat conduction and solved Stokes’ first 
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problem with heat source by the application of the Laplace transform and state space techniques. Ezzat and 
Ezzat [9] constructed a new mathematical model of poro-thermoelasticity in the context of fractional order 
heat conduction. The Laplace transform is applied to solve a one-dimensional problem of a poroelastic half 
space subjected to heating. Ezzat and El-Bary [10] developed a fractional derivative heat transfer 
mathematical model for generalized magneto-thermoelasticity and establish some coupled and generalized 
thermoelasticity theories. Xiong and Niu [11] established a generalized thermoelastic diffusion theory of 
fractional-order for an anisotropic and linearly thermoelastic diffusive media.  

Recently, Kumar and Khobragade [12 and 13] found temperature and thermal stress for a circular 
disk due to action of partially distributed heat supply in the context of the time fractional order theory of 
thermoelasticity. Kumar and Khobragade [14 and 15] studied thermoelastic behavior for a solid circular 
cylinder by application of the time fractional order derivative theory. Some other related significant 
contributions to the thermoelastic theory has been found in [18- 31]. 

In this article, mathematical modeling of a thin circular plate subjected to the action of a moving heat 
source has been done by considering the nonlocal Caputo type time fractional heat conduction equation of 
order 0 2   . The expression of temperature and thermal deflection has been investigated by a quasi-static 
approach in the context of the fractional order heat conduction by integral transform technique. Numerical 
computation has been done for temperature and deflection and the effect of fractional order parameter was 
illustrated graphically for an aluminum material. To the best of the author’s knowledge till date no one has 
conducted a study on thermal deflection using fractional heat conduction in a thin circular plate by the action 
of a moving heat source. This is a new contribution to the field. 

2. Problem formulation 
 

In this problem we consider a homogeneous isotropic thermoelastic thin circular plate subjected to 
the moving heat source of thickness h  and radius b . We shall assume the heat source moves on the plate 
surface along a circular trajectory at radius round the centre of the plate with constant angular velocity by 
following [16]. 
 The expression for the Caputo type fractional derivative of function ( )f t  is given as [24] 
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with the following Laplace transform rule, where the Caputo derivative needs the initial values of the 
function ( )f t and its corresponding integral derivatives of order , , ,...,k 1 2 3 n 1   
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in which s  is the transform parameter and n  is a positive integer. 
 
2.1. Temperature distribution 
 

The temperature distribution of the circular plate is described by the differential equation of heat 
conduction (following [17] and [24]) in the context of the fractional-order theory subjected to a time 
dependent heat flux in a circular plate as  
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where ( , , , )r z t   denote temperature, k  denotes thermal conductivity, a  denotes thermal diffusivity and 
( , , , )g r z t  denotes a volumetric energy generation. 

Further, it is assumed that the moving heat source provides thermal energy. The function ( , , , )g r z t , 
in Eq.(2.3) has the form 

 

     ( , , , ) ( ) ( )0 0 0g r z t T r r t z z           (2.4) 

 
where 0T  represents the stream of the heat, 0r refers to the radius of the circular trajectory along which the 

heat source move,    denotes the Dirac delta function and ( )t  denotes the function describing the 

movement of the heat source and is defined as 
 

  ( )t t                                                                                                                   (2.5) 
 
where   denotes the angular velocity of the moving heat source  

Using the physically convective heat exchange boundary conditions at the surface by following [24] 
we can write 
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and initial conditions, 
 
  , at ,0 t 0 0 2     , (2.9) 
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where 0  denotes the convective heat transfer coefficient, K  is the heat transfer coefficient, 0  is the 

known temperature of the surrounding medium, Also, ( , , , )RLD r z t   for 0   is the Riemann-Liouville 

fractional integral ( , , , )I r z t   . 
 
2.2. Thermal defection  
 
 The deflection function ( , , )w r t , satisfies the following differential equation (cf. [22]) which is 
defined as  
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where M  denotes the thermal moment of the plate and is defined as  
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 Here D represents the flexural rigidity of the thin circular plate denoted as  
 

  ( )

3

2

Eh
D

12 1 v



.                                                         (2.13) 

 

 In Eq.(2.12), ta  denotes the coefficients of the linear thermal expansion, E  refers to the Young’s 

modules and v  represents the Poisson’s ratio of the plate material, respectively. 
 For out-of-plane deformation, the boundary conditions are given as 
 

  0       at       r 0 .                                     (2.14) 
 
3. Solution of the problem 
 
3.1. Determination of the transient heat conduction problem 
 

In order to find the expression for the temperature distribution function  , , ,r z t   we first define 

the finite Fourier integral transform and its inverse transform over the variable z as [23]  
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With Kernel of the transformation 
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are the roots of the transcendental equation 

 

  

tan

0
p

p 2
2 0

p

2
k

h

k

  
  

    
 

,                                               (3.4) 



162  S.Thakare and M.Warbhe  

  

     , , , cos , , ,
2

p p

0

r t r t d


 

              , 

   (cont. 3.4) 

  
   , , , , , ,p p

0

1
r t r t



 

      
  . 

 

Further, we define the finite Hankel integral transform and its inverse transform over the variable r as [23] 
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With the Kernel of transform is 
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and , , ,...........1 2 3    are the positive roots of the transcendental equation 
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Now, applying the finite Fourier, finite Hankel and Laplace transform and their inversions to 
Eq.(2.3) and using the transformed initial and boundary conditions defined in Eqs (2.6)-(2.10), we obtain the 
expression of the temperature distribution function as 
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Here (.)E  represents the Mittag–Leffler function.   
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3.2. Determination of thermal deflection ( , , )w r t  
 

Using Eq.(3.9) into Eq.(2.12), one obtains 
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Assuming the solution of Eq.(2.11), satisfying condition (2.14) as  
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where m are the positive roots of the transcendental equation 
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Hence solution (3.11) satisfies condition (2.14). 
Now, we obtain 
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Also, 
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 Substituting Eqs (3.11) and (3.13) into Eq.(2.11) and on simplifying, one obtains 
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 Substituting Eq.(3.14) into Eq.(3.11), one obtains  
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 

        , , , cos ( ( ) .
b 2

2 2
p p 0 m m p

r 0 0

K 0 K h r K r dr d E a t





   

 
                      
 

 

  (3.15) 

 
4. Numerical results and discussions 
 
An aluminum plate has been chosen for numerical computations.  

The radius of the circular plate is b 1m , thickness of the circular plate .h 0 2m , angular velocity 

2  , sect 5 , heat transfer coefficient o 10  , temperature of the surrounding medium 0
0 20 C  , 

.0r 0 5 , .0z 0 1 , thermal conductivity  . 2 1k 0 86 m s . Thermal diffusivity  . 6 2 1a 84 18 10 m s   , 

density / 32707 kg m  , specific heat /pc 896 J kg K , Poisson ratio .0 35  , coefficient of linear 

thermal expansion . 6
t

1
22 10 10

K
   , Lamé constant .26 67 . 

The positive roots of the transcendental Eq.(3.8) are .1 3 005  , .2 6 772  , .3 10 06  , 

.4 13 258  , .5 16 428   and the positive roots of the transcendental Eq.(3.4) are .1 20 805  , 

.2 34 654  , .3 49 435  , .4 64 613  , .5 79 985  . 
 MATEMATICA software is used for numerical computations of the thermoelastic problem under 
consideration. All the obtained solutions of temperature distribution and thermal deflection are plotted along 
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the radial direction by considering different values of the fractional-order parameter   = 0.5, 1, 1.5, 2, 
which depict weak, normal and strong conductivity at time t = 5 sec for the thin circular plate subjected to 
the action of a moving heat source. Also, during plotting the value of   is kept for & .0 2    

 
Fig.1. Temperature distribution versus radius. 

 
Figure 1 shows the temperature distribution along the radial direction for the different values of the 

fractional-order parameter   = 0.5, 1, 1.5, 2. It indicates that the temperature follow a nonuniform pattern 
with respect to the radius. The temperature increases gradually in the range .0 r 0 4  , . .0 7 r 0 1   and it 
decreases in the range . .0 41 r 0 69  . It is observed that the speed of propagation of thermal signals varies 
directly proportional to the fractional-order parameter  . Small fluctuations of the temperature are identified 
near the centre of the plate, i.e. maximum heat is absorbed towards the center, it is due to the action of the 
moving heat source along a circular trajectory round the center of the plate with constant angular velocity. 

 

 
 

Fig.2. Thermal deflection versus radius. 
 

Figure 2 shows of thermal deflection along the radial direction for the different values of the 
fractional-order parameter   = 0.5, 1, 1.5, 2. It can be observed that for all values of the fractional-order 
parameter the deflection gradually increases with an increase in the radius in the range .0 r 0 5   and flows 
in a nonuniform pattern and after mid-of-plate it starts decreasing gradually towards outer direction. Also, 
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the deflection is zero at the initial radial ends ( r 0 ), which agrees with the prescribed boundary conditions. 
Further, it is observed that the fractional-order parameter   significantly affects thermal deflection. Hence it 
can be concluded that the fractional-order parameter is an important factor in the design of new materials. 
 
Conclusion 
 
 In this article, we study the three dimensional temperature fields for a circular plate with the 

instantaneous point heat source ( , , , )g r z t , which is situated inside the plate at the point   , ,0 0r t z . The 

thermal behaviour of the plate has been studied in the context of time fractional heat conduction by a quasi 
static approach using fractional calculus with physically convective heat exchange boundary conditions. An 
analytical solution is described by the integral transform technique and the corresponding thermal deflection 
was found using the thermal moments. It follows from the graphs that on changing values of the fractional-
order parameter  , the speed of wave propagation is affected. Hence, it can be an important factor in the 
design of new materials applicable to real life situations and useful for researchers working in material 
sciences. 
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Nomenclature 
 
 a  – thermal diffusivity 

 ta  – coefficient of the linear thermal expansion 

 pc
 

– specific heat 

 D – flexural rigidity of the plate 
 E  – Young’s modules 

 (.)E  – Mittag–Leffler function 

 g  – volumetric energy generation 

 h  – thickness of the circular plate 

 K  – heat transfer coefficients 

 k  – thermal conductivity 

 M  – thermal moment of the plate 

 n  – positive integer 

 r  – radius of the plate 

 0r  – radius of the circular trajectory 

 s  – Laplace transform parameter 

 0T  – stream of the heat 

 w  – deflection function 

 v  – Poisson’s ratio 

   – order of the time-fractional heat conduction eqn. 

 0  – convective heat transfer coefficients 

  .
 

– Dirac delta function 

   – temperature  

 0  – known temperature of the surrounding medium 

   – Lamé constant 

   – movement of the heat source 
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   – density 

   – angular velocity of the moving heat source  
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