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The problem of mixed convection flow of a heat generating/absorbing fluid in the presence existence of 
Lorentz forces in a vertical micro circular subjected to a periodic sinusoidal temperature change at the surface has 
been studied taking the first-order slip and jump effects into consideration. The research analysis is carried out by 
considering a fully developed parallel flow and steady periodic regime. The governing equations, together with 
the constraint equations which arise from the definition of mean velocity and temperature, are written in a 
dimensionless form and mapped into equations in the complex domain. One obtains two independent boundary 
value problems, which provide the mean value and the oscillating term of the velocity and temperature 
distributions. These boundary value problems are solved analytically. A parametric study of some of the physical 
parameters involved in the problem is conducted. The results of this research revealed that the magnetic field has 
a damping impact on the flow and results in decreases in fluid velocity for both air and water. Furthermore, the 
presence of the heat generation parameter is seen to enhance the temperature distribution and this is reflected as 
an increase in the magnitude of the oscillation dimensionless velocity, whereas in the presence of heat absorption 
a reversed trend occurs. 
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1. Introduction  
 
 The study of convection flow and heat transfer containing volumetric heat generation are associated 
with large temperature difference and this is often encountered in many practical problems such as in spent 
fuel storage, in thermal control of space vehicles, in combustion chamber liners, in blading and casting of gas 
turbines, in fire and combustion modelling, in post accident heat removal, in high-performance insulation for 
buildings and in engine cooling system such as heat absorption in a car radiator. A good amount of literature 
is available on the influence of internal heat generation/absorption on flows. Records of such investigations 
can be found in the works of [1-10]. Jha et al. [11] examines the effect of a generating/absorbing fluid flow 
through a saturated porous medium filled in a vertical tube having time-periodic boundary condition on the 
surface of the tube. Jha and Ajibade [12] studied fully developed convection between two infinite vertical 
parallel plate with steady-periodic temperature regime in the presence of temperature-dependent heat 
absorption/generation. Jha and Aina [13] investigated the flow and heat transfer characteristics of a fully 
developed mixed convection flow of an electrically conducting, heat generating/absorbing fluid in a vertical 
tube due to periodic temperature variation on the vertical tube surface in the presence of a transverse 
magnetic field. 
 Recently, the effects of buoyancy on steady-periodic flows phenomenon have received considerable 
attention during the last two decades owing to the importance in technological applications, for instance, the 
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thermal control of electric resistors in alternating current or the development of heat-exchange enhancement 
techniques based on flows with time-oscillating mass rates. Numerous theoretical investigations have been 
carried out on the influence of periodic heating on flows in the past decade [14-23]. Barletta and Rossi di 
Schio [24] investigated the convection in circular duct with time-periodic boundary conditions. Makinde [25] 
carried out analysis of Non-Newtonian reactive flow in a cylindrical pipe. Chinyoka and Makinde [26] 
studied the transient flow of a reactive viscosity third grade fluid through a cylindrical pipe with buoyancy 
effects. Also, Chinyika et al. [27] presented theoretical studied on entropy analysis of unsteady magnetic 
flow through a porous pipe with buoyancy effects. Singh and Makinde [28] investigated axisymmetric slip 
flow on a vertical cylinder with heat transfer. Recently, Jha and Aina [29] studied the fully developed mixed 
convection flow in a vertical pipe having a time periodic boundary condition in the presence of a transverse 
magnetic field.  
 On the other hand, studies on micro-electro-mechanical system (MEMS) and nano-electrical-
mechanical systems (NEMS) are getting more popular since the fluid is widely used in the design of micro-
devices such as micro-motors, micro-sensors, micro-mechanical gyroscopes, micro-pumps, micro valves, 
micro-rockets, micro-gas-turbines, micro-heat-exchangers, biological and chemical devices etc. Micro-
channels are used to transport biological material such as protein, DNA, cells and embryos or to transport 
chemical samples and analyses. The advantage of micro-channels is due to their high surface to volume ratio 
and their small volume. The large surface to volume ratio increases the rate of heat and mass transfer that 
makes micro devices excellent tools. Flow in heat transfer and chemical reactor devices are usually faster 
than those in biological devices and chemical analysis micro-devices. These applications have motivated 
scholars to understand the flow behaviours in these small systems to enhance the performance during the 
design process. Several researcher published articles about micro-channels and micro-tubes [30-35]. 
Recently, Jha and Aina [36] investigate fully developed mixed convection flow in the steady-periodic regime 
for a Newtonian fluid in a vertical microtube. They reported that the oscillation amplitude of the 
dimensionless temperature, velocity and pressure drop are dependent on the frequency of heating, strength of 
rarefaction parameter, fluid–wall interaction parameter and Prandtl number of the working fluid. The 
purpose of the present work is to generalise the work of Jha and Aina [36] by considering a 
generating/absorbing fluid flow under as a magnetic field flow in a vertical circular microtube having time-
periodic boundary condition on the surface of the microtube. Analytical solutions of the momentum and 
energy equations are derived in terms of modified Bessel’s function of first kind. 
 
2. Mathematical analysis 
 
 A fully developed mixed convection flow of a viscous, incompressible, and electrically conducting 
fluid in a vertical micro circular duct having a periodic variation of temperature with time is considered in 
the presence of a transverse magnetic field. The velocities are assumed to be in a range such that the flow is 
always laminar. The flow is assumed to be parallel so that the X  component U  of the velocity vector U is 
non zero. The X  axis is the axial coordinate which is parallel to the gravitational acceleration g but with 

opposite direction while the R  axis is the axis in the radial direction. A uniform magnetic field 0B   is 
assumed to be acting perpendicular to the flow direction. We assume that the magnetic Reynolds number is 
very small, which corresponds to the negligibly induced magnetic field compared to the externally applied 
one. Furthermore, the effect of viscous dissipation in the fluid is neglected.  

Since only the axial component of U   is non-vanishing, the mass balance equation ensures that 
,U X 0     i.e.  , .U U R t  It is assumed that the pipe surface at 0R R   is kept at an oscillating 

temperature with time, namely 
 

       , , cos0 1T X R t T T t    . (2.1) 
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 Moreover, since the thermal boundary condition (2.1) does not yield any net fluid heating or cooling, 
heat transfer occurs only in the radial direction, so that 
 

   

T
0

X




  
(2.2) 

 
i.e.  , .T T R t  The prescribed mass flow rate is assumed to be stationary, therefore average velocity in a 

pipe cross section, defined as 
 

   

 ,
0R

0 2
0 0

2
U RU R t dR

R
  , (2.3) 

 
is time-independent. The equation of state  T    is considered as linear 

 

   
 0 01 T T        

(2.4) 

 
where 0T  is the reference temperature with respect to both the pipe cross section and to a period of time, 
namely 
 

   

 ,
0

2
R

0 2
0 0 0

T dt RT R t dR
R





   . (2.5) 

 

Since 
T

0
X





, 0T  is a constant.  

 By using the Boussinesq approximation, the governing equation of the momentum of conducting 
fluid in the presence of the magnetic field is as follows 
 

   
 

2
0

0
0 0 0

B UU 1 P 1 U
g T T R

t X R R R

                   
 (2.6) 

 
where 0P p g X    is the difference between the pressure and the hydrostatic pressure. By differentiating 

both sides of Eq.(2.6) with respect to X , one obtains 
2

2

P
0

X





. This result implies an existence of a function 

 A t  such that 

 

   
 P

A t
X


 


. (2.7) 

 
Then, Eq.(2.6) can be rewritten as  

 

   
   

2
0

0
0 0 0

B UU 1 1 U
A t g T T R

t R R R

                
. (2.8) 
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The energy balance equation is given by 
 

   

 0 0

0

Q T TT T
R

t R R R C

          
. (2.9) 

 
 The non-dimensional quantities used in the above equation are defined as 
 

   

 
, , , , , , Re ,

Gr , , Pr , , .

22
00 0 0

0 0 0

3 2 2 2
0 1 0 0 0 0 0

2
0

4R A tT T R U 4R 2RU
r u t

T 2R U U

8g TR T T B 4R Q 4R
M H

T C

 
           

   

   
     

     

(2.10) 

 
The physical quantities used in the above equations are defined in the nomenclature. 
 Substituting the dimensionless quantities defined in Eqs (2.8) and (2.9), the dimensionless 
momentum and energy equations are 
 

   

Gr

Re
2u 1 u

r M u
r r r

            
, (2.11) 

 

   
Pr

1
r H

r r r

          
. (2.12) 

 
The dimensionless boundary conditions for the present physical situation are as follows 
 

   

, ,v 1
r

2

1 u
u Kn

2 r 

      
        

r 0

u
0

r 





, (2.13) 

 

   

 , cos ln ,v 1
r

2

1
Kn

2 r 

          
       

r 0

0
r 




  

(2.14) 

 
where 

  
,v

v
v

2  
 

        
,

Pr
t s

t
t s

2 2 1

1

 
 

         
,

0

Kn
2R




      
ln t

v





. 

 
 Referring to the values of v  and t  given in Eckert and Drake [25] and Goniak and Duffa [26], the 

value of v  is near unity, and the value of t  ranges from near 1 to more than 100 for actual wall surface 

conditions and is near 1.667 for many engineering applications, corresponding to v 1  , t 1  , .s 1 4   

and Pr .0 71  , .v t1 1 667    . 

 From Eqs (2.3) and (2.5), the following two constraint equations in dimensionless form are 
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 ,

1

2

0

1
ru r dr

8
  , (2.15) 

   

 ,

1
2 2

0 0

d r r dr 0


     . (2.16) 

 
The fanning friction factor is defined as 
 

   
Re2 1

r0 0
2

2 2 u
f

rU




 
  


. (2.17) 

 
 By differentiating with respect to   both sides of the integral constraint on  ,u r   expressed in 

Eq.(2.15), we have 
 

   

 ,

1

2

0

u r
r dr 0
 


 . (2.18) 

 
 Multiplying both sides of the momentum equation in Eq.(2.11) by  r  and integrating with respect 

to r  in the interval ,
1

0
2

 
  

, one obtains 

 

   

   Gr
, ,

Re

1 1 1 1 1

2 2 2 2 2
2

0 0 0 0 0

u u
r dr rdr r r dr r dr M ru r dr

r r

                    , (2.19) 

which gives 

   

Re
1

r
2

u
f 2

r 


 


, 2.20) 

   

 Gr
,

Re

1

22

0

M
4 r r dr

2 2


     . (2.21) 

 
3. Analytical solution: velocity and temperature distribution 
 
 In the steady periodic regime, the momentum and energy balance Eqs (2.11) and (2.12), together 
with the boundary conditions (2.13) and (2.14) and the constraints (2.15) and (2.16) can be solved 
analytically by considering the function  ,u r  ,  ,r   and     as the real parts of three complex valued 

functions, namely 
 

  
    , * ,u r e u r    R , 

   



6                                                                                                                                             Babatunde Aina and Sani Isa 

  
    , * ,r e r      R , (3.1) 

 

  
    e      R . 

 
 On the account of Eqs (2.11) - (2.16), the complex valued functions  * ,u r  ,  * ,r   and  *   

must be the solution to the boundary value problem 
 

  

* Gr *
* * *

Re
2u 1 u

r M u
r r r

             
, (3.2) 

 

  

* *
Pr *

1
r H

r r r

          
, (3.3) 

 

  

*
* , ,v 1

r
2

1 u
u Kn

2 r 

      
*

r 0

u
0

r 





, (3.4) 

 

  

*
* , ln ,i

v 1
r

2

1
e Kn

2 r




         
*

r 0

0
r 





, (3.5) 

  

 * ,

1

2

0

1
ru r dr

8
  , (3.6) 

  

 * ,

1
2 2

0 0

d r r dr 0


     .                                                                            (3.7) 

 
Therefore, one has 
 

  
       * *Gr

* , exp
Rea bu r u r u r i    , 

 

         * ** , expa br r r i       , (3.8) 

 

  
   * *Gr

* exp
Rea b i       . 

 
 By substituting Eq.(3.8) into Eqs (3.2)-(3.5), one obtains two independent boundary value problems. 
The first boundary value problem is expressed as 
 

  

*
* * *Gr

Re
2a

a a a
1 d du

r M u 0
r dr dr

 
       

 
, 
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*
*a
a

d1 d
r H 0

r dr dr

 
    

 
, 

 

  

*
* ,a
a v

1
r

2

du1
u Kn

2 dr


    
 

            

*
a

r 0

du
0

dr


 , 

 

  

*
* ln ,a
a v

1
r

2

d1
Kn

2 dr


     
 

       

*
a

r 0

d
0

dr



 , (3.9) 

  

 *

1

2

a

0

1
ru r dr

8
 , 

 

  

 *

1

2

a

0

r r dr 0  , 

 
while the second order is given by 
 

  

*
* * * *2b
b b b b

du1 d
r M u i u 0

r dr dr

 
         

 
, 

 

  

*
* *Prb
b b

d1 d
r i H 0

r dr dr

 
       

 
, 

 

  

*
* ,b
b v

1
r

2

du1
u Kn

2 dr


    
 

          

*
b

r 0

du
0

dr


 , 

 

  

*
* ln ,b
b v

1
r

2

d1
1 Kn

2 dr


    
 

       

*
b

r 0

d
0

dr



 , (3.10)

 

  

 *

1

2

b

0

ru r dr 0 , 

 

  

 *

1

2

b

0

r r dr 0 
. 

 

 By employing the constraint on  *
a r  yields ,0  i.e., 0T T  the solution of Eq.(30) is 
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   *
a r 0  , 

 

  
       

   
*

* . .

. .
0 1 v 1 1 1 1 1a

a 2
0 1 v 1 1 1

I 0 5D KnD I 0 5D I rD
u r

I 0 5D KnD I 0 5DM

   
  

   
, (3.11) 

 

  

   
      

* . .

. . .

2
1 0 1 v 1 1 1

a
1 0 1 v 1 1 1 0 1

M D I 0 5D KnD I 0 5D

D I 0 5D KnD I 0 5D 4I 0 5D


 

 
, 

 
while the solution of Eq.(3.10) is 
 

  
   

   
*

. .
0 2

b
0 2 v 2 1 2

I rD
r

I 0 5D KnD I 0 5D
 


, 

 

  

       
     

*
* *

. .

0 2b
b 8 7 b 0 3 2 2 2

3 3 2 0 2 v 2 1 2

I rD
u r d d I rD

D D D I 0 5D KnD I 0 5D


    

 
, (3.12) 

 

  

* 13 10
b

11 12

d d

d d

 
 


 

where 

  ,1D M        Pr2D i H         and      2
3D M i   . 

 

 The values of 1 13d d  are defined in the Appendix. 
The fanning friction factor can be written as 
 

  
 * * Gr

Re Re Re exp
Rea bf f f i     

 (3.13) 

 

where *
af  and *

bf  are respectively given by 
 

  

*
* Re a
a

1
r

2

du
f 2

dr


 
*

* Re b
b

1
r

2

du
f 2

dr


  . (3.14) 

 
4. Results and discussion 
 
 In order to have a physical insight into the problem, we have written a MATLAB programme to 
compute and generate the graphs for the dimensionless velocity, dimensionless temperature, dimensionless 
pressure drop, and dimensionless friction factor. Some representative results are presented in the form of line 
graphs in Figures 1-19 to interpret the effects of these parameters. The negative value of H corresponds to 
the internal heating of the fluid, while the positive value corresponds to the internal cooling of the fluid. 

 Figures 1 and 2 depict the influence of the Lorentz force on the radial distribution of *
bU  under the 

cases of a small value of dimensionless frequency  .0 5   and large value of dimensionless frequency
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Nomenclature 
 

  A t
 
− function of time                                                          

 0B  − constant magnetic flux density 

 f  − fanning friction factor 

 Gr  − Grashof number 

 g  − gravitational acceleration                                                

 H  − dimensionless heat generation parameter                        

 nI  − modified Bessel function of first kind and order n  

 i  − imaginary unit 

 nK  − modified Bessel function of second kind and order n  

 Kn  − Knudsen number, 02R  
 k  − thermal conductivity 
 ln  − fluid- wall interaction parameter, t    

 M  − magnetic parameter                                                                                    

 n  − integer number 
 P  − difference between the pressure and the hydrostatic pressure 
 Pr  − Prandtl number 

 p  − pressure 

 R  − radial coordinate 

 R  −  real part of a complex number 

 Re  − Reynolds number                                                                                         

 r  − dimensionless radial coordinate 

 T  − temperature 

 0T  − mean temperature in a pipe section                                                          

 1T  − mean wall temperature 

 T  − amplitude of the wall temperature oscillations                              

 t  − time                                                                                                              

 U  − fluid velocity 

 u  − dimensionless velocity                                                                      

 *u  − dimensionless complex-valued function 

 
* *,a bu u  − dimensionless complex-valued function                                           

 X  − longitudinal coordinate 

   − thermal diffusivity                                                                     

   − volumetric coefficient of thermal expansion 

   − dimensionless parameter 
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 *  − dimensionless complex-valued function                                 

 
* *,a b   − dimensionless complex-valued function 

   − dimensionless parameter                                                          

   − dimensionless temperature 

 
* *,a b   − dimensionless complex-valued function                          

   − dynamic viscosity 

   − kinematic viscosity                                                                   

   − dimensionless heat flux 

 
* *,a b   − dimensionless complex-valued function                       

   − mass density 

 0  − mass density for 0T T  

 w  − average wall shear stress 

   − frequency of the wall temperature oscillation                           

   − dimensionless frequency 

   − electrical conductivity of the fluid 
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