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The present paper deals with the study of a fundamental solution in transversely isotropic thermoelastic media
with mass diffusion and voids. For this purpose, a two-dimensional general solution in transversely isotropic
thermoelastic media with mass diffusion and voids is derived first. On the basis of the obtained general solution,
the fundamental solution for a steady point heat source on the surface of a semi-infinite transversely isotropic
thermoelastic material with mass diffusion and voids is derived by nine newly introduced harmonic functions.
The components of displacement, stress, temperature distribution, mass concentration and voids are expressed in
terms of elementary functions and are convenient to use. From the present investigation, some special cases of
interest are also deduced and compared with the previous results obtained, which prove the correctness of the
present result.
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1. Introduction

Fundamental solutions play a crucial role in the theory of partial differential equations. They can be
used to derive many analytical solutions of practical problems when boundary conditions are imposed.
Fundamental solutions play a key role in an integral equation representation of a boundary value problem
and are more easily solved by analytical methods in comparison to a differential equation with specified
initial and boundary conditions. This type of situation (numerical methods technique) makes the subject
more attractive mainly for these researchers whose interest is in numerical methods. The fundamental
solution also provides a wonderful platform to overcome the main drawbacks in the boundary element
method which also uses the fundamental solution to satisfy the governing equation. Consequently, we can
say that with the latest technological demand, no boundary element method can be made more advanced
without further developments in the area of fundamental solutions or in other words we can say that
fundamental solution is the basis for many further works.

Ding et al. [1] constructed the general solutions for coupled equations in transversely isotropic
piezoelectric media by using the operator theory. Dunn and Wienecke [2] derived the half space Green’s
functions for a transversely isotropic piezoelectric solid and also obtained closed-form expressions for the
half-space Green's functions. Pan and Tanon [3] presented Green’s functions for a three dimensional problem
in anisotropic piezoelectric solids and also presented the applications. Chen [4] derived a general solution for
transverse isotropic thermo-piezo-elastic media in dynamic as well as in static case and derived an exact
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solution for a penny shaped cracked subjected to uniform temperature load. Chen et al. [5] presented three-
dimensional exact solution for a penny-shaped crack in an infinite piezoelectric medium subjected to an
arbitrarily point temperature load by using the potential theory method for both impermeable and permeable
cracks.

After consideration of thermal effects, Sharma [6] derived the fundamental solution for a
transversely isotropic thermoelastic material in an integral form. Ciarletta et al. [7] derived the fundamental
solution for a micropolar isotropic thermoelastic material with voids by the potential method. Hou et al. 8]
constructed Green’s function for a three-dimensional problem for transversely isotropic biomaterials by
using the operator theory. Hou et al. [9] studied Green’s functions for a two dimensional problem for semi-
infinite orthotropic thermoelastic media by introducing new harmonic functions. Xiong et al. [10] discussed
Green’s functions for a two dimensional problem for orthotropic piezothermoelastic material by trial and
error method. Hou et al. [12] constructed the general solution and fundamental solution a two dimensional
problem for orthotropic thermoelastic material. Seremet [13] constructed an exact Green’s function and
integral formula for a boundary-value problem (BVP) for a thermoelastic wedge in terms of elementary
functions. Seremet [14] derived a new Green’s function and a new Green-type integral formula for a
boundary value problem (BVP) in thermoelastic quadrant. Kumar and Kansal [15] studied the plane wave
propagation and fundamental solution in generalized theory of thermoelastic diffusion.

Kumar and Chawla [16, 17] derived the fundamental solution and Green’s function for a two
dimensional problem in orthotropic thermoelastic diffusion media by using the operator theory and also
presented the result graphically. Also, Kumar and Chawla [18, 19] derived the fundamental solution and
Green’s function in orthotropic piezothermoelastic diffusion media by trial and error method. Kumar and
Chawla [20] discussed the problem of reflection and transmission in thermoelastic media with three-phase-
lag model for isotropic case. Kumar and Vandna [21] derived a Green's function for a three dimensional
problem in transversely isotropic thermoelastic biomaterial for concentrated heat source. Kumar and Chawla
[22] presented the fundamental solution for a two-dimensional problem in orthotropic thermoelastic media
with voids by introducing nine new harmonic functions. Seremet [23] derived new constructive formulas in
thermoelastic Green’s functions for a boundary value problem of thermoelasticity in a steady state case and
also expressed the constructive formulas in terms of Green’s functions for Poisson’s equation. Pan et al. [24]
derived the general solution and fundamental solution for fluid-saturated, orthotropic, poroelastic materials
in case of a steady state problem. Chawla et al. [25] constructed a general solution and fundamental solution
for a two dimensional problem in micropolar thermoelastic material. Dang et al. [26] investigated a planar
crack of an arbitrary shape embedded in three-dimensional isotropic hygrothermoelastic media by using the
Hankel transform technique. Zhao et al. [27] derived the three dimensional general solution and fundamental
solution in hygrothermoelastic media by using the operator theory. Tomar et al. [28] studied plane waves in
thermo-viscoelastic material with voids under different theories of thermoelasticity. Biswas [29] investigated
the fundamental solution in steady oscillations equations for nonlocal thermoelastic medium with voids.

However, the important general solution and fundamental solution for a two-dimensional problem
for a steady point heat source in an anisotropic thermoelastic material with mass diffusion and voids has not
been discussed so far in the literature.

2. Basic equations

Following Aouadi [11] the basic equations for an anisotropic thermoelastic material with mass
diffusion and voids, in the absence of body forces, extrinsic equilibrated body force and heat sources, are

Constitutive relations
Equations of motion

Pli; = Cijgmerm,; + B9, —ByT ; —v;C ;- (2.2)
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Equilibrated equation

PP = Aij(p’l.j —0)p—Ep— Bl-jui’j + b;kT + b;C. (2.3)

Equation of heat conduction

pC'T + T, (Byti; ; +b; ) +aT,)C =K;T. (2.4)

(iv) Equation of mass diffusion
o [—yu; ; —byp—aT +dC,; =C. (2.5)

*

Here, ¢, (= Chmij =€ j,-km) is the tensor of elastic tensor k; (= k ﬂ), oy

* .
(= o j,-) are, respectively, the
coefficients of thermal conductivity and diffusion tensor, f3;,y; are, respectively, the tensors of thermal and

diffusion moduli, AU-,BU,mO,&,b;,b; are the constitutive coefficients, 7 is the temperature distribution from

the reference temperature 7;,, p is the density, 7y is the equilibrated inertia, ¢ is the volume fraction field,

u, . +u;;
i, N . .
€ = % are the components of the strain tensor, u; are components of the displacement vector, a,d

are, respectively, the coefficient describing the measure of thermodiffusion and mass diffusion effects, C is
the concentration of diffusive material in the elastic body, C" is the specific heat at constant strain and the
above coefficient have the following symmetries. The symbol (“,”) followed by a suffix denotes

differentiation with respect to the spatial coordinate and a superposed dot (“.””) denotes the derivative with
respect to time.

3. Formulation of the problem

We consider a homogenous, transversely isotropic thermoelastic diffusion medium. Let us take Oxyz
as the frame of reference in Cartesian coordinates.

For a two-dimensional static problem, we assume the displacement vector, temperature change and
mass concentration, volume fraction field, respectively, of the form

u=u,0,w), T(x,zt1), C(x,z,t), o(x,z,1). G.1)

Equations (2.1)- (2.5) for a transversely thermoelastic material with diffusion and voids, with the aid
ofEqs (3.1), can be written as

o’ o’ w e . oT  oC
c;i—+ce— u+(c;3+cyy)—+B,——-pB,——-y,—=0, 32
{ 1127+ s 622} (13 44)6xaz 15 B, o (3.2)

o’u o’ o’ o oT  oC
(¢r3 +C44)@+|:044ajc_g+c33az_2:|W+B3—(P—B3——Y —=0, (3.3)
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ou  ow X ox o, o
B, ——-B;—+| 4, —+A4;—— +b,T+b,C=0, 34
[ [léxz 32 a}P 1T+ by (3.4)
9 Y a*iJroc*i qu3 Y a*iJra*i w+| b, a*iJra*i ¢+
I e | ] B AN a? o
L2 L L L (3.5)
+lalo,—+a;— [|[T—|d|o;,—+a;— | |[C=0.
( " ox? 3822] [ " ox? 3822j
Equations (3.2)-(3.5) can be written as
D{u,w,0,T}" =0 (3.6)
where D is the differential operator matrix given by
F @ o’ o’ 0 o o
Cjj—+Css— Ci3+Cp)—— B,— e -B,—
Max? 7% 5,2 €13+ as) Ox0z T ox T ox P ox
(c + C )i C i + C i i — i - B i
137 ) 11757766 5 35, Y3 o 3o
0 d o° o° , ]
-B,— -B;— A—+A4;—— b b
ax 35, ( 1502 5’ E.,j 2 1
(3.7

62

| N TP )| | P M Tl A2 ol

52
0z°

0 0 0 0 [K —tKi—
Ox

|

Equation (3.6) is a homogeneous set of differential equations in u,w,,C,T . The general solution by

the operator theory is as follows

u=A,F+4,G, w=A4,F+4,G, ¢=A4;G, C=4,F+A4,G,

T=A45F+45G,  (i=1,2,3,4,5)

where 4;; are algebraic cofactors of the matrix D, of which the determinant is

(3.8)
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8 8 8 8 8 2 2
|D|=(a*a—+b* S A +e*a—}<[;;+s3a—}+

c
b axfer® ax'er! alor ot 2 T e?
3.9
-8 oA o° o°
Ha—(F+b—F—F+c—F—+d—( X| —F+&—5 |
oz ox“0z ox" 0z Oz ox 0z
where a*,b*,c*,d*,e* and c_z,l; ,c and d are given in Appendix A.
The functions F and G in Eq.(3.8) satisfy the following homogeneous equation
|D|F=0 and |D|G=0. (3.10)

It can be seen that if i=1,2,3,4 are taken in Eqs (3.8), four general solutions are obtained in which
T =0. These solutions are identical to those without thermal fact and are not discussed here. Therefore if
i =5 should be taken in Eqgs (3.8), the following solution is obtained

( &f &% & o J@F
u= + +

p—+4q +7 +v,— |—
Tox® " oxfor?  Taxtort lof |ox

(3.11a)
+ 7} i+_ —84 +Fi a_G
Pi ox? % ooz’ 1824 ox’
w=|p o’ +q o’ +r o +v i 8_F+
Toxd Paxtor? Coxlert el ) ez
(3.11b)
+ ]_) i-l—é? —64 +7i a_G
? ox? ? ox’oz’ ? ozt oz’
o° o° o° o°
o=|p;—+q +7; +v;— |G, (3.11¢)
[ ot Ve’ Cader ol
(& o o’ o’ o’ r
C=\Poo Mg Mg g o |
(3.11d)
o° o0 o° o0
+| P +q. +7 +v,— |G,
(p4 o’ 14 ox?oz? 46x2824 48x6]
00 . . o . o8 « 0°
T=\a —+b +c +d +e — |F +
[ o e ax'er! T e
(3.11e¢)

o — & o - o°
+a—+b +c +d — |G
( 20 ozt ox? oz’ ox? o’



A general study of fundamental solutions in anisotropic ... 27

where a*,b*,c*,d*,e* and @,b,c and d are given in Appendix A.
Equation (3.10) can be rewritten as

5 2 2
11 a_+a_2 F =0, (3.12)
Oz

2
oI\ Ox" 0z

4 2 2
H[a_2+a_2JG:0 (3.13)
iy ox® 0z

where

/K . . . .
Z;=5;z,85= K—J and s,(j=1,2,3,4) are four roots (with positive real part) of the following algebraic
3

equation

ad'sb b5t 1+t —dsP e =0. (3.14)
and

fK . . . .
Z;=8;2,8;= K—I and s;(j=1,2,3) are three roots (with positive real part) of the following algebraic
VA | .

equation
asd —bs* +es’ —d =0. (3.15)

As known from the generalized Almansi (proved by Ding et al. [1]) theorem, the function F' and G
can be expressed, respectively, in terms of five and four harmonic functions

@ F=F+F,+F;+F,+F; fordistinct s,(j=1,2,3,4,5),
(3.16a)
G=G;+G,+G;+G, fordistinet 5;(j=1,2,3,4),
(11) F:F}+F2+F3+F4+ZF5 for S175S275S3¢S4:S5,
(3.16b)
GZGI+G2+G3+ZG4 for §1¢§2¢S3:S4,
(3.16¢)
G:G1+G2+ZG3+ZZG4 fOI‘ EI¢E2:S3:S45
(iv) F=F +F,+zF;+z°F,+2F; for s,#5,=5;=5,=5;, (3.16d)
v) F=F1+ZF2+ZZF3+23F4+Z4F5 for s;=5,=5;=5;,=55,
(3.16e)

GZG]+ZG2 +Z2G3 +Z3G4 _12_22_32_4
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where F;(j=1,2,3,4,5) and G;(j=1,2,3,4) satisfies the following harmonic equation

oA

—S+t—=|£5=0, (=1234), (3.17a)
ox’ azj

o’ &

—+— |G, =0, i=1,2,3). (3.17b)
o’ oz ) Y :

The general solution for the case of distinct roots, can be derived as follows

5

5 4 o°G
Zl’u@ o' 5 Zplja o’ Ve WZZSJPZJ / +Zs]p2] Py ;

J=1 Jj=1 Z J

d 66G u 8°F 8°G
(P=ZP 6 ZP4] Z T=P55—85+P54—64>
Fay 0z - zj Py j 0z5 0z,
(3.18)
pka—pk+qks rks +vks (k=1,2,3&j=1,2,3,4,5);
P4j =Py _‘14512' +’”4S;t _V4S§' + W4S§a
Pss=a s5 -b" 55 +c" st - d*5§ —e
Py =Pr —US; +75] (k=1,2& j=1,2,3,4),
= = =2 —4,=6 _ ._
Pij =Pk T qiS; —TiSj + VS, (k=34&j=12,3,4),
Ps;=asy —bs) +cs; —d .
In a similar way, the general solution for the four three cases can be derived.
Equation (3.18) can be further simplified by taking
o°F,
Pij——% =V, (3.19a)
0z
and
_o'G;, _

=
GEJ-
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where

5 4 5 4 —
oy, oy \ _ = Oy
§ —Lay L w=> 5P, —L+ Y 5P,
Oox ox - - oz
=] j=1 j=1 J Jj=1 J

Pi=p2;/p1j»  Py=p3;[/pij»  By=psj/Pijs Pis=DPss/pise
131,':172,'/1_71]" Py =D33/ D130 Pry=Das| Pra-

The functions v ; (j=1,2,3,4,5) and y; (j=1,2,3,4) satisfy the harmonic equations

2 2
[aa (j }W]zO, j=152,354,5a
X Z

2
[a aJ\T;jzo j=1234,

g oz’
5 o2
2 v
B z(_c” 3850 = by, _a]})zlj)—zj‘f'
J=1 8Zj
4 82_
2D = — — v
+Z(—c” +¢;35 P+ BiPy; —b Py _01})4_]')—2],
J=1 62]
5 22
\Ij .
= 2ocers sl 0By —asPy )
J=1 Z
4 82_
2D = — — |
+Z(_013 +C33Sijj +B3PZj _bjpjj _a3P4j)—2],
J=1 8Zj
Zjl (1 P)a2w Z (1 P)a"’/
= C + Ky + c + 3 .
po 44 1j éxazj oy 44 i7 sz

2 _ 2
11 =C135: P + b Py +ai By =cyy(1+ P j)sy,
25 5 5 5 _ 5 =2
cip—c38; B — BBy + b B +aPy =cy(I+ P)s;

2 —
—Cp3+C338 P = D3Py —azFy; =cyy(I+ ),

(3.21a)

(3.21b)

(3.22 a)

(3.22b)

(3.22¢)

(3.23a)

(3.23b)

(3.24a)
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—c13 + 3387 By + BsPy; —byPy; —asPy =y (14 B)). (3.24b)

The general solution Eqgs (3.22a)-(3.22c) with the help of Eqgs (3.23a, b) and (3.24a, b) can be
simplified as

E siw 2 y kAT _62\le S w
1j 2_21' 1j 2 ZIJ 2 211 2’
oy 6 I 8Ej Fay 6 = 6‘

(3.25)
2

5
Z 1 axaz

where
2
crp—c38; b+ Py +aiFy;

2
J
=25 b= = =
_cy =¢8P = BiPy i+ bPy i +a Py 5
Wi = — _2] ’ J=C44(1+ij)=
5j
2= — — —

4. Fundamental solution for a point heat source in a semi-infinite orthotropic thermoelastic
material with voids

We consider a semi-infinite orthotropic thermoelastic material with diffusion and voids z>0. A
point heat source H is applied at the origin and the surface z=0 is free, equilibrated thermally insulated.
The complete geometry of the problem is shown in Fig.1. The general solution given by Egs (3.20) and
(3.25) is derived in this section.

4

=
© T
=
=

Fig.1. Geometry of the problem.

Introduce the harmonic functions as
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4| L2 o1 J X j=1,2,34,5 4.1

v, = jE(Zj_x) Og’”j_z —Xz; tan Z—j]—,,,, 4.1)
where A ; (=1, 2, 3, 4, 5) are arbitrary constants to be determined and

r=\x 2], (4.2)
and

V.=A i(—2— 2)1 A IR i =1,2,3,4 (4.3)
where Z ; (J=1,2,3,4) are arbitrary constants to be determined and

=X +Z7 (4.42)
Here, A, can be written as a linear combination of 4 i.e. 4, =n4, (4.4b)
where 1M is some arbitrary constant.

The boundary conditions on the surface z=0 are
T
G6,=6,=0, 0 =0, % =0, oc =0. 4.5)

o oz oz

When the volume fraction field, concentration and thermal condition for a rectangle of 0 <z <a and

—B<x <P (b>0) are considered [Fig.1], the following equations can be obtained

B o
I G (x, Ot)dx +I[sz (B,Z) — GO (—B,Z)]dZ = Oa
-B 0

B o
o o o _
| 2 (oo + ! [ — (B2 (—B,Z)}dz -0,

o

B
oC oC oC
_J[;|:E(x, a):l dx —g[a(ﬁaz) _a(_B, Z):|dZ =0.

B o
—a; J [Z—Z(x,a)}dx—alﬂz—i(ﬁ,ﬂ —Z—i(—B,z)}dz =H.

(4.62)

(4.6b)

(4.6¢)

(4.6d)

Substituting the values of y; and y; from Eqs (4.1) and (4.3) in Egs (3.20) and (3.25), we obtain

the expressions for components of displacement, temperature change, volume fraction field and stress

components as follows
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4
— -1 X - — — -7 X
u ——E 4; [x(logrj—1)+zj tan Z—J—;:[A{x(long/ —1)+Z; tan Z} (4.7a)

4
X — = - X
w= ZS P { (logr; —1)—xtan™ Z} ]Z;SP l: (log7; —I)—xtan™ Z} (4.7b)

4
— ZAJ 7] (4.7¢)
j=1
5 4
C=) A4;P,;logr;+ > 4, logF;, (4.7d)
i ~
T = A;P,5logrs + A,P,,log7,, (4.7¢)
5
z iwpA;logr; ZS Wy ~log7-, 4.79)
j=1 j=1
5 4 _
=ZWIJ-AJ- logrj+ZvT/1jAj log7;, 4.7g)
j=1 J=1
x < - X
ZS Wy ;A tan” __ZEJWUAJ tan_]_—. (4.7h)
Zj =l Zj

Making use the values of ¢ C,p and T from Eqs (4.7 ¢, d, e, g, h) in Eq.(4.5), we obtain

zz?o zx’

5
2 wid; =0, (4.82)
214

5 p—
2.4 =0, (4.8b)
j=1

4
D swid; =0, (4.8¢)
2

4 p—
2574, =0, (4.8 d)
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oc or and % are automatically satisfied at the surface z = 0.

oz oz 0z
Making use of the values of ¢, and o, from Eqs (4.7 f, g) in Eq.(4.6a), we obtain

5 4
D wy A+ Y W Al =0, (4.9)
J=1 Jj=1
where
x=p
I, =|x(1 2+2.2—I)+-t_1i +
3 {x(ogwlx S50 s jotan o
S dx=—p
B Z=0
] 2{21. tan—1;+ blog.|p’ + sj.zz} = 2B(logB - 1), (4.10a)
J z=0
and

x=p
1, ={x(log\/x2+§j2a2 —1)+§joctan_1£} +
7 dx=p
zZ=0

—2{71. tan~! ;%+ Blog,/B? +572 } = 2B(logP - I). (4.10b)

J z=0

By virtue of Eqs (4.10 a, b), Eq.(4.9) degenerate to Eqs (4.8 a, b) i.e., Eqs (3.6a) and (4.9) are
satisfied automatically.
Some useful integrals are given as follows

IR I z S
J'E=2Aj]gjj—d2 =3 APy tan = (4.11a)
=1 x“+5;z = J
PRI b S S SRR oEUT SR 4.11b
Ia Z‘Z J 2.1‘_[ 7 22 Z__ZE_ 2; tan Z (4.11b)
Jj=I X +SjZ =1 j j
ISR IE TN B RDAE o Fo7 3 S
Iazx_z iS5it2j) 2 22“2 7S 42j) 2 229X =
1 X +SjZ Jj=1 X +SjZ
(4.11¢)
S 4 Pt Ea S A5 !
=2 APy tan ;"LZ jSj2 an =
J=1 J o j=1 Jj
e N P [ S AP [ e
IxZ_ZJZj 2 222+Zj2jj2—2_2z_
P x*+s5z = XT+5:zZ
5 ' ;- ' (4.11d)
A X
== 2Lp tan ! =N ZLp tan_l—,
zs 27 z ZE 27 Z;
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T - - [z _ = = _
Oz s 7 Zs Zy

- _ P P, _
Ox rs 7 S5 Zs Sy zy

Making use of Eq.(4.7¢) in Eq.(4.6d), with the aid of 55 = /% =7, and the integrals (4.11 e, f), we obtain

3
PoAT 4P, A0 =— 1 (4.12)
45455+55 4443446 — > .
\/K3/K1
- w=p “z=a
I;=—|tan”! (LJ +| tan™’ [ij 3 (4.13a)
i S50 Jeep L S5z 1o
r —x:ﬁ r Z=0
Ig=- tan_l(_ij +| tan™! [_ij =-T. (4.13b)
i S40U Jeep L S4Z 1yep
can be determine rom S . an . a, , S TOLIOWS
A; canbed ined from Egs (4.12) and (4.13 a, b), as foll
A5 =— A . (4.14)
T(Pys + 0UD44)\/K3/K1

Substituting the value of @ from Eq.(4.7c) in Eq.(4.6b) and with the aid of the integrals (4.11 a, b),
we obtain

4
2. 7P A; =0, (4.15)

x=B zZ=0Q
r,=| 57 tan™’ _i —| 2tan™’ _i . (4.16)
/ / 50 . 5i7).,

On simplifying, we obtain

rp= 2(§j2 —])tan_l (%}+ TT.

J

where

Substituting the value of C from Eq.(4.7d) in Eq.(4.6c) and with the aid of the integrals (4.11 c, d),
we obtain
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5
244 =0,
j=1
4 — p—
quPZJA =0
j=1
where
q,; =2(s —1)tan1[£]+n
g.=2(57-1)tan™’ i +7
=20 [%a]

(4.17)

(4.18)

Thus the nine constants A4 y (j=1,2,3,4,5), Zj( j=1,2,3,4) can be determined by nine equations
including Eqs (4.8a) - (4.8d), (4.14) and (4.15), (4.17) and (4.18) and by the relation given in Eq. (4.4b).

5. Special cases

Case I: In the absence of diffusion effect

In the absence of voids effect Eqgs (4.7a)-(4.7h) reduce to
*
Zj

{zj (logr; —=1)- xtan~! i}
. -

4

u :_ZA./

j=1

3 J—
-2 4

{x(log rp—D+z; tan~!
j=1

l:x(logFj -+z; tan~! El}
J

3
+ 5P, 4,
j=1

4
w=s;P4;

Jj=1

{Ej (logr; —1) - xtan~!
J

T = 4,Py logry + 4;P;;logT;,

4 3
-_ 2 \N'2= 7 —
O == s;wy A, logr; — Y 57w, 4; logT;,
=

4
o= =2,
J=1

J=1

3
wy;A;logr; + ZW]jAj log7;,
J=1

(5.1a)

X

_—}, (5.1b)

J

(5.1¢)
(5.14d)
(5.1¢)

(5.19)
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ZS Wy ;A tan” ——z - _i (5.1g)

=1 Zj =i Zj

The above results are similar to those obtained by Kumar and Chawla [14].
Case II: In the absence of voids and diffusion effects

In the absence of voids and diffusion effects Eqs (4.7a)-(4.7h) reduce to

3
u =—2Aj {x(logrj -D+z; tan_lzi}, (5.2a)
J=1 J
w= ZSJPIJ J{ (logr; I)—xtan_li:l, (5.2b)
Z.
J
3
= =D s;wpd;logr;, (5.2d)
j=1
3
=D wy;4;logr;, (5.2¢)
j=1
J X
= 5wy ;A tan™ = (5.29)
=1 Zj

The above results are similar to those obtained by Hou et al. [12].
Case III: In the absence of voids, thermal and diffusion effects

In the absence of voids, thermal and diffusion effects, we obtain the corresponding results for a
transversely isotropic elastic medium.

6. Conclusion

The general solution and fundamental solution for a two-dimensional problem in transversely
isotropic thermoelastic media with mass diffusion and voids have been constructed. The two-dimensional
general solution in transversely isotropic thermoelastic media with mass diffusion and voids is derived first
by using the operator theory. On the basis of the obtained general solution, the fundamental solution for a
steady point heat source on the surface of a semi-infinite transversely isotropic thermoelastic material with
mass diffusion and voids is derived by nine new introduced harmonic functions. The components of
displacement, stress, temperature change, mass concentration and voids are expressed in terms of elementary
functions, so it is convenient to use them. From the present investigation, some special cases of interest are
also deduced and compared with the previous results.
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Applications: fundamental solutions for two dimensional in anisotropic media are important for the
solution of inclusion problems and of the boundary integral equations. This type of solution technique
(which, has been used in this research paper) is very useful for finding the general solution and fundamental
solution in anisotropic media for different theories, i.e. micropolar thermoelastic material with voids,
micropolar thermoelastic material with mass diffusion and voids, microstretch thermoelastic material,
microstretch thermoelastic material with mass diffusion, etc. This type of solution technique provides a
wonderful platform for new researcher studies to construct the general solution in thermoelasticity with
double porosity and triple porosity. Also, this type of solution technique will be very useful to construct
fundamental solution for three dimensional problems and Green’s function in different symmetries which
will be very useful for solving boundary value problems as well as for the study of cracks, defects and
inclusions.

Appendix A

a =cgedp, b =S+ el 130, —doyAzeyy +dessd,]+

+003A;83(d8; =y, 43) + V03 (Y34;85 — v A5¢33)s

¢ =y [v38; —d (a3 dseyy —85055)]+ 0y Ay (v3 —des;) +dd, +

~858,(d8; = 2y,73) — V7 (03430 +C33 3,),

d" =c; [0 A;(v38, —dess)+dd,]+ oy A)[8;(d8; — v v3) — Cuycsd ]+

2 * *
+77 (€gqdr =0 AiC33) + 7,730,483,

* * 2 — *
e =—a;Ajcy(de +7v7) a =cs503[B38, + 7,85 — 3304 ],

b = cog0i[c3385 + Bidy + 75051 — Cop03ds + 03[ B3dy + 7385 — 33851+
=85030y5(Bjby ~&v,) + 8585 + By(by, — Byd)] +

+03[8;B3d —byy; — Bydess —byy c33+ Byy3 — Byy v +v,85(Bshy —Eys) +
+(&y; —b3B))cs; + B3d 5], d = oy (c; 85+ Bi3;) +7,(&r; = Biby)l,

¢ =29 (0330{; - 0‘;) + Oﬁj (B30, + 7305 +CyyC606) +
~830,[Byy by + 8384 + B3S; 1+ By [~01;858, +8;(cpq0t; +c3300) + 0Ly 3851+

+0yy 1 [83(byBs +Ey3) + B3S 51+ (&) — baB) )(CaOigy s +C3300)-
Appendix B
pPr= —y,aocjcM,

q; = Aj085(ay; +dB3) +v,lacyd, + Aoy (acs; +v383)]+

—dB, (05 + o)) (Ajes; + Azeyy),

ry==8,0(ay; +dB3)d; +v,(v3B; —acs; +73)] - acy 430
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v, =83 405 (ay; +dPs) — v, 45 (v3B5 + actscss) — By Azay (dess +v3).
P = YIajc44(aé + b;b;) + &ddjcMB]

;= 085[B58y — 7585 — P34 1+
+0‘sz [Y3 {(“B3 + “/3b7) - B; (Y3b; —dB;)—c3309 — 0y } - 0‘;03369] +

~1,| @ {B3(@Bs + byy5) = c55(a-+ biby) + B3(Byby —&r5)| — aesdy | +

+EdB (0)C33 + 0L3Cyy) + B B3oud, — oy, (Eys — b)),
7 = 03831B389 —v385 —B3ds 1+ 3Byl 5 (aBs +v3by) — Bsd, — 338, 1+
—Y; [0‘333(033 + Y3b;) - a§68] + E.~C33d0‘331 + BJB30‘§54 + Y30‘§55 )

D3 =0C4(8gc;; +06;B)),

43 = c[Bg(0tzcyy +01y) = v308,; + 0y 81— 0858985 —v38,9 + P30, ]+
+00gCyCas + Y 103€ 44819 =V 1083 + B3y 08,5 =B 0308, + 87 (c33B; +cypyausPy) +

—Bry;048,5,

= [0‘3011 {59044 — B30, } + Ces {59(0‘3044 + 0‘?%3) + 0‘?(5354 - Y3511)} +
~83003 {8385 — 8,9 +8; } + 03 (7,838, +B38,5) — B ot (858, + 338, —v358,5),
Vs = 03¢55[89cd + P3S4 — 130, 1,

Ps= Oﬂjc44A1 (v;B;—acy), wy = _066‘4373[33(1;,

q4=C¢yy {4’54452 + AIOG (acz; - Y3B3)} +8; {Alaj(Sﬂ + Y]B3)} +

+A4;0B, (¢33 —v303) +CyyBrv 05,

¥y = Cos {‘104452 — Ay (acs; — Y3B3)} +¢py {‘10441410‘; —-0,(a+ Y3Ba)} +

+83 {62 (v/Bs— 0531410‘;)} +B03(8375 +¢3371)s

V4 = Co {904452 — 40, (acz; — “/353)} +epyzazdsBs+

+8,0345(ad; +7,B3) — a3B; (83734, + c337,B3),



A general study of fundamental solutions in anisotropic ...

39

Dy =0yCyyldsc; = Bid;p+B1d;5],

Vy=Cqy0 {01168 —B3,)+ 31513},

J— * * * * *
Ty = Ces {58(044(13 +c330) —B30,0,, + a5 } +cp 03(c3305 —B38,,) +

—8303(8385 + B3S, +B38,3) + B3 (8,85 — 338, + P38, — 8505 + B3d 5 +¢338,,)

_ * * * * *
G4 = Cy4Ce60105 +Cyy {88 (cgq0u3 +c330) — 0y + Ay (acs; — YsBs)} +

+08;3 {AJOG (83a+7,B3)+ 005 } +8301; (B38,3 — 83 + B3d;9) +

+B01;(858,, — ¢338,9) — B, {Bs (Bjys —7,07) = a3 } +83B,00(&y5 — oyby) +

+c338,000,5 + cyyBjos(Ey; —vB3) + By B3a,0,3,

o, = 0‘;(“/5 —dcs3),
8, =byy, - Bd,

8, =aB; +73b;,

* *
Oy =oyds—azd;,  S3=cp3tey,

85 =byB;—E&y;,  85=Ed by,

8g =at+bby, 8y=ab,+db,, 8,)=aB,+y,b;,

S;,=v,B;—v3B;, 8;3=0,B,-v,E, 8,4 =7,6—v,B;.

Nomenclature
a,d — are, respectively, coefficients describing the measure of thermodiffusion and mass diffusion effects
C — concentration of diffusive material in the elastic body
C* - specific heat at constant strain
Cijkom (= Clmij = € jikm) ~ — tensor of elastic tensor
€ = L;u“ — components of the strain tensor
kj(=k;;) — coefficients of thermal conductivity
T —temperature distribution from the reference temperature 7,
u; — components of displacement vector
(x;(z (x;i) — coefficients of diffusion tensor
B; — tensors of thermal moduli
y; — tensors of diffusion moduli
p — density
x — equilibrated inertia

¢ — volume fraction field

The symbol (“,”) followed by a suffix denotes differentiation with respect to the spatial coordinate and a superposed dot
(“.”) denotes the derivative with respect to time.
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