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This paper reports a research study that investigated buckling of stiffened rectangular isotropic plates 
elastically restrained along all the edges (CCCC) under uniaxial in-plane load, using the work principle approach. 
The stiffeners were assumed to be rigidly connected to the plate. Analyses for critical buckling of stiffened plates 
were carried out by varying parameters, such as the number of stiffeners, stiffness properties and aspect ratios. 
The study involved a theoretical derivation of a peculiar shape function by applying the boundary conditions of 
the plate on Taylor Maclaurin’s displacement function and substituted on buckling equation derived to obtain 
buckling solutions. The present solutions were validated using a trigonometric function in the energy method 
from previous works. Coefficients, K, were compared for various numbers of stiffeners and the maximum 
percentage difference obtained within the range of aspect ratios of 1.0 to 2.0 is shown in Figs 2 - 7. A number of 
numerical examples were presented to demonstrate the accuracy and convergence of the current solutions. 
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1. Introduction 

 
Stiffened plates are a critical class of structural elements widely used in aerospace, marine, nuclear, 

mechanical and structural engineering (Zhang and Lin [1]). Research in stiffened plate construction has 
gained attention in recent years as a result of its economic and structural benefits. The advantage of 
stiffening a plate lies in achieving an economical, lightweight design. A number of methods have been 
suggested from literature for the prediction of the global buckling load of stiffened plates. 

A numerical approach such as the conventional finite element method is a versatile method and has 
been widely used in the study of stiffened plates to obtain approximate solutions as in Guo and Harik [2], 
Wang and Yuan [3].The FEM is computationally efficient for predicting buckling coefficients irrespective of 
boundary conditions, stiffeners shapes and orientation. However, it requires great computational efforts and 
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lengthy simulation time, due to the large number of finite units involved. Bisagni and Vescovini [4] 
presented an analytical formulation for local buckling and post-buckling analysis of stiffened laminated 
panels and noted that the FEM procedure is somewhat slowed down by the mesh generation time. In recent 
work, Deng et al. [5] noted that in the design of stiffened system that it is not efficient to employ the FEM 
during the preliminary design stage, since the dimensions of the stiffened panels and stiffeners are not 
finalized to be optimally designed. Hence, the need for analytical formulations which gives exact solutions. 

The analytical solutions for buckling are presented in [4, 6-9]. A number of researchers have used 
both single and double Fourier series as displacement functions to evaluate the values of buckling 
coefficients for stiffened systems, but no theoretical solutions exist for more complicated boundary 
conditions of stiffened plates as in Nildem [10], Bisagni and Vescovini [4]. Analytical methods such as the 
energy method from literature covered only few cases of edge supports. Most researchers have applied a 
trigonometric shape function in analyzing stiffened plates with all edges simply supported. However, it is 
difficult to apply the trigonometric shape function in analyzing stiffened plates with complex boundary 
conditions.  

ANSI/AISC 360-16 [11] recommended elastic and inelastic analyses as two approaches to the direct 
analysis method in solving stability problems. Hence, the main objective of this work is to present solutions 
for  buckling analysis of stiffened rectangular isotropic plates elastically restrained along all the edges using 
the work principle and polynomial function intended for design of stiffened systems in accordance with 
AASHTO [12] specifications. 

  
2. Governing equation 

 
The stiffened plate with all edges clamped and having a stiffener (s) running in longitudinal direction 

is shown in Fig.1. In this study, stiffeners are considered as line continuum. 
 

 
 

a):  Plate with one longitudinal stiffener  b):  Plate with two longitudinal stiffeners   
 

Fig.1.Stiffened plates with all edges clamped under in - plane load. 
 
The equation presented in Ventsel and Krauthammer [9] that describes the behaviour of a thin elastic 

plate under in - plane load along the x – coordinate based on Kirchhoff’s and Venant hypothesis can be 
written as 

 

 

  
4 4 4 2

x4 2 2 4 2

w w w w
D 2 N 0

x x y y x

    
    

     
. (2.1)  

 
From the principles of the theory of elasticity, the governing equation for a linear continuum on a 

plate element is derived as 
 

  .  
n 4 2

i
i x4 2

i 0 y ci

w A w
EI N 0

bhx x 

  
  

  
 ,  (2.2) 
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ci is the distance of the stiffeners from the edge y = 0, b and h are the width and thickness of the plate, 
respectively. 

Applying super position principle, Eqs (2.1) and (2.2) are added to give 
 

     .  
n4 4 4 2 4 2

i
x i x4 2 2 4 2 4 2

i 0 y ci

w w w w w A w
D 2 N EI N 0

bhx x y y x b x x 

        
        

         
 . (2.3) 

 
Expressing the independent coordinates whose length in the x and y directions are a and b in the 

form of non-dimensional coordinates R and Q, yields 
 
 ;   Q ,y bQ 0 1     (2.4) 
 
 ,       .x aR 0 R 1     (2.5) 
 

 As in Timoshenko and Gere [6], let the aspect ratio be represented as 
 

 aP b ,       that is      a=Pb. (2.6) 

 
 Applying Eqs (2.4)- (2.6) in Eq.(2.3) and expanding we obtain 

 

 

.   .  

+ . .  . .

n4 4 4 4

i4 4 2 2 2 4 4 4
i 1 Q ci

n2 2 2 2
x x

i2 2 2 2
i 1 Q ci

1 w 2 w w 1 w

P R P R Q Q P R

b N w b N w

D DP R P R
0

 

 

    
           

  
     






  (2.7)

 

where; 
 

  i
i

EI

Db
   = ratio of bending stiffness rigidity of stiffeners to the plate, 

 

  i
i

A

bh
    = ratio of cross-sectional area of the stiffeners to the plate. 

 
2.1. Work principle 

 
For the combined action of work done by the compressive and resistive force on the stiffened system 

through a distance w, applied in Eq.(2.7) as in [13], we get 
 

 

. .
. . . 
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. . . .
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where: w is the deflection function, and equals AH; "ei" is the introduced error, “i” is the number of points on 
the continuum. Integrating Eq.(2.8) twice with respect to R and Q and minimizing, we obtain 
 

 

. .
. H. P . 

. .
 

4 4 4 41 1 n2
i2 4 2 2 4 2 4i 10 0

Q ci
x cri

2 21 1 n2
i2 2i 10 0
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H H H H H 1 H H
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P R R Q Q P R
N

H H H H
b R Q

R R







            
       

         
    

 

 
. (2.9) 

 
Equation (2.9) is the buckling equation for a rectangular plate stiffened longitudinally. 

 
2.2. Displacement function for CCCC stiffened plate 

 
A formulated polynomial shape function for rectangular plates from Taylor-McLaurin’s series was 

introduced in the work of Ibearugbulem et al. [13, 14] for solution of rectangular thin isotropic plates 
subjected to in-plane loading. The displacement function which satisfies Eq.(2.9) and approximately 
describes the deflection of the stiffened plate under in-plane loading is given as 

 
4 4

m n

0
m n

m n 0

w a b R Q
 

  . (2.10) 

 
By expanding Eq.(2.10) we get25-term finite series, for m = n=4 
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 (2.11) 

 
Boundary conditions along the R – direction 

 

  or 

,
R 0 1

w
0

R 

    
  (2.12) 

 

 
   or     

 .
R 0 1

w 0   (2.13) 

 
Boundary conditions along the Q – direction 

 

  or 

.
Q 0 1

w
0

Q 

 
    

(2.14) 

 

By applying Eqs (2.12) - (2.15) for all edged clamped system in Eq.(2.11) we get 
 

  2 3 4 2 3 4w A R 2R R Q 2Q Q     .  (2.15) 
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3. Formation of stability equation for CCCC stiffened plate 
 
The numerical formulations for the stiffened systems arrangements shown in Fig.1 were carried out 

for the case of one stiffener, two stiffeners and three stiffeners. 
 

3.1. Case of one stiffener 
 
Consider Fig.1a, the stiffener divides the plate into two equal parts. 
 

For The Stiffener /Rib: when there is only one stiffener for  ;  , 1 Q 1 1 R 1     we have; 
 

 
         .  ,2 3 4 2 3 4 2 3 4

b 1y Q2 2
H H R 2R R Q 2Q Q 0 0625 R 2R R           (3.1) 

 

 . . *
1 1 2

4
2

1Q0 0 2

H
H 0 7440 10

R




 
    

 ,  (3.2) 

 

  . . ,
1 1 4

4
1Q0 0 2

H
H 0 003125

R 

 
   

   (3.3) 

 
For The Plate Element: We have; 

 

 

.  . ,
1 1 4

4
0 0

H
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R


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   (3.4) 

 

 .  . ,
1 1 4

4
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H
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Q


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   (3.5) 

 

 . . ,
1 1 4

2 2
0 0

H
H R Q 0 00036281

R Q


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    (3.6) 

 

 .  .. *
1 1 2

5
2

0 0

H
H R Q 3 0234 10

R


   
   (3.7) 

 
Substituting Eqs (3.2) - (3.7) into Eq.(2.9), yielded 
 

 
     ..

. . γ

,
. * . * δ

2
2 2

x 2 5 4
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 (3.8) 
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    
. . . .  γ

 ,
. δ

2 42

x cri 2 2
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N

1 2 4608b P

     


 (3.10)
 

 

 
 

. . . .  γ
 .

P . δ

2 4

2
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K

1 2 4608

    


 

(3.11) 

 
3.2. Case of two stiffeners 

 
As shown in Fig.1b,  and  1 2C C are the distances of the stiffeners from the edge y =0. 

Stiffeners are assumed to be symmetrical, hence 
 

  δ  and  γ  γ :  ,    .         1 2 1 2 1 2
1 2

C C
3 3

          

 
Following the same procedure in section (3.1), we obtain the equations as follows 
 

 
   . ,2 3 4

Q C1
H 0 04938 R 2R R      (3.12) 

 

 
   . ,2 3 4

Q C2
H 0 04938 R 2R R      (3.13) 

 

 . .  . * ,
1 1 1 12 2

4
2 2

Q C1 Q C20 0 0 0

H H
H R Q H R Q 0 46445 10

R R


 

    
                

   (3.14) 

 

 . .  . / .
1 1 1 14 4

4 4
Q C1 Q C20 0 0 0

H H
H R Q H R Q 0 0019507

R R 

    
               

   (3.15) 

 
Substituting Eqs (3.14), (3.15) and Eqs (3.4) - (3.7) into Eq.(2.9), gave 

 

  

     .
. . . *

,
. * . * *

2
2

x cri 2 5 4

0 0012698
D 2 0 00036281 P 0 0012698 0 0019507 2

PN
b 3 0234 10 0 46445 10 2 

      
     

 (3.16) 

 

    
. . . .  

 .
. δ

2 42

x cri 2 2

4 2554 2 4317P 4 2554P 13 0745D
N

1 3 0724b P

       


 (3.17) 
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3.3. Case of three stiffeners 
 
For the case of three stiffeners, stiffeners will divide the plate into four equal parts 
 

;    γ γ γ  : ,    ,  .         1 2 3 2 2 3 1 2 3
1 1 3

C C C
4 2 4

               

 
Following the same procedure as above, we obtain 

 

   
. . . .

 .
.

2 42

x cri 2 2

4 2554 2 4317P 4 2554P 17 1000D
N

1 4 0180b P

      
 

 (3.18) 

 
4. Results and discussion 

 
Polynomial functions have been successfully applied in analytical methods for the study of thin 

plates [14 - 16]. However, this study presented buckling analysis for CCCC stiffened plates using the 
polynomial function and the general solution can be written as 

 

     
2

x cri 2

D
N K

b




  
(4.1) 

 
where K is the buckling coefficients from the polynomial function for different numbers of stiffeners. 

Ibearugbulem et al. [14] presented total energy functional from Ritz Method for buckling analysis of 
thin rectangular plates. Applying energy functional for stiffeners given in Iyengar [16] and solving gave 
analytical solution in Eq.(4.2) 
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                  

 

 
 

(4.2) 

 
By applying the trigonometric function from Iyengar [16] for CCCC boundary conditions as given in 

Eq.(4.3) into Eq.(4.2), we obtained buckling solutions for the various numbers of stiffeners in Eqs (4.4) – 
(4.6) 

 
   cos πR . cos πQ .H 1 2 1 2     (4.3) 

 

One stiffener 
 

   
/ P /π

/  

2 42

x cri 2 2

1 2 3P 8 34 D
N

b P 1 8 3

      
 

.  (4.4) 

 
Two stiffeners 

 

   
/ P  π

.
  

2 42
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1 2 3P 3D
N 4

b P 1 3

      
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(4.5) 
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Three stiffeners 
 

    
/

.
 

2 42

x cri 2 2

1 2 3P P 4D
N 4

b P 1 4

       
 

 (4.6) 

 
The general solution of the trigonometric shape function is written as 

 

      
2

Tx cri 2

D
N K

b


 .  (4.7) 

 
Comparing the buckling coefficients K of the present study which made use of the polynomial 

function in work principle with KT  from an analytical solution that used a trigonometric function, shows 
good agreement. The average percentage difference is 0.446% for 0.1 ≤ P ≤ 2.0 for the CCCC boundary 
conditions. Figure 2 shows good convergence for the case of one longitudinal stiffener dividing the plate into 
two equal parts having, γ = 5, δ = 0.05. The average percentage difference for the case of two stiffeners is –
0.006 with γ =10, δ = 0.10 as shown in Fig.3 

 

 
 

Fig.2. Buckling coefficients vs aspect ratio for CCCC stiffened plate for γ = 5, δ =0.05. 
 

 
 

Fig.3. Buckling coefficients vs aspect ratio for CCCC stiffened plate for γ = 10, δ =0.1. 
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 x, y – Cartesian coordinates in the horizontal and vertical direction, respectively 

       i  – ratio of bending stiffness rigidity of stiffeners to the plate 

      i δ  – ratio of cross-sectional area of the stiffeners to the plate 

 
References  
 
[1] Zhang K. and Lin T.R. (2019): Analytical study of vibration response of a beam stiffened Mindlin plate. − Applied 

Acoustics, vol.155, pp.32-43. 

[2] Guo M. and Harik I.E. (1992): Stability of eccentrically stiffened plates. − Thin-Walled Structures, vol.14, pp.1-20. 

[3] Wang X. and Yuan Z. (2018): A novel weak form three-dimensional quadrature element solution for vibrations of 
elastic solids with different boundary conditions. – Finite Elements in Analysis and Design, vol.141, pp.70-83. 

[4] Bisagni C. and Vescovini R. (2009): Analytical formulation for local buckling and post-buckling analysis of 
stiffened laminated panels. – Thin-Walled Structures, vol.47, pp.318-334. 

[5] Deng J., Wang X., Yuan Z. and Zhou G. (2019): Novel quadrature element formulation for simultaneous local and 
global buckling analysis of eccentrically stiffened plates. – Aerospace Science and Technology, vol.87, pp.154-
166. 

[6] Timoshenko S.P. and Gere J.M. (1961): Theory of Elastic Stability. – New York: McGraw-Hill. 

[7] Geier B. and Singh G. (1997): Some simple solutions for buckling loads of thin and moderately thick cylindrical 
shells and panels made of laminated composite material. – Aerospace Science and Technology, vol.1, pp.47-63.  

[8] Pevzner P., Abramovich H. and Weller T. (2008): Calculation of the collapse load of an axially compressed 
laminated composite stringer-stiffened curved panel - An engineering approach. – Composite Structures, vol.83, 
pp.341-353. 

[9] Ventsel E. and Krauthammer T. (2001): Thin Plates and Shells: Theory, Analysis and Applications. – New York: 
Marcel Dekker. 

[10] Nildem T.I. (2010): Determination of thickness and stiffener locations for optimization of critical buckling load of 
stiffened plates. – Scientific Research and Essay, vol.5, pp.897-910. 

[11] ANSI/AISC 360-16 (2016): Specification for structural steel buildings. 

[12] AASHTO (2014): LRFD Bridge Design Specifications, 7th edition. 

[13] Ibearugbulem, O.M, Ibeabuchi, V.T. and Njoku, K.O. (2014): Buckling analysis of SSSS stiffened rectangular 
isotropic plates using work principle approach. – International Journal of Innovative Research & Development, 
vol.3, No.11, pp.169-176. 

[14] Ibearugbulem O.M., Osadebe N.N., Ezeh J.C. and Onwuka D.O. (2011): Buckling analysis of axially compressed 
SSSS thin rectangular plate using Taylor-Mclaurin shape function. – International Journal of Civil and Structural 
Engineering, vol.2, No.2, pp.667-672. 

[15] Eziefula U.G., Onwuka D.O. and Ibearugbulem O.M. (2017): Work principle in inelastic buckling analysis of 
axially compressed rectangular plates.– World Journal of Engineering, vol.14, No.2, pp.95-100. 

[16] Iyengar N.G.R. (1988): Structural Stability of Columns and Plates.– Chichester: Ellis Horwood. 

 

 

Received: May 20, 2020 

Revised:   July 30, 2020 

 


