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As part of an ongoing study into hydropower runner failure, a submerged, vibrating blade is investigated both 

experimentally and numerically. The numerical simulations performed are fully coupled acoustic-structural 
simulations in ANSYS Mechanical. In order to speed up the simulations, a model order reduction technique based 
on Krylov subspaces is implemented. This paper presents a comparison between the full ANSYS harmonic 
response and the reduced order model, and shows excellent agreement. The speedup factor obtained by using the 
reduced order model is shown to be between one and two orders of magnitude. The number of dimensions in the 
reduced subspace needed for accurate results is investigated, and confirms what is found in other studies on 
similar model order reduction applications. In addition, experimental results are available for validation, and 
show good match when not too far from the resonance peak. 
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1. Introduction 
 
 The quality and precision in the manufacturing industry have improved massively during the last 
couple of decades, due to automation and CNC machining. Even still, there have been several failures in new 
high head Francis turbines lately [1, 2]. This suggests that there is a problem in the design process. The 
dominating periodic load on the runner is known to be the forces due to the pressure field created by the flow 
passing the stationary components interacting with the pressure field following the rotating runner (known as 
Rotor-Stator Interaction (RSI)) [3]. When engineering a turbine, the RSI frequency is known in advance, and 
the design aims to have natural frequencies of components and assembly far away from the RSI frequencies 
to avoid any resonance issues. The runner however, is submerged in water, which is known to change its 
structural behavior [4]. The surrounding fluid complicates the structural calculations, as the added mass of 
water will lower the natural frequencies of the structure, and dampen the amplitude of the deflections. 
Furthermore, moving water will affect the structure differently from water standing still. It is also observed 
that the presence of water can change the order of the structural modes [5]. An acoustic-structural simulation 
will account for the presence of the surrounding fluid. Before such simulations were available, the industry 
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used empirical estimates to approximate the reduction of the natural frequency. Today however, studies 
show that it is not possible to obtain an all-purpose rule [4-6]. To conclude, if the goal is to investigate 
dynamic response of a turbine by performing a harmonic sweep of a Francis turbine with surrounding water, 
a coupled acoustic-structural simulation is needed. 
 The calculation of the coupled acoustic-structural harmonic response of a submerged structure is 
computationally expensive [7] and not applicable for all industries. This article will implement a Krylov-
subspace based model order reduction method for rapid calculation of harmonic analyses, based on the 
methodology presented by Rudnyi [8]. The structure in question is a submerged vibrating hydrofoil, a 
geometry studied in a research project investigating Francis runner failures at the Norwegian University of 
Science and Technology [9]. Experimental data on the same geometry is available for validation. This data is 
publicly available from the Francis99 project website [10]. 
 

 
 

Fig.1. Dynamic amplification factor on generic blade. 
 
2. Theory and methods 
 
 All structures have several natural frequencies and corresponding vibrational modes. If a structure is 
loaded at a frequency close to its natural frequency, the structural response A will be magnified compared 
with the static load magnitude A0. This is referred to as resonance and could in the worst case cause violent 
structural failure [11]. Figure 1 shows an example of the first mode Dynamic Amplification Factor,  
DAF = A/A0, on a generic blade. The DAF is defined as deformation normalized by the steady response of 
the applied harmonic load. Equivalently, normalized with the response as the frequency goes to zero, f → 0 
[11]. 
 From a design point of view, this graph is very interesting. In a design process, you will always try to 
avoid the natural frequencies and resonance. What Fig.1 shows is how the structure responds, not only at 
resonance, but at off-resonance conditions. The exact shape of the response graph is dependent of many 
factors; the damping; closeness to next natural frequency, etc., however let us use this figure to illustrate a 
design issue; If one assumes a linear material, and linear force-deflection relationship, then the amplification 
factor can be directly translated into a multiplication factor for the applied load. In the above figure we can 
see that even loading as far away as 25% from the natural frequency will be multiplied by a factor of 2, 
whereas loading at the natural frequency will be multiplied with about 75. The danger is the following; there 
will always be an uncertainty in the calculation of the natural frequency of your component. Especially 
submerged structures can be difficult to perfectly predict, and the response away from the natural frequency 
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then becomes even more important. Let us assume that you design to be 15% from resonance, but the error in 
natural frequency is in the order of 10%. The multiplication factor during operation will then be anywhere 
between 2 and 10. Clearly this is not acceptable for subsequent operation of the investigated component. 
 This underlines the need for the construction of harmonic response and amplification factor plots, the 
computational cost of removing all uncertainty in the calculation of the natural frequency is extreme, and 
maybe impossible. It is therefore desirable to obtain the dynamic response early in a design process, to 
identify risks, find sufficient safety margins, and perform design changes accordingly. To obtain this you 
need to solve a set of time-consuming harmonic equations. The simulation time will in this case be reduced 
by the use of Krylov subspaces. Model order reduction based on Krylov subspaces started in the electrical 
community [12, 13], and later in other industries with good results [14, 15]. 
 The following sections will describe the governing equations of coupled structural-acoustic 
problems, as well as some of the theory behind a Krylov subspace model order reduction technique. 
 
2.1. Second order, dynamic structural systems 
 
 Much of the theory in the following sections is adapted from [16], please refer here for more 
information. Most dynamic systems are second order. A general second order system can be modeled as 
follows 
 
  ( )  ( )  ( )  ( )Mx t Cx t Kx t Fy t     (2.1) 
 

where Nx R   is the state variable (typically displacement), and Ny R  is the force vector. The matrices 

, ,  NxNM C K R are the usual mass, damping and stiffness matrices respectively, and N is the degrees of 
freedom. F controls the distribution of the input force. In the case of a harmonic excitation and response we 
have 
 

   ( )  i tFy t F e  , (2.2) 

 

   ( )    i i t i t
maxx t x e e x e     (2.3) 

 
where ω denotes the angular frequency, and φ a potential phase shift. By using Eqs (2.2) and (2.3) and 
removing the time dependency, Eq.(2.1) can be rewritten as 
 

      { }  { }2M i C K x F       . (2.4) 

 
 Equation (2.4) is the equation solved when performing a harmonic analysis, and the one 
implemented in most commercial codes, including ANSYS Mechanical, used in this paper. However, if 
solved as is, the effects of added mass of the surrounding fluid is not accounted for. The structural natural 
frequencies will be wrong, and useless in a design phase. Therefore, we have to expand this equation to 
include the acoustic domain. 
 
2.2. Coupled acoustic-structural systems 
 
 Acoustics denotes the science of mechanical waves in fluids and structures. In terms of the fluid, no 
advection terms are modelled, only the pressure propagation is resolved. The pure harmonic motion of the 
sound pressure inside a fluid domain can be modelled by the Helmholtz equation (time-independent wave 
equation) [17] 
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      2 2p k p 0    (2.5) 
 
where p is the acoustic pressure,   /k c  is the wave number, and c is the speed of sound in the fluid. A 
structure submerged in water will change characteristics due to the density of water. Especially 
eigenfrequencies and harmonic response are significantly altered by a surrounding heavy fluid. The above 
Eq.(2.5) can therefore be rewritten for harmonic motions as done in the previous section, and combined with 
the structural response, Eq.(2.4), to obtain a coupled acoustic-structural system, referred to as the Eulerian 
displacement-pressure formulation [16, 18] 
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i
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                     

 (2.6) 

 
where u is the structural displacement, and p is the acoustic pressure. The subscripts: s, a, fs denotes 
structure, acoustic, and fluid-structure respectively. The cross-multiplication matrices (Mfs, Kfs) are obtained 
by enforcing boundary conditions on the fluid-structure interface. This way information will cross the 
domain interfaces in a consistent way. This second order coupled formulation allows for accurate harmonic 
analysis of submerged structures. A major drawback is the increased computational expense of solving the 
above acoustic/structural system. 
 
2.3. Model order reduction 
 
 In engineering problems, the number of degrees of freedom could be extremely large. When 
considering acoustic elements as well, the coefficient matrices become unsymmetric (see Eq.(2.6)) [19, 20]. 
The added complexity from the acoustic-structural coupling makes the above system in many cases too 
expensive to solve, especially if a large frequency range is to be covered with satisfactory resolution [21]. 

The reasoning behind the Model Order Reduction (MOR) is to find a lower dimensional subspace  NxqV R  

such that 
 

   u
x Vz

p

 
    

 
 (2.7) 

 

where qz R  and q N . The symbol   denotes a small error introduced by utilizing the reduced model. If 
one assumes that the subspace V is available, Eq.(2.6) can be rewritten as 
 

      { }  { }2
r r r rM i C K z F        (2.8) 

 
where the subscript r denotes a reduced quantity, and the reduced matrices are defined as follows 
 

      ;T
rM V MV         ;T

rC V CV        ;T
rK V KV        T

rF V FV . (2.9) 
 

 The matrices in Eq.(2.8) are reduced to order qxqR , an enormous improvement from the original 

system in Eq.(2.6), where the coefficients were NxNR . For a subspace of order q=30 or similar, the new 
system is solved in seconds. 
 The problem is to obtain the subspace V. In this article, V is chosen to be a Krylov subspace, created 
using the Arnoldi algorithm. This subspace satisfies the moment-matching property to resemble the original 
system, see [22]. The details of the model reduction procedure will not be explained here, interested readers 
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can find more in [8, 16, 23, 24]. In the process of creating the reduced model, the number of dimensions, q, 
must be chosen. In general, the larger the q, the higher the accuracy, but at a computational cost. 
 
2.3.1. Application of model order reduction 
 
 The application of the model order reduction process outlined in the previous sections is shown in 
Fig.2. The commercial software ANSYS Mechanical is used to set up the system, define loads, constraints 
and more, and to create the coefficient matrices used in the reduction process. Then the reduction process is 
performed with the main parameter being the number of dimensions of the reduced system. Finally, the 
reduced system is solved. 
 
2.4. Experimental setup 
 
 This study is a part of a larger research project at the Norwegian University of Science and 
Technology (NTNU), where the goal is to understand why 
 

 
 

Fig.2. The process of performing the model order reduction. 
 
high head Francis runners experience cracks [9]. Experiments have been performed on both an 
unsymmetrical hydrofoil (to resemble a Francis turbine runner blade), and a symmetric hydrofoil. The goal 
of these experiments is to study the damping characteristics of the fluid-structure system, and importantly, 
the relationship between the flow velocity and the damping. The experimental setup and results from the 
unsymmetrical hydrofoil can be found in [25], as well as on the Francis99 project homepage [10]. The same 
setup is used for the symmetric hydrofoil which will be studied here. 
 In short, an aluminum hydrofoil is excited by electric muscles (Piezoelectric Macrofiber composite 
actuators from PI Ceramic) to vibrate in a harmonic motion. Laser Doppler Vibrometry and strain gauges is 
used to measure the vibrating trailing edge motion. The frequency response is obtained for several different 
flow velocities, and used to calculate the damping characteristics of the system. The hydrodynamic damping 
ratio, ξ, obtained at v = [2.5, 10, 20][m/s] in the experiments, is used in all the simulations presented here. 
 
2.5. Numerical setup 
 
 The goal of this article is to present a model order reduction method. Experimental data is in this 
case strictly not needed, as a comparison with the assumed correct ANSYS solution would determine the 
accuracy of the MOR approximation and the speedup of the method. However, it is chosen to use the same 
geometry as in the aforementioned experiments as well as some of the 
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Fig.3. Numerical geometry. 
 
results from the damping measurements, so that the current study is relevant to the overall project. The 
numerical domain is therefore as shown in Fig.3, and Tab.1 lists a summary of the most important simulation 
settings used in this article. 
 The simulations performed in ANSYS Mechanical will henceforth be referred to as the “full” 
solution. A constant load is used in all the simulations. This load was obtained from a CFD simulation on the 
same geometry, where the blade was vibrating at its natural frequency [27]. The fluid load (pressure) is 
imported to the blade in the harmonic analysis. A harmonic sweep is then performed in the range 300-750 
Hz, divided into 100 equally spaced frequencies. The damping from the experiments, ξ, is used, from which 
the numerical damping is defined as β = 2ξ/ωn, [11] with ωn being the natural frequency of the structure. 
There are two things to note about this procedure. First, the pressure load is extracted from a blade vibrating 
at a  
 

Table 1. Numerical settings. 
 

Parameter Value 

Software ANSYS Mechanical 

Analysis type Full Damped, MOR 

Damping β = [4.43e−6,8.16e−6,2.17e−5]* 

Frequency range 300-750 Hz 

Number of frequencies 100 

Mesh 500.000 nodes ** 

Acoustic domain Water: c = 1482 m/s, ρ = 998kg/m3 

Dimensions in MOR q=[10, 30, 50, 100] 
 

* Corresponding to flow velocity of 2.5,10 and 20m/s respectively [25] 
** Discretization error estimated to be 0.2% using GCI method [26] 
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given mode shape. The corresponding load distribution and magnitude is therefore “locked” to the given 
mode. If one wants to investigate a range of frequencies where more than one bending mode is excited, more 
load distributions should be included. Second, note that the damping ratio is also valid for the first bending 
mode only. The same argument as above can be used for the damping, if more modes are to be investigated. 
The assumptions made in this paper are a simplification, but should be valid as the focus is on one mode at 
the time. 
 In addition to the full simulation, reduced simulations were performed. The simulation was set up as 
above, and the model reduction was performed on the equation system extracted from ANSYS, such that a 
direct comparison of the reduced versus the full solution is possible. In the reduced models, the number of 
dimensions were set to q=[10, 30, 50, 100], to investigate both the accuracy of the reduced model, as well as 
the computational cost. Many papers report the use of q=30, however this is from different industries, and 
chosen somewhat arbitrary, and may not be applicable here [8]. 
 

 
 

Fig.4. Comparison of the different number of dimensions in the reduced model. 
 
3. Results 
 
 This first section will investigate the effect of changing the number of dimensions of the reduced 
order model, recall Eq.(2.8). The objective is to evaluate how many dimensions are needed to fully capture 
the behavior of the original system. The test case of v=2.5m/s and corresponding damping is used. Figure 4 
compares the different reduced models, with q=[10, 30, 50, 100]. The amplitude and frequency is normalized 
with the simulation using q=100 as it is assumed to be the most accurate. As the models perform very 
similarly, three boxes are marked in Fig.4, to be further investigated in Fig.5. 
 Figure 5 shows a zoomed view of the boxes marked in Fig.4. From Figs 5a, b it can be seen that only 
q=10 dimensions show some discrepancy compared to the rest of the simulations. In Fig.5c it is seen that the 
accuracy drops for q=30 and q=50 as well. Based on Fig.5 it is concluded that 30 dimensions are sufficient 
in terms of accuracy for this case. Therefore, all reduced order models will from this point on use q=30, as 
was reported in the literature to be sufficient. 
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Fig.5. Detailed view of the effect of changing the number of dimensions in the MOR. 
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Fig.6. Comparison between full ANSYS solution and reduced order model. 
 
3.1. Verification 
 
 In the following section, the MOR results using q=30 will be compared with the full ANSYS 
solution. Figure 6 shows a comparison using the damping corresponding to a flow velocity of v=20m/s (β = 
2.17e−5). There is an excellent match in the complete range. Similar results are seen for the other flow 
velocities. 
 In addition to accuracy with respect to the full solution, the obtained speedup is the second crucial 
metric used to evaluate the MOR method. The speedup factor is calculated as follows; 100 evenly spaced 
frequencies were simulated with the full ANSYS solution. The MOR was performed on the same problem, 
and the total simulation time was compared. The results are shown in Tab.2. The speedup is case-dependent, 
mesh-dependent, etc., however Tab.2 will give a qualitative indication of the gain in simulation time. 
 It is clear that both the accuracy and simulation time are excellent. If we return to the dynamic 
amplification factor in Fig.1, creating such a plot is now possible in a reasonable time frame due to the 
speedup documented here. 
 

Table 2. Speedup factor. 
 

Method Speedup*

Full ANSYS solution 1 

MOR 10 dimensions 56 

MOR 30 dimensions 40 

MOR 50 dimensions 31 

MOR 100 dimensions 18 
* Per 100 frequencies 

 
3.2. Validation 
 

 This section will compare the numerical frequency response with the experimental one. Figure 7 
shows the scaled harmonic response of the vibrating blade obtained in experiments and in the simulations for 
flow velocities v=20m/s. 
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Fig.7. Comparison between experimental results and MOR solution. 
 

 It is observed that the overall match close to the response peak is very good, and that the accuracy 
decreases when moving further away from it. 
 

4. Discussion 
 
 As in other studies, a reduced system of order 30 was deemed sufficient. This may be by chance, in 
the literature this number was chosen more or less arbitrarily [8], however it does indicate that a fairly low 
number of vectors/dimensions is needed to properly describe the original system. One thing that we can 
observe is that the method used for reducing the original system will be most accurate around a pre-
determined point, i.e. the mid-point of the domain (think Taylor expansion about a point). In essence, the 
accuracy of the approximation will decrease in the ends of the investigated domain, this is seen in, i.e., 
Fig.5c, where q=30, 50 starts to deviate from the solution of q=100. This may imply that fewer dimensions 
are needed if the interesting frequencies are known in advance, and conversely, more dimensions are needed 
if a large sweep is to be performed with no prior knowledge of the location of the natural frequencies. 
 Observe that in the numerics, only one bending mode is excited in the frequency sweep (bottom right 
corner of Fig.7 indicates new mode in the experiments). This is due to the fact that the load distribution imported 
from CFD is linked to the first bending mode only. For resonance to occur, both the frequency and the spatial load 
distribution have to match with the mode in question. This is only satisfied for the first bending mode in this case. 
If a more generic load was applied, specifically one where the spatial distribution does not limit which bending 
modes are possible to obtain, a larger frequency range and more modes could be investigated. 
 Another factor is the damping from the experiments. The damping factor is strictly only valid at the 
natural frequency, not when moving away from the resonance peak. This may explain why the accuracy 
decreases when moving away from the peak in Fig.7. Yet another factor is the point at which the amplitude 
is measured in the simulations and the experiments. It is unlikely that exactly the same location is tracked, 
and this will therefore possibly introduce an uncertainty. 
 
5. Conclusion 
 

 Solving complex engineering problems involving submerged structures require a coupled acoustic-
structural simulation. This is computationally expensive, but this article shows that the simulation time can 
be reduced by an order of magnitude of one to two, without reducing the accuracy. A Krylov subspace 
method is used in the model order reduction process. Using this method can allow the designers to obtain 
dynamic amplification plots early in a design process, and can give valuable information regarding product 
design. The results are also compared with ongoing experiments, and show overall good results. 
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Nomenclature 
 

 A  amplitude of deflection 
 0A    amplitude at static load 

    proportional/ Rayleigh damping 

 c  speed of sound 
 DAF  Dynamic Amplification Factor 
 f  frequency  
 k  wave number 
 MOR  Model Order Reduction 
 M,C,K,F  mass, damping, stiffness and force matrices 
 N  degrees of freedom in original system 
 p  pressure 
 q  degrees of freedom in reduced system 
 RSI  Rotor Stator Interaction 
 , ,s a fs   as subscripts; structure, acoustic, fluid-structure 

 V  Krylov subspace 
 v   flow velocity 
 , ,x x x    deflection, velocity and acceleration 

 y  force vector 
    error 
    damping ratio 

    density 

    phase shift between load and response 

    angular frequency 
 n   natural frequency 
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