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The steady-state magnetohydrodynamics (MHD) flow of a third-grade fluid with a variable viscosity 
parameter between concentric cylinders (annular pipe) with heat transfer is examined. The temperature of annular 
pipes is assumed to be higher than the temperature of the fluid. Three types of viscosity models were used, i.e., 
the constant viscosity model, space dependent viscosity model and the Reynolds viscosity model which is 
dependent on temperature in an exponential manner. Approximate analytical solutions are presented by using the 
perturbation technique. The variation of velocity and temperature profile in the fluid is analytically calculated. In 
addition, equations of motion are solved numerically. The numerical solutions obtained are compared with 
analytical solutions. Thus, the validity intervals of the analytical solutions are determined. 
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1. Introduction 
 
 There are many applications of non-Newtonian fluids in the industry. Therefore, many theoretical 
and experimental studies have been carried out on non-Newtonian fluid models. The most widely used 
model is undoubtedly the third-grade fluid model. Studies on the third order fluid model are more concerned 
with the boundary layer flow and the flows in the pipe. There are many applications of the studies on the 
boundary layer flow and the pipe flow. The most important applications of the boundary layer theory are 
food processing, the extrusion of polymers or the production of plastic films, lubrication, continuous casting 
etc. The most common applications of the flows between concentric cylinders (annular pipe) with heat 
transfer are heat exchangers. Manufacturing rate and temperature changes are the most important factors in 
heat exchangers. For this purpose, a number of analytical studies have been carried out for non-Newtonian 
fluid flow in the pipe, also for boundary layer flows. In particular, studies for boundary layer flow using non-
Newtonian model are shown.  
 Yürüsoy and Pakdemirli [1] solved the boundary layer equation of a laminar flow for third grade 
fluids. Multi-layer boundary layer equations have been studied for second and third grade fluids by 
Pakdemirli [2]. Hayat and Kara [3] analyzed parallel plates flow of a third-order fluid by using the Lie 
Groups theory. Hayat et al. [4] found analytical solutions for the flow of a third-order fluid in a porous half 
space by using the Homotopy Analysis Method (HAM). Pakdemirli et al. [5] produced analytical solutions 
for a modified second grade fluid by using the perturbation method. Pakdemirli et al. [6] solved laminar and 
steady state boundary layer equations of power-law fluids of second grade by using similarity transformation 
and numerical technique. By using similarity transformation, Chamkha [7] studied the thermal boundary 
layer on a stretching sheet for a power-law fluid. The effect of suction or injection on the laminar boundary 
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layer approach over a stretching sheet or moving surface for third grade fluids was analyzed by Ali and 
Yurusoy [8]. 
 Studies on the non-Newtonian fluid flow in the pipe are as follows. The work of Massoudi and Christie 
[9], which deals with the third-order fluid flow for heat transfer and variable viscosity state. The study also 
considers as a function of temperature and a numerical method was used for the solution of this problem. A 
study of approximate analytical solutions was carried out by Yürüsoy and Pakdemirli [10]. Approximate 
analytical solutions [10], by using perturbation technique, are compared with the numerical solution given by 
Massoudi and Christie [9]. This work has also pioneered analytical solutions for both pipe flow and flow 
between parallel plates. Many similar works have been carried out [11-13]. In all these studies, analytical 
solutions were generally made using perturbation techniques and Vogel and Reynolds viscosity models were 
used as was given in [10]. Viscosity models are considered as a function of temperature.  
 In this study, the steady-state magnetohydrodynamics (MHD) flow of a viscous third-grade fluid 
between concentric cylinders (annular pipe) with heat transfer is considered. Three types of viscosity models 
were used. These are the constant viscosity model, space dependent viscosity model, and the Reynolds 
viscosity model which depends on temperature in an exponential manner. The equations of motion, highly 
non-linear ordinary differential equations systems, are solved using the regular perturbation technique for 
three types of viscosity models. The new analytical solutions for an annular pipe flow are compared with 
numerical results for all physical parameters (non-Newtonian, viscosity and heat generation parameters, etc.) 
and an excellent agreement is observed. 
 
2. Equations of motion 
 
 The schematic of an MHD (magnetohydrodynamics) flow of a third grade fluid through an annular 
pipe is shown in Fig.1. The viscosity of the fluid is taken as variable. The pressure gradient in the annular 
pipe is considered as constant. The continuity, momentum and energy equations are 
 

 
 

Fig.1. Schematic view of the annular pipe and flow situation. 
 
   div 0V , (2.1) 

 

  ρ div( )
d

dt


V
T + J × B , (2.2) 

 

  ρ 2
p
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c k

dt


  T × L   (2.3) 

 
where cp is the specific heat,  is the non-Newtonian fluid temperature, J is the density of the electric current, 
B is the magnetic field, L is the velocity gradient. The stress constitutive equation for third grade fluids is 
defined by 

z

zu (r)

ir

or



Perturbation solutions for magnetohydrodynamics (MHD) ... 201 

   tr1 1 2 2p     2 2
1 1 1T I A A A A A  (2.4) 

 
where T is the stress tensor, p is the pressure,  is the viscosity, α1, α2,  are material constants, A1 and A2.are 
Rivlin-Ericksen tensors.  
 The velocity field and temperature are as follows 
 
   , , ( ) , ( )z0 0 u r r V . (2.5) 

 
 When Eq.(2.5) is taken into account, Eqs (2.1)-(2.3) are reduced to the form below. 
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2z z
0 z
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. (2.7) 

 
 Boundary conditions of the problem are 
 

  

   
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i o
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 (2.8) 

 

where  is the electrical conductivity of the third grade fluid, r  is the dimensional radius  i or r r  , ir  is 

the dimensional radius of the inner cylinder, or  is the dimensional radius of the outer cylinder, zu  is the 

dimensional velocity,   is the dimensional temperature,   is the dimensional viscosity.  
 The dimensionless parameters for the problem are defined as follows 
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 (2.9) 

 

where V0 is the reference velocity, 0 is the reference viscosity, 0 is the reference temperature, 1 is the fluid 
temperature, C is the pressure drop in the axial direction, k is the thermal conductivity,  is the 
dimensionless non-Newtonian parameter,  is the Brinkman number, B0 is the magnetic field applied to the 
fluid, M is the magnetic parameter.  
 Equations (2.6)-(2.8) are non-dimensionalized as 
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         , , ,z zu 1 0 u R 0 1 0 R 0      . (2.12) 

 
 Solutions will be presented for different viscosity models. 
 
3. Perturbation solutions 
 
 In this section, solutions for two different viscosity models will be presented. The equations of 
motion, highly non-linear ordinary equations systems will be solved using the regular perturbation technique. 
 
Case 1: Reynolds Model 
 
 The Reynolds viscosity model depends on temperature in an exponential type [1].  

 

  e  . (3.1) 
 

 When α = 0, the model corresponds to constant viscosity. One assumes expansion for velocity and 
temperature as follows 
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 Here, we shall select 

 
  , , M m     . (3.3) 

 
 Viscosity function and its derivative form now read approximately as follows 
 

  ,
d

1 m
dr

        . (3.4) 

 
 Substituting all into the original equations of motion and separating at each order of , one has: 
 
For O(1): 
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For O(): 
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 For the first order, solutions are 
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 Substitute these solutions into Eqs (3.6) and by integrating the resulting equations twice, one obtains 
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where t1,2,3…25, d1, d2,e1,e2,f1 and f2 are 
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For 0 , solutions are reduced to those of constant viscosity case.  
 

Case 2: For space dependent viscosity [11], here 
 

  r  , (3.23) 
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 Due to the nonlinear nature of the velocity and temperature field Eqs in (2.10)-(2.12) and, it is 
convenient to form a power series expansion both in parameter , 
 

  

 

 

,0 1 2
z z z

2
0 1

u u u O

O

    

      

 (3.25) 

 

 Substituting these forms of expansion and equating coefficients of these power terms, one obtains the 
following terms: 
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 The following results are obtained when Eq.(3.26) is solved first and then Eq.(3.27) is solved. 
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


, (3.36) 
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   
(3.37) 

 
  2 12 13 14 15 16 17 18 19f t t t t t t t t         . (3.38) 

 
 In the next section, the perturbation solutions in these two cases will be contrasted with those 
generated numerically by the software package Matlab.  
 
4. Numerical results 
 
 The non-dimensional forms of the coupled Eqs (2.10) and (2.11) with the conditions (2.12) are 
solved numerically for the Reynolds viscosity model and space dependent viscosity. In Figs 2 and 3, 
numerical and the new analytical solutions are compared and an excellent agreement is observed. The 
comparison of the results was made for both the velocity profile and temperature profile. Figures 4a and b 
show the effect of the MHD parameter on the fluid flow. In Fig.4a, it is clear that the effects on the 
temperature profile are such that the temperature decreases as the parameter increases. Figure 4b shows that 
the effect of the MHD parameter on the velocity profile is similar. In Figs 5a and b, we can see the effects of 
temperature and velocity on the non-Newtonian parameter. When  = 0, the fluid shows a Newtonian 
behavior. As can be seen from both figures, as the value of non-Newtonian character increases, temperature 
and velocity of the fluid decrease. Another important result from the figures is that the rate of fluid strain in 
the pipe walls is higher because the non-Newtonian parameter is inversely proportional to the viscosity of the 
fluid. Figures 6a and 6b suggest other important results. For example, Fig.6a shows the effect of the viscosity 
parameter on the temperature profile. It is seen that the temperature increases in the fluid with the increase of 
the parameter for the Reynolds viscosity model. In the Reynolds viscosity model, the viscosity decreases as 
the temperature increases since α = 0 corresponds to constant viscosity state. In Fig.6b, it is seen that velocity 
increases with an increment in the viscosity parameter. The effects of non-Newtonian parameters on the 
temperature profile and velocity profile for the space dependent viscosity model are displayed  in Figs 7a and 
b, respectively. 

 
(a)                                                                         (b) 

 
Fig.2ab.  Comparison of the perturbation solution with the numerical solution for the case of the Reynolds 

viscosity model. (-------- Numerical solution ,               Analytical solution) (a) Temperature profile, 
(b) Velocity profile, (C=-1; =1; =0.01; M=0.01; α=0.01). 
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(a)                                                                        (b) 

 

Fig.3ab.  Comparison of the perturbation solution with the numerical solution for the case of the space 
dependent viscosity model. (-------- Numerical solution,          Analytical solution)  
(a) Temperature profile, (b) Velocity profile, (C=-1; =1; =0.01; M=0.1). 

 

 
(a)                                                                            (b) 

 

Fig.4ab.  Influence of the MHD parameter for the Reynolds viscosity model on (a) Temperature profile,  
(b) Velocity profile, (C=-1; =1; =0.01; α=0.01). 

 

    
(a)                                                                               (b) 

 

Fig.5ab.  Influence of the non-Newtonian parameter for the Reynolds viscosity model on (a) Temperature 
profile, (b) Velocity profile, (C=-1; =1; M=0.01; α=0.01). 
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                                      (a)                                                                                                                      (b)  
 

Fig.6ab.  Influence of the viscosity parameter for the Reynolds viscosity model on (a) Temperature profile,  
(b) Velocity profile, (C=-1; =1; M=0.01; =0.01). 

 

 
                                        (a)                                                                                                  (b) 
 

Fig.7ab.  Influence of the non-Newtonian parameter for the space dependent viscosity model on  
(a) Temperature profile, (b) Velocity profile, (C=-1; =1; M=0.01). 

 

 
(a)                                                                                                  (b) 

 
Fig.8ab.  Influence of the MHD parameter for the space dependent viscosity model on (a) Temperature 

profile, (b) Velocity profile, (C=-1; =1; =0.01). 
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  Similarly, effects of the MHD parameter are shown in Fig.8. Figure 7a shows that as the value of  
increases, the temperature of the fluid decreases. Unlike the Reynolds model, the maximum temperature was 
observed near the outer pipe. Figure 7b shows the effect of  on the velocity profile, the parameter increases 
as velocity decreases. Figures 8a and b display the temperature and velocity profiles, respectively, while the 
variable parameter is the MHD parameter. As can be seen from both Figs 7 and 8, as the MHD parameter 
increases, the temperature and velocity decrease. 
 
4. Conclusions 

 
 In this paper, we have investigated the influence of MHD on the Reynolds viscosity and space 
viscosity models in a third-grade fluid behavior in an annular pipe. Approximate analytical solutions have 
been generated for both viscosity models using the perturbation method. In the solutions, the variation of 
velocity and temperature profiles for MHD and non-Newtonian fluid parameters are also presented. In 
addition, analytical solutions are compared with numerical solutions and an excellent agreement is observed. 
In both viscosity models, both non-Newtonian parameters increase and velocity and temperature have been 
observed to be decreasing in the fluid. In both viscosity models, the increase in the non-Newtonian parameter 
has been observed to reduce the magnitude of velocity and temperature. However, a similar influence was 
obtained with a decrease in the viscosity parameter for the Reynolds model. When the effects of the MHD 
parameter on the velocity and temperature profiles are investigated, the magnitude of temperature and 
velocity are decreased as the MHD parameter is increased in both viscosity models. In all figures (Figs 3b-
8b) containing velocity curves, it is demonstrated that the maximum velocity reaches close to the inner pipe. 
In all Figures (Figs 3a-8a) containing temperature curves, it is demonstrated that the maximum temperature 
in the Reynolds viscosity model is obtained close to the inner pipe, whereas in the other viscosity model it is 
observed near the outer pipe. 
 
Nomenclature 
 
 A1, and A2  Rivlin-Ericksen tensors 
 B   magnetic field 
 0B   magnetic field given to the fluid 

 C  pressure drop in axial direction 
 pc   specific heat 

 J  density of electric current 
 k  thermal conductivity 
 L  velocity gradient 
 M  magnetic parameter 
 MHD  magnetohydrodynamics 
 p  pressure 
 r   dimensional radius 
 ir   inner radius of annular pipe 

 or   outer radius of annular pipe 

 ir   dimensional radius of inner cylinder 

 or   dimensional radius of outer cylinder 

 T  stress tensor 

 zu   dimensional velocity 

 V  velocity 
 oV   reference velocity 

    dimensionless non-Newtonian parameter 
 1   material constant  
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 2   material constant  

    material constant  

    Brinkman number 
   perturbation parameter 
   non-Newtonian fluid temperature  

    dimensional temperature 
 0   reference temperature 

 1   fluid temperature 

    viscosity 

    dimensional viscosity 

 0   reference viscosity 

    electrical conductivity of the third grade fluid 
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