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The present investigation deals with the propagation of circular crested Lamb waves in a homogeneous 
micropolar transversely isotropic medium. Secular equations for symmetric and skew-symmetric modes of wave 
propagation in completely separate terms are derived. The amplitudes of displacements and microrotation are 
computed numerically for magnesium as a material and the dispersion curves, amplitudes of displacements and 
microrotation for symmetric and skew-symmetric wave modes are presented graphically to evince the effect of 
anisotropy. Some special cases of interest are also deduced. 

 
Key words: micropolar, transversely isotropic, amplitude ratios. 

 
1. Introduction 
 
 Classical mechanics deals with the basic assumption that the effect of the microstructure of a 
material is not essential for describing mechanical behavior. Such an approximation has been shown in many 
well-known cases. Often, however, discrepancies between the classical theory and experiments are observed, 
indicating that the microstructure might be important. For example, discrepancies have been found in the 
stress concentrations in the areas of holes, notches and cracks; elastic vibrations characterized by a high 
frequency and small wavelengths, particularly in granular composites consisting of stiff inclusions embedded 
in a weaker matrix, fibers or grains; and the mechanical behavior of complex fluids such as liquid crystals, 
polymeric suspensions, and animal blood. In general, granular composites, for example porous materials, are 
widely used in the area of passive noise control as sound absorbers. The effect of acoustical waves 
characterized by high frequencies and small wavelengths become significant. 
 To explain the fundamental departure of microcontinuum theories from the classical continuum 
theories, a continuum model embedded with microstructures to describe the microscopic motion or a non 
local model to describe the long range material interaction are developed. This theory extends the application 
of the continuum model to microscopic space and short-time scales. The micromorphic theory [1, 2] treats a 
material body as a continuous collection of a large number of deformable particles, with each particle 
possessing finite size and inner structure. Using assumptions such as infinitesimal deformation and slow 
motion, the micromorphic theory can be reduced to Mindlin's [3] microstructure theory. When the 
microstructure of the material is considered rigid, it leads the micropolar theory [4]. 
  Eringen's micropolar theory is more appropriate for geological materials such as rocks, soils since, 
this theory takes into account the intrinsic rotation and predicts the behavior of a material with an inner 
structure.  
 There has been considerable interest generated in recent years in wave propagation through naturally 
occurring media and man-made materials in view of widespread applications in acoustic signal 
transmissions, seismically induced motions, non-destructive evaluation, noise control, subsurface 
exploration, etc. Cylindrical plates are frequently used as structural components and their vibration 
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characteristics are important for practical design. The waves which propagate in a freely vibrating plate are 
called Lamb waves. The unique properties of Lamb waves have made them increasingly attractive for non-
destructive testing of bonded structures. The sensitivity and effciency of adhesive bond inspection using 
Lamb waves have been the subject of study in recent years in many laboratories concerned with bond quality 
inspection. Different researchers discussed different types of problems in transversely isotropic elastic 
materials. Abubakar [5] discussed free vibrations of a transversely isotropic plate. Keck et al. [6] derived the 
frequency equation for the propagation of train of nontorsional axisymmetric harmonic wave in infinitely 
long shells, made of three concentric cylinders of different transversely isotropic materials. Shuvalov et al. 
[7] described long wavelength onset of the fundamental branches for a free anisotropic plate. Payton [8] in 
1991 studied wave propagation in a restricted transversely isotropic elastic solid whose slowness surface 
contains conical points. However, no attempt has been made to study wave propagation in a micropolar 
transversely isotropic medium. 
 The aim of the present study is to enhance our knowledge about the propagation of axisymmetric 
waves in the layer of a micropolar transversely isotopic material. This study has many applications in various 
fields of science and technology, namely, atomic physics, industrial engineering, thermal power plants, 
submarine structures, pressure vessel, aerospace, chemical pipes and metallurgy. After developing the 
solution, frequency equations connecting the phase velocity with wave number, for symmetric and skew-
symmetric wave modes are derived. The amplitude ratios of displacements and microrotation are also 
obtained. To indicate the effect of anisotropy, the dispersion curves, attenuation coeffcients, amplitude ratio 
of displacements and microrotation for symmetric and skew-symmetric waves are presented and illustrated 
graphically. 
 

2. Basic equations 
        
          Following Eringen [9], the constitutive relations and balance laws in a general micropolar anisotropic 
medium possessing center of symmetry, in the absence of body forces, body couples, are given by 
 

constitutive relations: 
 

                  ijkl kl ijkl klt A e Gij    ,  

             (2.1) 
                    ij ijkl kl ijkl klm G E B   . 
 

 The deformation and wryness tensor are defined by 
 

   , ,,ji i j ijkl k ij i jE u        
 

balance laws 
 

  ,ij j it u  , 

             (2.2)
 

  ,ik i ijk ij km t j      

 
where the list of symbols is given in the nomenclature. 
 
3. Problem formulation  
 
 We have used appropriate transformations following Slaughter [10], on the set of Eqs (2.1) to derive 
equations for a micropolar transversely isotopic medium and restricted our analysis to the two dimensional 
problem.  
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 In the present paper, we consider an infinite layer with traction free surfaces at   z H  (layer of 
thickness 2H), which consists of a homogeneous, micropolar transversely isotropic material. The plate is axi-
symmetric with respect to the z  axis as the axis of symmetry. We take the origin of the co-ordinate system 
( , , )r z  on the middle surface of the plate and the z  axis is taken normal to the solid plate along the 
thickness. We take the r z  plane as the plane of incidence. If we restrict our analysis to the plane strain 
problem parallel to the r z  plane with the displacement vector ( , , )r zu 0 uu , microrotation vector 

( , , )0 0   and /   0  , so that the field equations and constitutive relations in cylindrical polar 
coordinates reduce to 
 

   ,
2 2 2 2

r r r r z r
11 55 13 56 12 2 2 2

u u u u u u1
A A A A K

r r r z zr r z t
      

               
   (3.1) 

 

  
2 2 2 2

z z z r r z
66 33 13 56 22 2 2
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                                      

, (3.2) 
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2 2 2

r z
77 66 1 22 2 2 2

u u1
B B X K K j

r r z rr r z t
    


         

                   
(3.3) 

where 
 , , ,1 56 55 2 66 56 2 1K A A K A A X K K       
 

and we have used the notations , , , ,11 1 33 3 12 7 13 6 23 5      for the material constants. 
 For further considerations, it is convenient to introduce the dimensionless variables defined by 
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4. Boundary condition 
 
 The boundaries of the layer are assumed to be stress free. Therefore, at the surfaces  z H , the 
appropriate boundary conditions are 
 

 , ,zz zr zt 0 t 0 m 0            (4.1) 
 

where , zz zrt t  are the normal and tangential stress components, mzθ is the tangential couple stress, whose 
values in the present case are defined as 
 

 r r z
zz 13 33

u u u
t A A

r r z

       
,         (4.2) 
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,        (4.3) 
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5. Normal mode analysis and solution of the problem 
 
 We assume the solution for

 
, ,r zu u 

 
representing propagating waves in the r-z plane of the form 

                            

                    
    ( ), , ( ), ( ), , ( ) i mz ct

r z 1 z o 1 ru u J r u J r J r u e  
            (5.1) 

 
where   is the wave number, c    is the angular frequency and c  is the phase velocity of the wave, m  is 

the unknown parameter which signifies the penetration depth of the wave, ,zu   are respectively, the 

amplitude ratios of the displacement zu , microrotation   to that of the displacement ru . 
   With the help of Eqs (3.4) and (5.1), Eqs (3.1)-(3.3) reduce to (after suppressing primes)  
 

  ( ) ,2 2 2 2
1 1 2 z 3m c d i md u i md 0            

 

    ,2 2 2 2
5 7 4 z 6mi d m d d c u d 0                       (5.2) 

 

   2 2 2
9 10 z 11 8 12i m d d u d m d c d 0

              

where      

  /1 11 55d A A ,       2 5 13 56 55d d A A A   ,      /2 2
3 1 55d K A ,      /4 66 33d A A ,  

 

  /6 1 2 33 55d K K A A ,      / , /7 55 33 8 77 66d A A d B B  ,      */ ,2 2
9 55 1 66d A c B    

 

  */2 2
10 2 55 1 1 66d K A c K B   ,     */ , / , / .2 2

11 1 66 12 55 66 13 13 55d Xc B d A j B d A A      
 
 The condition for the non trivial solution of the system of Eqs (5.2), yields a cubic equation in 

 2q m  as 

 

  6 4 2Am Bm Cm D 0            (5.3) 
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       .2 2 2 2 2 2 2
1 6 10 4 8 12 11D d d d d c d d d             

 

 The roots of this equation give three values of 2m , and hence of 2c . Three positive values of c  will 
be the velocities of propagation of three possible waves, viz. the quasi-longitudinal displacement (QLD) 
wave, transverse displacement (QCTD) wave and quasi-coupled quasi-coupled transverse microrotational 
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(QCTM) wave. This fact is verified, when we solve Eq.(5.4), using Matlab programming. For a isotropic 
linear micropolar elastic solid, i.e., if we put 
 
  ,11 33A A 2 K          ,55 66A A K         ,13A   ,56A    
 
  / ,1 2K K K X 2         66 77B B   , 
 
in Eq.(5.4), the velocity 1c  corresponds to the longitudinal displacement wave and the velocities 2c  and 3c  
correspond to two coupled waves, viz. the transverse microrotational and  transverse displacement wave as 
obtained by Parfitt and Eringen [11]. 
 So Eq.(5.4) leads to the following solution for displacements and microrotation as 
 

      , , cos( ) sin( ) ( ), ( ), ( )
3

i t
r z k k k k 1 k o k 1

k 1
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



          (5.4) 
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. 

 
6. Derivation of secular equation 
 

Substituting the values of ,r zu u and   in the boundary conditions (4.1) at the surfaces H of the 
layer, yields 
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 In order that the six boundary conditions given by Eqs (4.1) be satisfied simultaneously, the 
determinant of the coefficients of kA  and kB  k=1, 2, 3 in Eqs (6.1) vanishes. This gives an equation for the 
frequency of the layer oscillations. The frequency equation for the waves in the present case, after applying 
lengthy algebraic reductions and manipulations of the determinant leads to the following secular equation 
 

             1 1 51 33 32 2 1 52 31 33 3 1 53 32 31T g g g g T g g g g T g g g g 0
       .  (6.2) 

 
 These are the frequency equations which correspond to the symmetric and skew symmetric mode 
with respect to the medial plane z 0 . Here, the superscript '+' corresponds to skew symmetric and '-' refers 
to symmetric modes and 
 

   tank kT m z  ,          k=1, 2, 3. 

 
6.1. Specific loss 
 
 The specific loss is the ratio of energy ( )W  dissipated in taking a specimen through a stress cycle 

to the elastic energy ( )W stored in the specimen when the strain is maximum. Kolsky [12] shows that the 

specific loss ( / )W W  is, c times the absolute value of the ratio of the imaginary part of the wave number to 
the real part of the wave number i.e. 
 

  
Im( )

Re( )

W k
4

W k


  . 

 

 He noted that the specific loss is the most direct method of defining internal friction for a material.
  

6.2. Amplitudes of displacements and microrotation 
 
 In this section, the amplitudes of displacement components and microrotation for symmetric and 
skew symmetric modes of plane waves can be obtained as 
 

  ( )[( ) , ( ) ] [ cos( ), sin( )] 1
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i x ct
1 sym 1 asym k k k k

k 1

u u A m z B m z e  
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  ( )[( ) ,( ) ] [ cos( ), sin( )] 1
3

i x ct
2 sym 2 asym k k k k k

k 1

t A m z B m z e  


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7. Numerical results and discussion 
 
 In order to illustrate theoretical results obtained in the preceding sections, we now present some 
numerical results. The following relevant physical constants are chosen arbitrarily for a micropolar 
transversely isotopic material due to unavailability of relevant experimental data 
 

 . , . , . , . ,10 2 10 2 10 2 10 2
11 33 55 66A 16 8 10 Nm A 18 43 10 Nm A 3 7 10 Nm A 4 2 10 Nm            

 

 . , . , . , . .10 2 10 2 9 9
13 56 77 66A 7 85 10 Nm A 3 77 10 Nm B 5 71 10 N B 5 648 10 N          
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 For comparison with a micropolar isotropic solid, following Eringen [13], we take the following values 
of relevant parameters of a micropolar isotropic solid for the case of magnesium crystal like material as 
 

  . / ,3 31 74 10 Kg m        . /10 29 4 10 N m   ,     . / ,10 24 0 10 N m    
 

  . / ,10 2K 1 0 10 N m        . ,90 779 10 N           . 19 2j 0 2 10 m  . 
 
 Equation (5.3) determines the phase velocity c of the surface waves as a function of the wave 
number ξ and various physical parameters in complex form.  
 Graphical representation is given for the non-dimensional phase velocity, attenuation coeffcient and 
specific loss with respect to (R), i.e. the real part of the wave number (Figs 1-6) restricted to thickness H=1 
for symmetric and skew symmetric modes, to compare the results for a micropolar transversely isotropic 
solid (MTIS) and a micropolar isotropic solid (MIS). Here, curves represented by solid lines with and 
without center symbol represent the variation corresponding to MTIS and curves represented by broken lines 
with and without center symbol represent the variations corresponding to MIS. The curves shown in the 
figures without center symbol represent the variations corresponding to initial mode (n=1) of wave 
propagation, curves with center symbol ( )O   represent the variations corresponding to second mode (n=2) 

and curves with center symbol ( )  represent the variations corresponding to final mode (n=3) of wave 
propagation. Figures 7-9 show the variations of amplitude of radial displacement, tangential displacement 
and microrotation with thickness of the layer. Figures 1 and 4 depict the variations of phase velocity with 
respect to (R), for symmetric and skew symmetric modes, respectively. It is evident from Fig.1 that for the first 
and second mode, the values of phase velocity start with a slight initial decrease and then oscillate to attain a 
constant value afterwards, in both the cases of MTIS and MIS. However, for the highest mode (n=3) its value 
sharply decreases over the interval (0, 1), and then oscillates to attain a constant value about the origin for both 
the cases of MTIS and MIS. However, for the skew symmetric case as follows form Fig.4, for all the modes of 
wave propagation (n=1, 2, 3) the values of phase velocity show a large hump over the interval (0.5, 4) and then 
decrease to become constant as far as the case of MTIS is considered, but in the case of MIS, the values 
oscillate within the range (0, 6) and then decrease to attain a constant value in the end. The peak value of phase 
velocity for the skew symmetric mode is higher for the highest mode of wave propagation.  
 

      
 

Fig.1. Variation of phase velocity with wave number 
for symmetric mode. 

Fig.2. Variation of attenuation coefficient with wave 
number for symmetric mode. 
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Fig.3. Variation of specific loss with wave number 
for symmetric mode. 

Fig.4. Variation of phase velocity with wave number 
for skew symmetric mode. 

 

      
 

Fig.5. Variation of attenuation coefficient with wave 
number for skew symmetric mode. 

Fig.6. Variation of specific loss with wave number 
for skew symmetric mode. 

 

 Figures 2 and 5 indicate the variations of attenuation coeffcient for both symmetric and skew 
symmetric cases. It is evident from these figures that the variation pattern for both MTIS and MIS in both the 
figures is same. It is also observed that the value of attenuation coeffcient for the initial mode of wave 
propagation decreases with arbitrary oscillation, while for a higher mode, its value constantly increases. The 
variations of the specific loss with respect to R for symmetric and skew symmetric modes can be in Figs 3 
and 6, respectively. It is seen in Fig.3 that for the initial mode the value of the specific loss initially increases 
and then oscillates to attain a constant value for both MTIS and MIS. As we move to a higher mode of wave 
propagation, its value starts with a sharp initial decrease over the interval (0.25, 0.75) and then oscillates to get 
a constant value at the end. However, in the skew symmetric case, for the initial mode of wave propagation its 
value oscillates with a very small amplitude and becomes constant. While for higher modes of wave 

 

0 2 4 6 8 10
Wave number

0

0.5

1

1.5

2

2.5

3

3.5

S
p

e
ci

fic
 lo

ss

MTIS(n=1)

MTIS(n=2)

MTIS(n=3)

MIS(n=1)

MIS(n=2)

MIS(n=3)

0 2 4 6 8 10
Wave number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
h
a

se
 v

el
oc

ity

MTIS(n=1)

MTIS(n=2)

MTIS(n=3)

MIS(n=1)

MIS(n=2)

MIS(n=3)

 

0 2 4 6 8 10
Wave number

-3

-2

-1

0

1

2

3

A
tte

nu
a

tio
n 

co
e

ffc
ie

nt

MTIS(n=1)

MTIS(n=2)

MTIS(n=3)

MIS(n=1)

MIS(n=2)

MIS(n=3)

0 2 4 6 8 10
Wave number

0

0.5

1

1.5

2

2.5

3

3.5

S
pe

ci
fic

 lo
ss

MTIS(n=1)

MTIS(n=2)

MTIS(n=3)

MIS(n=1)

MIS(n=2)

MIS(n=3)



Study of axi-symmetric vibrations in a micropolar ...  267 

propagation (n=2, 3), its value increase with oscillating amplitude to attain a constant value at the end, in both 
the cases of MTIS and MIS. It is observed that due to anisotropy the value of the specific loss gets increased.  
 Figures 7-9 indicate the trend of variations of the amplitude of radial displacement, tangential 
displacement and microrotation with respect to the thickness H of the layer. Figures 7 and 9 show that the 
values of the amplitude of radial displacement and microrotation for MTIS and for symmetric mode, 
oscillate constantly with a small amplitude about the origin. While for the skew symmetric mode its value 
oscillates increasingly with small amplitudes. The value for the skew symmetric mode is higher as compared 
to that of the symmetric mode. It is illustrated in Fig.8 that the value of amplitude of tangential displacement 
for both MTIS and MIS and for both symmetric and skew symmetric modes appears to be constant over the 
interval (0, 3) and then increases constantly. It is also observed from the figure that the value of amplitude of 
tangential displacement is higher for the skew symmetric mode.  
 

      
 

Fig.7. Variation of amplitude ratio of radial 
displacement with thickness H of the layer. 

Fig.8. Variations of amplitude of tangential 
displacement with thickness H of the layer. 

 

 
 

Fig.9. Variation of amplitude of microrotation with thickness H of the layer. 
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Conclusions 
 

 The propagation of circular crested waves in an infinite layer of a transversely isotropic medium after 
deriving the secular equation is investigated. The phase velocity for both symmetric and skew-symmetric 
modes attain larger values at vanishing wave number, which sharply flattens out to become steady with 
increasing wave number. An appreciable effect of anisotropy is evinced from all the curves. Also, its value 
becomes larger for the highest mode of wave propagation. The value of attenuation coeffcient and specific 
loss shows a similar behavior for both isotropic and anisotropic cases. The values of amplitude of radial 
displacement and microrotation get increased due to anisotropy for both symmetric and skew-symmetric 
cases, whereas, the amplitude of tangential displacement increases for the symmetric mode and gets 
decreased for the skew-symmetric mode. 
 

Nomenclature 
 

 , ,ijkl ijkl ijklA G B   are characteristic constants of material following the symmetry properties given by Eringen [2] 

 j   microinertia 

 ijm    components of couple stress tensor 

 ijt   components of stress tensor 

 iu   components of displacement vector 

 ij   Kronecker delta 

    bulk mass density 

 i   components of microrotation vector 
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