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This article analyses the influence of viscous dissipation and thermoporesis effects on the viscous fluid flow 
over a porous sheet stretching exponentially by applying convective boundary condition. The numerical solutions 
to the governing equations are evaluated using a local similarity and non-similarity approach along with a 
successive linearisation procedure and Chebyshev collocation method. The influence of the pertinent parameters 
on the physical quantities are displayed through graphs. 
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1. Introduction 
 
 The study of flow, heat and mass transfer over stretching surfaces is one of the important research 
area due to its significant use in various chemical, polymer industries and other engineering disciplines. 
Applications include wire drawing, crystal growth, filaments spinning, paper production, glass fiber, food 
processing, continuous casting etc. Sakiadis [1, 2] was the first to study the flow due to a stretching sheet.  
Since then several researchers have analyzed this flow problem including the heat and mass transfer analysis 
under several physical situations, e.g., over a stretching/shrinking sheet with convective boundary condition. 
They concluded that the convective boundary conditions result in a temperature slip at the wall. 
 Thermophoresis is a mechanism in which small particles migrate in the direction of decreasing 
thermal gradient. It is quite significant in radioactive particle deposition in nuclear reactor safety simulations, 
aerosol particle sampling, deposition of silicon thin films, etc. Goldsmith and May [3] were the first to 
estimate the thermophoretic velocity in a one-dimensional flow. Uddin et al. [4] studied the thermophoresis 
and magnetic field effect over a linearly stretching sheet. Shehzad et al. [5] analyzed the effects of the 
magnetic field, radiation, thermoporesis and Joule heating effects on the flow of Jeffrey fluid over a linearly 
stretched surface. Reddy [6] investigated the impact of thermophoresis and variable thermal conductivity on 
MHD viscous fluid flow over an inclined surface. Sandeep and Sulochana [7] studied the nanofluid flow 
over an exponentially stretching porous sheet immersed in a porous medium in the presence of 
thermophoresis, radiation and magnetic field. 
 The process of transforming the energy taken from the motion of the fluid by viscosity into internal 
energy, which is partially irreversible, is referred to as viscous dissipation. Gehbart [8] considered the 
significance of viscous dissipation on natural convection. Wong et al. [9] investigated viscous dissipation 
effect on the steady viscous fluid flow over an exponentially stretching/shrinking permeable sheet. Das [10] 
investigated the effect of chemical reaction and viscous dissipation on MHD mixed convective heat and mass 
transfer flow of a second grade fluid past a semi-infinite stretching sheet in the presence of thermal diffusion 
and thermal radiation. Megahed [11] studied the heat transfer characteristics in the presence of viscous 
dissipation and velocity slip of a viscous Casson thin film flow over an unsteady stretching sheet. Adeniyan 
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and Adigun [12] reported that increasing the values of the Eckert number and magnetic parameter, the 
thermal boundary layer thickness is increasing. 
 A generally accepted boundary condition on the solid surface is no-slip condition. However, Navier 
[13] suggested that fluid slips at the solid boundary and slip velocity depend linearly on the shear stress.  The 
fluid slippage phenomenon at the solid boundary appears in numerous applications, for example, in 
nanochannels or microchannels  and the cleaning of simulated heart valves, internal cavities. On the other 
hand, a novel technique for the heating process by providing the heat with finite capacity to the convecting 
fluid through the bounding surface has attracted numerous researchers. This type of thermal boundary 
condition, called convective boundary condition, results in the rate of exchange of heat across the boundary 
being proportional to the difference in local temperature with the ambient conditions [14]. Due to the 
realistic nature of the convective thermal condition, the investigation of heat transfer with this condition has 
great significance in mechanical and designing fields, for example, heat exchangers, atomic plants, gas 
turbines, and so forth. Gideon and Abah [15] studied plane stagnation double-diffusive MHD convective 
flow with convective boundary condition in porous media. Mustafaa et al. [16] reported the impact of 
convective boundary condition on the heat transfer characteristics past an exponentially stretching sheet in a 
nanofluid considering the thermophoresis and Brownian motion effects. Hayat et al. [17] studied the effects 
of convective heat and mass transfer in the flow of Eyring-Powell fluid past an inclined exponential 
stretching surface. Rahman et al. [18] investigated the steady boundary layer flow and heat transfer 
characteristics of a nanofluid past an exponentially shrinking surface with convective boundary condition. 
Mabood et al. [19] investigated the stagnation point flow and heat transfer over an exponential stretching 
sheet. Khan et al. [20] studied the boundary layer flow of a nanofluid past a bi-directional exponentially 
stretching sheet with convective boundary condition. Recently, Srinivasacharya and Jagadeeshwar [21] 
reported that the increase in the Biot number increases the rate of heat transfer from the sheet to the fluid. 
 Therefore, motivated by the aforesaid investigations, here we made an attempt to analyze the 
boundary layer flow considering the effects of thermophoresis and viscous dissipation over an exponential 
stretching surface subjected to velocity slip and suction or injection. 
 
2. Mathematical formulation 
 
 Consider a stretching sheet in a laminar slip flow of a viscous incompressible fluid with temperature 
T∞ and concentration C∞. The Cartesian framework is selected by taking the positive x  axis along the sheet 

and the y  axis orthogonal to the sheet. The stretching velocity of the sheet is assumed as U*( x )=U0 
/x Le   

where x  is the distance from the slit. Assume that the sheet is either cooled or heated convectively through a 

fluid with temperature Tf  and which induces a heat transfer coefficient hf, where hf = h /0U 2L /2x Le  . 

 ,x yu u   is the velocity vector, C  is the concentration and T  is the temperature. The suction/injection 

velocity of the fluid through the sheet is V*( x )=V0
/x 2Le  , where V0 is the strength of suction/injection. 

Further, the slip velocity of the fluid is assumed to be N( x ) = N0 
/x 2Le  , where N0 is the velocity slip factor. 

Hence, the following are the equations which govern the present flow 
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where ρ is density, D is the mass diffusivity of the medium, α is the thermal diffusivity, υ is the kinematic 
viscosity of the fluid, cp is the specific heat capacity at the constant pressure and VT is the thermophoretic 
velocity. 
 The term VT in Eq.(2.4) can be written as [22] 
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where Tr is the reference temperature and kt is the thermophoretic coefficient. 
 The conditions on the surface of the stretching sheet are  
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dimensionless variables 
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into Eqs (2.1)-(2.4), we obtain 
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where the prime indicates derivative with respect to y, S = V0 /2L U0  is the suction or blowing 

parameter according to S>0 or S<0, respectively, Ec = U0
2/cp(Tf  – T∞) is the Eckert number, Pr = υ/α is the 

Prandtl number, Sc = υ/D is the Schmidt number, Bi = h  /κ is the Biot number, λ = N0 /0 LU 2  is the 

velocity slip parameter and τ  =  -  t w rk T T T  is the thermophoretic parameter (The surface is cold for τ 

> 0 and hot for τ < 0 [23, 24]). 
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 The transformed boundary conditions are 
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 The non-dimensional skin friction / 2
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 is the local Reynolds number. 

 
3. Numerical solution 
 
 The numerical solutions to Eqs (2.8) to (2.10) together with Eqs (2.11) are evaluated using a local 
similarity and non-similarity method [25], [26], [27], successive linearisation and then the pseudo spectral 
method [28], [29].  
 
3.1. Local non-similarity method 

 

 The initial approximate solution can be obtained from the local similarity equations for a particular 

case x < < 1 by suppressing the terms x(∂/∂x). As there are no terms accompanied with x(∂/∂x) in Eqs (2.8)-

(2.10), there is no change in the governing equations and boundary conditions.  
 In the second step, introduce G = ∂F/∂x, H = ∂T/∂x and K = ∂C/∂x to get back the suppressed terms 
in the first step.  
 The subsequent solutions for ( )if  , ( )i   and ( )i   ( )i 1  are obtained by recursively solving the 
following linearized system of ordinary differential equations 
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 The associated boundary conditions are 
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 In the third step, differentiate Eqs (3.1)-(3.3) with respect to x and neglect terms accompanied with 
∂G/∂x, ∂H/∂x and ∂K/∂x, then we get  
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3.2. Successive linearization method 
 
 Let ( ) [ , , , , , ]y F T C G H K   and assume that 
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where ( )i y  (i=1, 2, 3, ...) are unknown functions that are determined by recursively evaluating the 

linearised version of Eqs (3.1) to (3.8) after introducing Eq.(3.9) into them and ( )r y  ( )r 1  are known 
functions determined from previous iterations 
 

  , , , , , ,''' '' ' 'i 11 i 1 i 12 i 1 i 13 i 1 i 14 i 1 i 15 i 1 i 1 i 1F F F F G G                 , (3.10) 
 

  , , , , , , ,'' ' '' '
Pr21 i 1 i 22 i 1 i 23 i 1 i i 24 i 1 i 25 i 1 i 26 i 1 i 2 i 1
1

F F F T T G H                    , (3.11) 
 

  , , , ,

, , , , ,

' '' ' ''
Sc

' ,

31 i 1 i 32 i 1 i 33 i 1 i 34 i 1 i i

35 i 1 i 36 i 1 i 37 i 1 i 38 i 1 i 3 i 1

1
F F T T C

C C G K

   

    

        

        
 (3.12) 

 

  , , , , , , ,'' ' ''' '' '41 i 1 i 42 i 1 i 43 i 1 i i 44 i 1 i 45 i 1 i 46 i 1 i 4 i 1F F F G G G G                    , (3.13) 

 

  
, , , , ,

, , , ,Pr

'' ' '' '

'' ' ,

51 i 1 i 52 i 1 i 53 i 1 i 54 i 1 i 55 i 1 i

56 i 1 i i 57 i 1 i 58 i 1 i 5 i 1

F F T G G

1
G H H H

    

   

        

       


 (3.14) 



430                                                                                                                          D.Srinivasacharya and P.Jagadeeshwar 

 

  

, , , , ,

, , , ,

, , ,

'' ' '

' ' ' ''

'
Sc

61 i 1 i 62 i 1 i 63 i 1 i 64 i 1 i 65 i 1 i

66 i 1 i 67 i 1 i 68 i 1 i 69 i 1 i i

610 i 1 i 611 i 1 i 6 i 1

F T T C C

1
G G H H K

K K

    

   

  

         

        

    

    (3.15) 

 
where the coefficients ,lk n 1  and ,k i 1 , (l = 1, 2, 3, 4, 5, 6, k = 1, 2, 3, ..., 11) are in terms of the 

approximations Fi, Ti and Ci, (i=1, 2, 3, ..., n-1) and their derivatives. 
 
3.3. Chebyshev collocation method 
 
 The linearized equations obtained in section (3.2) are solved using the Chebyshev collocation 
procedure [29]. In view of numerical computations, the region [0, ∞) is truncated to [0, L] for large L. In 
order to apply the Chebyshev collocation procedure, the interval [0, L] is converted to [-1, 1] by the mapping 
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where D  = 
2

L
  with   is the Chebyshev derivative matrix and a  is the order of the derivative. 

Substitution of Eq.(3.16) in Eqs (3.10) to (3.15) gives 
 
  i 1 i i 1    (3.18)  
 

where i 1  is a 6th  order square matrix with elements as ( )th1K  order square matrices in terms of the 

coefficients ij 's.  i  and i 1  are 6th  order column vectors with ( )1 1 K  column vectors  as elements 

in terms of ( )i k   and , 1s i  . 

 Hence, the solution can be obtained by solving the matrix system (3.18), after implementing the 
boundary conditions. 
 
4. Results and discussions 
 
 In order to analyze the influence of pertinent parameters, the numerical calculations are carried out 
by taking Pr = 1.0, Sc = 0.22, N = 100, L = 20, S = 0.5, Bi = 1.0, λ = 0.5, τ = 0.3, Ec = 0.2 and x = 0.2 unless 
otherwise mentioned. 
 The behavior of velocity in the presence of velocity slip at the boundary for exponentially stretching 
sheet is presented in Fig.1a. Due to the slipperiness velocity decreased. Figure 1b represents the variation of 
velocity profile in the presence of suction/injection parameter S. It is observed that velocity is decreasing by 
raising the value of S. While, a reverse trend is noticed for injection (S < 0). 
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(a)                                                                               (b) 

Fig.1. Effect of (a) λ and (b) S on F΄. 
 
 The variation of the skin-friction coefficient F''(x, 0) against the non-similar variable x for distinct values 
of slip and suction/injection parameters is presented in Figs 2a and 2b. It is obvious from these figures that the 
skin-friction coefficient is increased with an increase in the values of slip and decreased with a rise in suction 
parameter. Further, it is identified that the non-similar variable has no impact on the skin-friction coefficient. 
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Fig.2 Effect of (a) λ and (b) S on F  (x, 0). 
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 Figures 3a-3d exhibit the behaviour of temperature profile for different values of Ec, Bi, λ and S, 
respectively. It is evident from Fig.3a that temperature is increasing with an increase in the value of Ec. 
Figure 3b shows that temperature enhanced raising the value of Bi. We see that temperature within the 
boundary layer increases with an increase in the Biot number. For Bi , Eqs (2.11) implies ( )T 0 1  
which is clearly shown in Fig.3b for larger values of Bi. From Fig.3c, it is seen that temperature profile 
increases with an increase in the values of slip parameter λ. On the other hand, Fig.3d shows that temperature 
of the fluid is decreasing with an increase in the value of the suction parameter and an opposite trend is seen 
for injection. 
 

      
(a)                                                                 (b) 

       
(c)                                                                             (d) 

Fig.3. Effect of (a) Ec, (b) Bi, (c) λ and (d) S on T. 
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 The effect of the thermophoretic parameter τ, Biot number Bi, slip parameter λ and suction/injection 
parameter S on concentration profile is presented in Figs 4a-4d. Increase in the value of τ decreases the 
concentration as shown in Fig.4a. This is due to the fact that fluid particles move away from cool 
surroundings with an increase in the thermophoretic parameter. Figure 4b shows the influence of convection 
on concentration. It is known that a rise in convection at the stretching sheet results in lowering thermal 
penetration and hence decreases the concentration boundary layer thickness. Therefore, mass transfer at the 
sheet increases with an increase in the value of Bi. Further, as the value of the slip parameter increases, 
concentration of the fluid increases as shown in Fig.4c. Due to which, mass transfer at the sheet decreases. 
On the other hand, concentration decreases with increase in the value of suction and increases with increase 
in the value of injection as shown in Fig.4d. 
 

        
(a)                                                                                      (b) 

        
(c)                                                                                  (d) 

Fig.4. Effect of (a) τ, (b) Bi, (c) λ and (d) S on C. 
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 The fluctuation of the heat transfer coefficient for different values of the Eckert number, Biot 
number, slip and suction/ijnection parameters against non-similar variable x is presented through Figs 5a-5d. 
The influence of the Eckert number on the Nusselt number is depicted in Fig.5a. It is evident from the figure 
that heat transfer from the sheet to the fluid is decreasing with an increase in the value of Ec. In the absence 
of the Eckert number(Ec = 0), there no effect of the non-similar variable x on the heat transfer coefficient. As 
the value of Ec increases, heat transfer from the sheet to the fluid increases and as x 1  and for higher 
values of the Eckert number heat absorption takes place. Increasing values of the Biot number the heat 
transfer coefficient is enhanced predominantly on the surface due to the strong convection as shown in 
Fig.5b. Figure 5c shows that the rate of heat transfer enhanced with an increase in the slipperiness. But, it is 
noticed that in the absence of slipperiness and for small values of slipperiness heat absorption is taking place 
far away from the boundary. While the heat transfer coefficient is increasing with an increase in the value of 
S as depicted in Fig.5d. 

        
(a)                                                                                     (b) 

        
(c)                                                                         (d) 

 

Fig.5. Effect of (a) Ec, (b) Bi, (c) λ and (d) S on -T΄(x, 0). 
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 The behaviour of the mass transfer coefficient with τ against x is portrayed in Fig.6a. It is seen from the 
figure that the rate of mass transfer is increasing with an increase in the value of τ. Further, it is seen that for 
higher values of τ mass transfer from the sheet to the fluid is slightly decreasing gradually with x. The influence 
of the Biot number Bi on the mass transfer rate is presented in Fig.6b. From this figure we observe that the rate 
of mass transfer is increasing with an increase in Bi and non-similar variable x. The impact of slipperiness on 
the rate of mass transfer is shown in Fig.6c. From this, it is evident that the rate of mass transfer is reducing 
with hike in the value of λ and x. Further, in the absence of the slip parameter there is a maximum mass transfer 
from the sheet to the fluid. But an opposite trend is observed on the rate of mass transfer when the slip 
parameter is replaced by the Biot number. Finally, the variation of the mass transfer coefficient for different 
values of suction/injection parameter S is depicted in Fig.6d. This figure reveals that mass transfer from the 
sheet to the fluid is increasing with an increase in the value of suction and reducing with an enhancement in the 
value of injection. But, there is no effect of the non-similar variable x on the mass transfer rate. 
 

        
(a)                                                                                (b) 

       
(c)                                                                                (d) 
Fig.6. Effect of (a) τ, (b) Bi, (c) λ and (d) S on -C΄(x, 0). 
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Conclusions 
 
 The flow over a sheet stretching exponentially by considering the viscous dissipation and 
thermophoresis effects is investigated numerically by employing suction/injection, velocity slip and thermal 
convective boundary condition. A local similarity and non-similarity method along with successive 
linearisation and Chebyshev collocation method are used to solve the governing equations. The main 
findings are listed as follows. 

 Velocity reduced as the value of suction/injection and slip parameters are increasing. 
 Skin-friction increases with a rise in λ and decreases with S. 
 The temperature increased with a rise in the values of Ec, Bi and λ. While decreased with 

enhancement in the value of S. 
 Concentration of the fluid enhanced with increasing the value of λ and reduced with an increase in 

the value of τ, Bi and S. 
 The rate of heat transfer rises with an enhancement in λ, S and Bi and reduces with an increase in the 

value of the Eckert number. 
 The rate of mass transfer from the sheet to the fluid increases with an increase in the values of τ, Bi 

and S, but, decreases with increasing the value of λ. 
 
Nomenclature 

 
 Bi  Biot number 
 C   fluid concentration 
 Cw   sheet concentration 
 C  dimensionless concentration 
 C∞  free stream concentration 
 cp  specific heat capacity at constant pressure 
 D  mass diffusivity 
 Ec  Eckert number 
 F  dimensionless velocity 
 hf  convective heat transfer coefficient 
 kt  thermophoretic coefficient 
 L  characteristic length 
 N  velocity slip factor 
 N0  constant 
 Nux  local Nusselt number 
 Pr  Prandtl number 
 Rex  local Reynolds number 
 S  suction/injection parameter 
 Sc  Schmidt number 
 Shx  local Sherwood number 
 T  dimensionless temperature 
 T   fluid temperature 
 Tf  convective fluid temperature 
 Tr  reference temperature 
 Tw  sheet temperature 
 T∞  ambient temperature 
 U*  stretching velocity 
 U0  reference velocity 

  ,x yu u    velocity vector 

 qw  heat flux 
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 qm  mass flux 
 V  variable wall mass transfer velocity 
 V0  constant 
 VT  thermophoretic velocity 
 x  non-similar variable  
 y  similarity variable  
 α  thermal diffusivity 
 κ  thermal conductivity 
 λ  slip parameter  
 μ  dynamic viscosity of the fluid 
 ρ  density of the fluid 
 σ  electrical conductivity 
 τ  thermophoretic parameter 
 υ  kinematic viscosity of the fluid 
 ψ  stream function 
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