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A three-phase-lag (TPL) model is proposed to describe heat transfer in a finite domain skin tissue with 
temperature dependent metabolic heat generation. The Laplace transform method is applied to solve the problem. 
Three special types of heat flux are applied to the boundary of skin tissue for thermal therapeutic applications. 
The depth of tissue is influenced by the different oscillation heat flux. The comparison between the TPL and 
dual-phase-lag (DPL) models is analyzed and the effects of phase lag parameters ( q t,   and v ) and material 

constant  *k  on the tissue temperature distribution are presented graphically.  
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1. Introduction 
 
 The study of skin biothermomechanics is highly interdisciplinary involving bioheat transfer, 
biomechamics. The skin is characterized by its structure and properties. When thermal loading, such as 
contact heating, electromagnetic energy, acoustic energy, mechanical loading (force and deformation) is 
applied to skin tissue, then there are different skin states, including temperature, thermal 
damage/inflammation and stress/strain distribution.  
  Heat transfer is the primary mechanism affecting temperature. The transport of thermal energy in a 
living tissue is a complex process involving multiple phenomenological mechanisms. Skin bioheat transfer 
has been studied for many years in thermal therapies. The success of thermal therapies depends on the 
precise prediction and control of temperature, damage and stress distribution. A mathematical model can be 
used for optimizing thermal treatments by maximizing therapeutic effect while minimizing unwanted side 
effects.  
 Pennes’ equation [1] is used widely to model such problems due to its simplicity which is based on 
classical Fourier’s law and assumes that the speed of thermal energy transfer is infinite, in fact heat 
propagates with finite speed. Cattane and Vernotte [2-3] and DPL [4-5] model are increasingly applied to 
remove the paradox of infinite speed. 
 Roychoudhuri [6] established a generalized mathematical model that includes three-phase lags in the 
heat flux vector, the temperature gradient and in the thermal displacement gradient. The TPL model is very 
useful in the problems of nuclear boiling, phonon-electron interactions, phonon-scattering, etc., where the 
delay time q  captures the thermal wave behavior, the delay time t  captures the effect of phonon-electron 

interactions, the other delay time v  is effective, since, the thermal displacement gradient is considered as a 
constitutive variable. Several studies have been made on the TPL model in thermoelasticity. For instance, 
Sur et al. [7] studied the TPL elasto-thermodiffusive response in an elastic solid under hydrostatic pressure. 
Kumar et al. [8] studied plane wave propagation in fractional thermoelastic materials with TPL heat transfer.  
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 In recent years [9-16], several studies have been devoted to the application of the DPL bioheat model 
to bioheat process modeling. Ahmadikia et al. [17-18] solved the parabolic and hyperbolic bioheat transfer 
models for constant, periodic and pulse train heat flux boundary conditions. Afrin et al. [19] used a 
generalized DPL model to investigate thermal damage induced by laser irradiation based on the non-
equilibrium heat transfer.  
 Kengne et al. [20] applied a nonlinear one-dimensional temperature dependent blood-perfusion 
Pennes bioheat equation to predict temperature distribution in a finite biological tissue simultaneously 
subjected to oscillatory surface and spatial heating. Fazlali and Ahmadikia [21]  obtained an analytical 
solution of the thermal wave model for skin tissue under arbitrary periodic boundary conditions. Shahnazari 
et al. [22]  used Wrm-homotopy perturbation combination analysis to evaluate the heat transfer in tissue as a 
semi-infinite body and blood vessels as heat source have been considered.  
 Gupta et al. [23]  obtained the solution of the modified nonlinear BHTE  (bioheat transfer equation) 

by using finite the difference method. Askarizadeh and Ahmadikia [24]  introduced the exact solution of the 
DPL BHTE in treating the transient heat transfer problems in skin tissue considering prevalent heating 
conditions in thermal therapy. 
 Kengne et al. [25]  obtained an exact analytical solution of the BHTE with temperature-dependent 
blood perfusion, that describes the non uniform temperature distribution in biological tissue. Kumar et al. 
[26]  studied the DPL model of bioheat transfer by using the Gaussian distribution source term under most 
generalized boundary condition during hyperthermia treatment and derived an approximate analytical 
solution by the finite element Legendre wavelet Galerkin method. 
 Work of Majchrzak et al. [27]  is concerned with the numerical modeling of skin tissue heating to 
describe the analyzed process of the system of three generalized DPL equations corresponding to the 
successive layers of the skin. Jasinski et al. [28]  presented a numerical analysis of thermal processes 
proceeding in a soft tissue subjected to a laser irradiation. 
 Kumar and Rai [29] studied the DPL model for multilayer tissues under the most generalized 
boundary condition with a modified Gaussian distribution heat source. Agrawal and Pardasani [30] proposed 
a finite element model to study temperature distribution in skin and deep tissue of elliptical tapered shape 
human limb. 
 The purpose of the present work is to study a finite length skin tissue during transient heating with 
temperature dependent metabolic heat generation. The TPL model of heat conduction is utilized to model the 
bioheat transfer equation. Thermal wave (TW) and DPL models can be obtained as particular cases of the 

TPL model by taking , *
q = 0 k = 0  and *k = 0 , respectively. The problem is solved analytically and 

solution of DPL, TW, Pennes’ BHTE can be obtained by replacing an appropriate set of coefficients in the 

solution of TPL BHTE. The effects of relaxation times ( ,q t   and v ) and material constant  *k  are 

observed on the tissue temperature distribution, the blood perfusion rate and the depth of tissue is influenced 
by the oscillation heat flux. The results obtained from the TPL model for limiting cases are compared with 
the results of the DPL model [24] and these are in good agreement, but with dimensionless blood perfusion 
rates, the temperature profile at skin surface shows different behavior in both models.  
 
2. Formulation of the problem 
 
 A finite domain with a thickness of L cm of skin tissue is taken whose bottom boundary is assumed to be 
thermally insulated and the surface is subjected to constant and transient heat flux at time t > 0 . For BHTE 
corresponding to the TPL model, the metabolic heat generation is temperature dependent and blood perfusion rate 
is considered constant. In the case of Pennes, TW, and DPL models blood perfusion rate and metabolic heat 
generation are considered constant, without any external heat sources. 
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Initial conditions  
 

       , , , , ,
2

0 2

T T
T x 0 = T x 0 = 0 x 0 = 0.

t t

 
 

 (2.1) 

 

Boundary conditions  
 

       , , , i t
x 0 0 i 0kT 0 t = q q U t U t q e       , (2.2) 

 

   ,xT L t = 0. (2.3) 
 

Pennes model 
 
 Pennes’ [1]  bioheat transfer equation in living biological tissues is  
 

   b b b a m
T q

c = c T T q .
t x

 
     

 
 (2.4) 

 

 The conduction term in Eq.(2.4) is based on classical Fourier’s law  
 

  = .
T

q k
x





 (2.5) 

 

 Using Eq.(2.5) in Eq.(2.4), Pennes’ equation can be expressed as  
  

   
2

b b b m
a 2

c qT T
T T = .

t c cx

  
   

  
 (2.6) 

 
Thermal wave model 
 
 Thermal wave model of the BHTE has been proposed based on single-phase-lag and a linear 
extension of Fourier’s law  
 

  q
q T

q = k
t x

 
  

 
 (2.7) 

 

where relaxation time q  represents the time needed to establish the heat flux when a temperature gradient is 

suddenly imposed. 
 Using Eq.(2.7) in Eq.(2.4), the TW model BHTE is obtained as  
  

   
2 2

b b b b b b m
q q a2 2

c c qT T T
1 T T =

c t c ct x

      
             

. (2.8) 

 
Dual-phase-lag model 
 
 Tzou [4]  proposed a two phase lag model in order to capture the effect of micro-structural 
interactions along with the fast transient effects in the following form  
 

     q tq x,t = k T x,t      . (2.9) 
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 This relation leads to the following DPL model of the bioheat equation  
 

   
2 2

b b b b b b m
q q a t2 2

c c qT T T
1 T T = 1 .

c t c t ct x

                           
 (2.10) 

 

Three-phase-lag model 
 

 Green and Naghdi [31-32], developed a model which includes the temperature gradient and thermal 
displacement gradient and proposed a heat conduction law as  
 

  *= [ ]q k T k v    , (2.11) 
 

where v  ( =v T ) is the thermal displacement gradient. 
 Introducing the phase-lags to the heat flux vector ( q ), the temperature gradient ( T ) and the 

thermal displacement gradient  v , the following generalized constitutive equation is proposed to describe 

the lagging behavior for heat conduction Roy Choudhuri [6]   
 

       *
q t vq x,t = k T x,t k v x,t            . (2.12) 

 

 Taylor’s series expansion of Eq.(2.12) leads to the following generalized heat conduction law 
 

     *
q t v

q
q = k T T k v v

t t t

                           
, (2.13) 

 

   * *
q v ti.e. 1 q = T k T k v

t t

                    
 (2.14) 

 

where * *
v v= k k   . 

 Time derivative of Eq.(2.14) leads to  
 

  
2

* *
q v t 2

1 q = k k T .
t t t

                   
  (2.15) 

 

 Using Eq.(2.15) in Eq.(2.4), the following BHTE is obtained corresponding to the TPL model  
 

   
2 2

* *
q b b b a m v t 2 2

T
1 cT c T T q = k k .

t t t t x

                              
   (2.16) 

 

3. Solution of the problem 
 

3.1. Constant heat flux 
 

 Introducing the dimensionless variable  
 

     
, , ,a0 0 0

L
0

T x,t T
= x x = L , = k

q

  
   

  
     ,0= t   

   (3.1) 

  , , ,q 0 q t 0 t v 0 v i 0 i= = = =              ,     ,0 m
m

0 0 0 0

Q q
p = =

T k q

 


 
,  
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where b b b
0

c
=

c

 



.  

 For all practical purposes Mitchel et al. [33] , the dependence of metabolic heat generation can be 
approximated as a linear function of local tissue temperature as follows  
  

    m 0 0q = Q 1 T T 10  , 

where  

   0 m0 wQ = Q 1 0.1 T 37    . 

 
 A dimensionless form of the BHTE corresponding to the TPL, DPL, TW, and Pennes’ model is  
 

  ˆ
3 2 2 2

3 2 2 2
A B C D = E F G

         
              

, (3.2) 

 
with initial conditions  
 
       , , , , ,0 = 0 0 = 0 0 = 0       , (3.3) 

 
and boundary conditions  
 
     0, , ,L= 1 x = 0      , (3.4) 

 
where ̂  is zero in the case of the TPL model and   for other models. 
 By taking the Laplace transform of Eq.(3.2) and applying the initial conditions (3.3), the following 
ordinary differential equation is obtained  
 

  
2

2

d
= 0

d


 


, (3.5) 

where  

  
  

2

s 1 As s C
= .

Es Fs G

 


 
 

 
 The exact solution of Eq.(3.5), by using the Laplace transform of boundary conditions (3.4), is  
 

   
 

 
cosh

,
sinh

L

L

x
s = .

s x

     
 

 (3.6) 

 
 The inverse Laplace transforms of  ,s   can be obtained from the following Browmich contour 

integration [34]  Eq.(3.7)  
 

     , ,lim
il s

ill

1
= e s ds.

2 i

 


    
   (3.7) 

 
 Using the inversion theorem, the inverse Laplace transform of Eq.(3.6) is 
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   
 

 
cosh

sinh

i L s

i
L

x1
, = e ds

2 i s x

  
 

        
    

 . (3.8) 

 
 By using Bromwich contour integration [34] , temperature distribution (TPL model) in skin tissue is  
 

  

 
 

 
 

 

   
    

cos

cos

2 22
C A

2
L L L LL

2n
L nm nm3

sL nm
2

m=1n=1 L n nm nm n nm n

EC CF G E AF A GG 1
, = e e

x C 2x 2 2x x AC 1C x 1 AC

2 x Es Fs G
x

e .
x s 3As 2AC 2Eb 2 s C Fb


 




      
           

 
    

 
       



 (3.9) 

 
 Temperature distribution for the Pennes, TW and DPL model is  
 

  

       
 

   
 

cosh

sinh

cos

cos

BB
L

L L

s2 nm
L n L nm

L n nm nm nm=1n=1

x 1 E e E B ee Be
, = 1

x B 1 x B 1

2 x x 1 Es e

x s 2Bs B 1 Eb

 



 
     

         
 

         
     



, (3.10) 

where  

  , ,
2

n
n n

L

b = = n n = 1,2,
x

 
  

 
 . 

 
 The roots of Eq.(3.11)  
 

  3 2
nm nm nmas bs cs d = 0   , (3.11) 

  
are calculated by using MATLAB 8.1 software. 
 
Table 1. Coefficients of (a) Eq.(3.2), (b) Eq.(3.18), (c) Eq.(3.11), (d) Eq.(3.24). 
 
Bioheat  models    Coefficients    
(a) A B C D E F G 
TPL q  1+ m ql   

ml  0 t  *
v

0

k
1

k



 

*

0

k

k
 

DPL 0 q  1+ q  1 0 t  1 

TW 0 q  1+ q  1 0 0 1 

Pennes 0 0 1 1 0 0 1 
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Bioheat  models    Coefficients    
(b) A’ B’ C ’ D ’ E ’ F’ G ’ 
TPL 1  m 11 m   mm  0 2  *

3k
1

k





 

*k

k
 

DPL 0 1  0 11    0  0 2  1 

TW 0 1  0 11    0  0 0 1 

Pennes 0 0 1 0  0 0 1 

 
Bioheat  models  Coefficients   

(c) a b c d 

TPL A n1 AC b E   nC b F  nb G  

DPL/TW/Pennes 0 B n1 B Eb   n1 b  

 
Bioheat  models  Coefficients   

(d) a’ b’ c’ d’ 
TPL A’ n1 A C b E     nC b F   nb G  

DPL/TW/Pennes 0 B’ n1 B E b    nD b   
 

where .m 0 ml 1 0 1T p   and .m 0 0 mm 0 1T p   .  
 
3.2. Pulse train heat flux 
 
 A dimensionless form of boundary conditions (2.2) and (2.3) is  
  

       , , ,i L
0 0

1
0 =U U x = 0.

     
             

 (3.12) 

 

 In the Laplace domain, the transformed forms of boundary conditions are  
 

  
   , ,

,
si

Ld 0 s d x s1 e
= = 0.

d s d

 


 
 (3.13) 

 

 In this case, an analytical solution is obtained by applying the pulse train boundary condition to the 
previous solution. Temperature distribution for this case is  
 

   
 

 
cosh

,
sinh

si L

L

x1 e
s = .

s x

       
 

 (3.14) 

 

 The following property of the inverse Laplace transform is employed to find the inverse Laplace 
transform of Eq.(3.14)  
 

     
for

,
, , for

s ii

i i

0, <
e s =

.
  

      
 

 

 Therefore, the inverse Laplace transform of Eq.(3.14) is obtained for i<   
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 
 

 
 

 

   
    

cos

,
cos

2 22
C A

2
L L L LL

2n
L nm nm3

sL nm
2

m=1n=1 L n nm nm n nm n

EC CF G E AF A GG 1
, = e e

x C 2x 2 2x x AC 1C x 1 AC

2 x Es Fs G
x

e
x s 3As 2AC 2Eb 2 s C Fb


 




      
           

 
    

 
       



 (3.15) 

 

and for i  ,  
 

 

 
     

   
      

,

cos

cos

i2 2
C Ci i A A

2
L LL

2n
L nm nm3

s sL nm i nm
2

m=1n=1 L n nm nm n nm n

G EC CF G E AF A G
= 1 e e 1 e e

x C x AC 1C x 1 AC

2 x Es Fs G
x

1 e e
x s 3As 2AC 2Eb 2 s C Fb

 
  


  

             
   

 
    

  
       



(3.16) 

where  

 , ,
2

n
n n

L

b = = n n = 1,2, .
x

 
  

 
  

 

3.3. Periodic heat flux 
 

 Dimensionless quantities are as follows 
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
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    
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 The dimensionless forms of the bioheat transfer equation corresponding to the TPL, DPL, TW and 
Pennes’ models and boundary conditions respectively are 
 

 ˆ
3 2 2 2

3 2 2 2
A B C D = E F G

                             
, (3.18) 

 

    , , ,i0 = e = 0
       , (3.19) 

 

where ̂  is 0 for the TPL model and   for other models. 
 Applying the Laplace transform to Eq.(3.18), the following ordinary differential equation is obtained 
 

 
2

2

d
= 0

d

   


, (3.20) 

 

where  
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 The solution of Eq.(3.20), by using the Laplace transform of Eq.(3.19), is  
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 
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sinh
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x
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s i x
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   

 (3.21) 

 

 By the same analysis that is presented for Eq.(3.6), the temperature distribution for periodic heat flux 
in skin tissue is 
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 For DPL, TW, Pennes’ model 
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 (3.23) 

 

where  

nms  are roots of Eq.(3.24)  
 

 3 2
nm nm nma s b s c s d = 0.       (3.24) 

 

4. Results and discussion 
 

 The values of applicable parameters are similar to the parameters as in the literature [35 36] . The 

thermophysical properties of the skin tissue are: ,1 1k = 0.628W .m .K   ,1 1c = 4187J .kg. K.   b  1000 kb.m-3, 

,1 1
bc = 4187 J .kg .K   ,aT = 37 C  ,3 1

b = 1.87 10 s    ,3 3
mq = 1.19 10 W .m  0T = 37 C , wT = 37 C , 

3 3
m0Q = 1.901 10 Wm  and thickness of tissue slab is L = 0.05 m . The intensity of pulse train incident heat flux 

3 2
0q = 19 10 W / m , and for periodic heat flux 3 2

0q = 5 10 W .m  [9] . Different values of thermal relaxation 
times are taken in order to capture micro-structural interaction effects on the thermal behavior of skin tissue.  
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 In this work, the temperature distributions in skin tissue based on the Pennes’, TW, DPL, and TPL 

models are compared. TPL1  , ,q t v= 16s = 8s = 4s   , TPL2  , ,q t v= 16s = 16s = 4s   , TPL3

 q t v= 16s, = 32s, = 4s    and flux precedence  FP q t= 16s, = 32s  , gradient precedence (GP 

q t= 16s, = 8s  ) heat flow regimes are considered for the TPL and DPL models, respectively. TPL1, TPL2 

and TPL3 are notations used for heat flow regimes in the TPL model. A validation procedure as in [24] is 
performed and a comparison is made between the results obtained TPL and DPL models. 
 Figure 1a shows that variation of the tissue temperature for three different types of heat regimes in the 

case of the TPL model for * . . .1 1 1k 0 01W m K s   . The tissue temperature is higher for TPL3 type heat flow 
regime than other regimes. Figures 1b and 1c indicate the similarity of the tissue temperature for the case of pulse 
train and periodic heat flux, respectively. These figures clearly show that when proper restrictions are applied to 
the solution of the TPL model, the results show good agreement with the solution of Pennes’, TW, and DPL 

models. The tissue temperature is influenced by the value of the material constant *k  as noticed in Fig.1c.  
 

  
(a)                                                                              (b) 

 
(c) 

 

Fig. 1a. Tissue temperature responses subjected to pulse train heat flux predicted by the TPL1, TPL2 and TPL3 
type heat flow regimes, Fig.1b. Tissue temperature responses subjected to a pulse train heat flux predicted by 
TPL, DPL, TW, and Pennes’ models for limiting cases, Fig.1c. Tissue temperature responses subjected to a 
periodic heat flux predicted by TPL, DPL, TW, and Pennes’ models for limiting cases. 
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 Figures 2a and 2b show the tissue temperature predicted at the skin surface and basal layer 

 6x = 80 10 m  Ahmadikia et al. [17] for TPL and DPL models when the skin tissue is exposed to a pulse 

train heat flux with exposed time i = 3 s  with  * 1 1k = 0.01W .m .K .s  . These figures clearly show that the 

TPL model predicts a higher temperature in TPL3 type of heat flow regime than that of TPL1 amd TPL2 
regimes and temperature becomes constant at t = 12 s  and t = 13 s  for TPL and DPL models, respectively. 

It is evident that physical understanding of the tissue thermal behavior strongly depends on the values of the 
thermal displacement gradient, temperature gradient, and heat flux relaxation times ( v , t , and q ).  

 

 
(a)  

 

 
(b) 

    
Fig.  2a. Tissue temperature predicted by TPL model for TPL1, TPL2, and TPL3 heat flow regimes at the 

skin surface and basal layer exposed to a pulse train heat flux , Fig.2b. Tissue temperature predicted by 
DPL model for GP and FP heat flow regimes at the skin surface and basal layer exposed to a pulse train 
heat flux. 
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 Figures 3a and 3b show the temperature responses of the skin tissue subjected to a periodic surface 

heat flux predicted by the TPL model at three different depths beneath the skin surface when 1= 0.05 s  

and * 1 1 1k = 0.065W .m .K .s   . It is noticed from these figures that the oscillatory amplitude of the tissue 
becomes low for a large depth from the heating skin in all three regimes, but higher than the temperature 
predicted by the DPL model in both regimes. It means that the influence of relaxation times on the tissue 
temperature amplitude is more important at the locations which are near the skin surface. 
 

    
(a) 

 
(b) 
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(c) 

    
Fig.  3a, Fig.3b Tissue temperature responses in different distances beneath the skin surface exposed to a 

periodic heat flux predicted by the TPL model. Figure 3c. Tissue temperature responses in different 
distances beneath the skin surface exposed to a periodic heat flux predicted by the DPL model. 

 
 Figures 4a, 4b, and 4c depict the dimensionless tissue temperature along the dimensionless distance 

changed with different dimensionless times predicted by the TPL model when 1= 0.05 s  and 
* 1 1 1k = 0.01W .m .K .s   . The tissue temperature decreases from = 0  to = 1.5  in all heat regimes TPL1, 

TPL2 and TPL3. In TPL3 type heat regime the dimensionless tissue temperature becomes constant for  and seems 
to be independent of the oscillatory heat flux on the heating skin, but for < 6  the effect of periodic heat flux on 

the tissue temperature is profound. Figure 4d predicts that the tissue temperature is affected by the value of t  

near = 0  in the case of the DPL model and other results are similar to the results predicted by the TPL model. 

 

 
(a) 
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(b) 

 
(c) 

 
(d)  

 

Fig.4. Tissue temperature profile along the tissue depth at different phase angles: Fig.4a for TPL1 heat flow 
regime,4b. for TPL2 heat flow regime, 4c. for TPL3 heat flow regime and Fig.4d. for the DPL model 
in GP( solid line) and FP (dotted line) heat flow regimes. 
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 Figures 5a and 5b indicate the temperature profile along the tissue depth predicted by the TPL and 
DPL models at different frequencies of periodic heat flux when = 2  . It is clear from the figure that the 
oscillatory effects decrease along the tissue depth. The temperature predicted by the TPL model is higher 
than the DPL model in all three types of heal glow regimes. 
 

 
(a) 

 
(b) 

    
Fig.5.  Temperature profile along the tissue depth at different frequencies of periodic heat flux in the skin 

surface when = 2   predicted by: Fig.5a. for TPL model and Fig.5b. for DPL model. 

 
 Figures 6a, 6b and Figs 7a, 7b and 7c show the dimensionless temperature profile on the skin surface 
predicted by the DPL and TPL models respectively, with different dimensionless blood perfusion values 

when 1= 0.05 s . The lines with .0 0 01   and 0.1  coincide with each other for the DPL model but are 
different in the case of the TPL model. There is no similarity between the temperature responses at the skin 
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surface predicted by the TPL and DPL models with these blood perfusion values but independently it 
influences the temperature responses. 
 

 
(a) 

 
(b)  

 

Fig.6a. Predicts tissue temperature responses on the skin surface for different values of 0  in GP heat flow 
regime by DPL model. Fig. 6b predicts tissue temperature responses on the skin surface for different 
values of 0  in FP heat flow regime by DPL model. 
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(a) 

 
(b) 

 
(c) 

   
Fig.7.  Tissue temperature responses on skin surface for different value of 0  predicted by: Fig.7a. for 

TPL1, Fig.7b for TPL2 and Fig.7c for TPL3 heat flow regimes. 
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5. Conclusions 
 
 Heat transfer process and temperature distribution in skin tissue is important in thermal therapeutic 
applications. This work employed the three-phase-lag (TPL), dual-phase-lag (DPL), thermal wave (TW), and 
Pennes’ models of the bioheat transfer equation in a finite length skin tissue. An exact analytical solution is 
obtained with given initial and boundary conditions. A good agreement exists between the results, obtained 
from the TPL and DPL models for limiting cases. Tissue thermal behavior is significantly affected by phase-
lag parameters and material constant. TPL3 type heat flow regime predicts a higher temperature than other 
regimes for both pulse train and periodic heat flux. The depth of skin is influenced by the different oscillation 
heat flux and oscillatory effect decreases along the tissue depth. The temperature profile shows different 
behavior for the dimensionless blood perfusion rate in the TPL and DPL models at the skin surface. This 
work can be extended to study the neuro-physiological behavior of the skin tissue under different 
thermomechanical loading.  
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Nomenclature 
 
 c  tissue specific heat  1 1J .kg .K   

 bc   blood specific heat  1 1J .kg .K    

 k  thermal conductivity of tissue  1 1W .m .K   

 *k   material constant  1 1 1W .m .K .s    

 L  tissue slab length (m) 
 l  Bromwich contour integration line 
 mp   dimensionless metabolic heat generation for TPL model Eq.(3.2)  

  Q  heat flux density  2W .m  

 m0Q   basal metabolic heat generation rate  3W .m  

 0q   incident heat flux amplitude  2W .m  

 mq   heat source due to metabolic heat generation in the tissue  3W .m  

 s  Laplace domain parameter 

 T  tissue temperature  C  

 0T   initial tissue temperature  C  

 aT   arterial blood temperature  C  

 wT   vessel wall temperature  C  

 t  time (s) 
 U  unit step function 
 x  coordinate variable  m  

 Lx   dimensionless tissue slab length 

     tissue thermal diffusivity  2 1m s  
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 i   dimensionless incident heat flux exposure time 

    dimensionless tissue temperature 
 0   dimensionless blood perfusion rate 

    dimensionless coordinate 

    tissue density  3kg m  

 b   blood mass density  3kg m  

 i   duration of pulse train heat flux (s) 

 q   heat flux relaxation time (s) 

 t   temperature gradient relaxation time (s) 

 v   thermal displacement relaxation time (s) 

 1   dimensionless heat flux relaxation time  

 2   dimensionless temperature gradient relaxation time  

 3   dimensionless thermal displacement relaxation time  

    dimensionless metabolic heat generation Eq.(3.18) 

    dimensionless metabolic heat generation Eq.(3.2) 

    incident heat flux frequency  1s  

 b   blood perfusion rate (s-1) 
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