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A two-dimensional Cauchy Poisson problem for water with a porous bottom generated by an axisymmetric
initial surface disturbance is investigated here. The problem is formulated as an initial value problem for the
velocity potential describing the motion in the fluid. The Laplace and Hankel transform techniques have been
used in the mathematical analysis to obtain the form of the free surface in terms of a multiple infinite integral.
This integral is then evaluated asymptotically by the method of stationary phase. The asymptotic form of the free
surface is depicted graphically in a number of figures for different values of the porosity parameter and for
different types of initial disturbances.
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1. Introduction

The problem of generation of surface waves due to an explosion above or within the water can be
formulated as an initial value problem assuming linear theory of water waves. The explosion may occur
above or below the ocean surface. When the explosion occurs within the water the initial condition is taken
as an initial displacement (elevation or depression) distributed over a certain region of the free surface.
However when the explosion occurs above water, the initial condition can be considered as an initial
impulsive pressure distributed over a certain region of the free surface. Due to these types of initial
disturbances, problems of wave generation in deep water were studied by Lamb [1] and Stoker [2]. For
axisymmetric initial disturbance concentrated at a point on the free surface, the problem of generation of
surface waves in deep water was studied by Stoker [2]. The form of the free surface elevation was obtained
in terms of a multiple infinite integral using the Hankel transform and the asymptotic form of the free surface
was found by using the stationary phase method twice.

For the three dimensional unsteady motion, the axially symmetric disturbance was considered by
Kranzer and Keller [4] in finite depth water and they compared the theoretical result with experimental
results. They also considered different types of impulse distribution to analyze the nature of the free surface
elevation and the associated phenomenon of surface waves. Mandal and Mukherjee [5] considered wave
generation at an inertial surface due to an axisymmetric initial surface disturbance. Maiti and Mandal [6]
considered water waves generated due to initial axisymmetric disturbances in deep water covered by a thin
layer of ice in the upper surface.

* To whom correspondence should be addressed
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In all these problems, the ocean bottom is either considered rigid or of infinite depth. However, in reality
the ocean bottom is actually porous. In the present problem, we consider the generation of surface waves due to
different types of initial axisymmetric disturbances at the free surface in finite depth water with a porous bottom.
Here a special type of porous bottom is considered as in Martha et al. [7] and Maiti, and Mandal [8] where the

porosity parameter is described by a real quantity G whose dimension is taken as (length) ™.

Three types of initial disturbances have been considered in this paper. In the first case, an initial
axially symmetric displacement concentrated at a point on the free surface has been considered and in the
second case it is an impulse concentrated at the origin while in the third case, a parabolic impulse distribution
at the free surface has been considered as in Kranzer and Keller [4]. The problem is formulated as an initial
value problem assuming linear theory. Laplace and Hankel transform techniques are used to solve the
problem. Finally the depression of the free surface at any time ¢ is obtained as a multiple infinite integral. For
the first two disturbances the integral is evaluated asymptotically for large time and distance using the
stationary phase method twice. However, for the case of parabolic impulse distribution, the multiple integral
is evaluated by the method of steepest-descent as in Jeffreys and Lapwood [3]. The asymptotic form of the
free surface is depicted graphically against a non-dimensional distance for fixed time and against non-
dimensional time for a fixed distance and for different values of non-dimensionalised porosity parameter.

2. Mathematical formulation

A cylindrical co-ordinate system (7,0,y) is chosen in which the y-axis is taken vertically downwards
in the fluid region and y=# corresponds to the bottom composed of some specific kind of porous materials.

The porous bottom is characterized by a real quantity G which has the dimension of inverse of length. The
fluid is assumed to be inviscid and the motion in the fluid starts from rest so that it is irrotational and the
motion is described by a velocity potential ¢(r,y,?) satisfying the Laplace equation

2
ii(ra—(p}a—q’:(), y=0, 120,
ror\_ or f}yz

the boundary conditions

2
a—;p— a—(P:00ny:0,
ot oy
99

——-Gop=0ony=h
oy
where G is the porosity parameter of the fluid bottom. The initial conditions are

(p(ra()»())zoa @, (F,O,O)ZgG(I"),

when the initial axially symmetric depression G(r) of the free surface at a distance r from the origin is
prescribed and g is the acceleration due to gravity, or

(p(r,0,0)z—m, ¢, (r,0,0)=0,
p

when an initial axially symmetric impulse F'(r) is applied per unit area of the free surface at a distance
from the origin, and p is the density of water.
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The expression for free surface depression is given by

1
n(r,z) = E(p, (r,O,t) .

Introducing a characteristic length /, characteristic time |— , and characteristic mass m , we define

the dimensionless quantities

r y /

F:_, y:_a t_:t BT ﬁ:_

Removing the bars the dimensionless quantities satisfy

2
12(,8), 0% a0
ror\ or 5y2

2

8;[)_ 8_([):0 on y=0,
ot Oy

d9

—-Go= on y=h.
oy

Initial conditions at the free surface are

0(r,0,0)=0,

(p[(r,(),()):gG(r),
or
F(r)

o(r,0,0)=-
(r0.0)=-"

and ¢, (r,0,0)=0,

2.1)

(2.2)

2.3)

2.4)

2.5)

2.6)

according as the initial disturbance is axially symmetric depression of the free surface or an axially
symmetric impulse at the free surface and the corresponding non dimensional depression of the free surface

is to be obtained from the relation

1
n(r,z)zgcp,(r,O,t).

3. Method of solution

2.8)

The Laplace and Hankel transform techniques are used to solve the above initial value problem. Let

(p(r, ¥, p) be the Laplace transform of (p(r, y,t) at time ¢, defined as
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0

o(r.y.p)= J(P(r,y,t)e*p’ dt.
0

Taking the Laplace transform of the Eqs (2.1), (2.2), (2.3) and using the initial conditions (2.4), and

(2.5) we have

— 2—
12(,5),8 s,
ror\ or 8y2

pzé—éyzG(r) on y=0,
¢,-Gp=0 on y=h.

Let W(k,y, p) be the Hankel Transform of §(r,y, p) defined by

oo}

‘P(k,y,p)zjr@(r,y,p)]o (kr)dr, k>0.
0

Then W(k,y, p) satisfies

2
d—\f—kz\}fzo, k>0,
dy

p’¥-¥,=G(k) on y=0,
Y, -G¥=0 on y=h

where é(k) denotes the Hankel transform of G(r).
The solution of Eq.(3.4) satisfying Eqgs (3.5) and (3.6) can be written as

Y (k,y,p) =%[kcoshk(y—h)+Gsinhk(y—h)]

where
(k)= p* (kcosh ki — Gsinh kh) + k(k sinh kh — G cosh kh).
Taking the inverse Hankel transform
_ ‘tkcoshk(y—h)+Gsinhk(y—h) -
VD)= G(k)kJ, (kr)dk
o(r.yp) -!(p2+92)(kcoshkh—Gsinhkh) (k)&ly ()
where

_ k(ktanhkh - G)
(k—Gtanhkh)

7 (k)

Now Q° (k) behaves differently for Gh< [ and Gh> 1.

(3.1)

(3.2)

(3.3)

34

(3.5)

(3.6)

3.7)

(3.8)

(3.9)
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Case A(Gh<I):

The graph of Q° (k) is shown in Fig.1 for Gh<I. It is observed that there is a zero of Q° (k) at
k=2, and Qz(k)>0 for A; <k <oo and Qz(k)<0 for 0 <k <M.
2
- k) for O<k<A
Let ()= 7 ) :
uzz(k) for A, <k<o
1.0 |
0B -
oal
04l

02+

0z 0.4 ca c.e 1.0
=02

Fig.1. Graph of o’ (k) for Gh< 1.

Then
"0 kcoshk(y—h)+Gsinhk(y—h)

o(r.0.p)= [

0 (p2 —,ulz)(kcoshkh — Gsinh kh)

G (k) kT (kr)dk +

(3.10)
t kcoshk(y—h)+Gsinhk(y—h) »
e (y=h)+ Gsinhk(y=h) &y ()
7, (P + 1" )(kcoshkh— Gsinh kh)
Taking the Laplace inversion we obtain
A
r y, J- smh(u]t)(kcoshk(y h)+Gsmhk(y h)é(k)Mo (kr)dk+
. p; (kcoshkh — Gsinh kh)
1)(kcoshk(y—h)+Gsinhk h
+J~ T sin(y, )( coshk(y—h)+Gsinhk(y- ))G(k)kJo (k).
y u, (kcoshkh— Gsmhkh)
Free surface depression in the case of initial axially symmetric depression is given by
)\41 o0
n; (r2) = [ cosh(u,0)G (k) () dic + [ cos(u,1)G (k) K/ (hr )l (3.11)

In the case of axially symmetric impulse at the free surface the expression for depression of the free
surface at time t is obtained by a similar procedure as

M () ———ju,smh(p,z)F( )iy (kr) dk+pjpzsm(u2z)F( Vi (Kr)dk . (3.12)
A
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Case B (Gh>1):

For Gh> 1 the numerator and denominator of Q’ (k) are as shown in Fig.2 and o’ (k) in Fig.3.

Let k=A; be the positive zero of numerator k(k tanh(kh)—G) and k=MA,be the positive zero of
denominator (k—Gtanh(kh)).

Then Q° (k) can be written as

v/ (k) for  0<k<k,-¢
Q° (k)=1-v,’ (k) for A, +e<k<h;.
viP(k) for  Aj<k<oo

o5
| o
0.2 / 04 0.0 ) 10
DEL
Fig.2. k(ktanhkh — G) and (k — Gtanh(kh)) for Gh> 1. Fig.3. o’ (k) for Gh>1.

where ¢ is an arbitrary small positive real number. Then 6(1”, Y, p) can be written as

Kz—S .
_ . kcoshk(y—h)+Gsinhk(y—-nh
(p(r,y,p)=hm j (J’ ) (y )

G (k) kT, (kr)dk +
e0) (p2+v12)(kcoshkh—Gsinhkh) )Ty ()

N ”f kcoshk(y—h)+Gsinhk(y —h)

G (k) (fr) e + 3.13
(p2_VZZ)(kcoshkh—Gsinhkh) (k)kJy (kr) G13)

X2+s

G (k)kJy (kr)dk

+T kcoshk(y—h)+Gsinhk(y—h)

i (0 +v37)(kcosh kh — Gsinh kh)

Taking the Laplace inversion, we obtain
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*27%sin(v 1) (keoshk(y—h)+ Gsinhk(y —h))

Nei G(k)kJ, (kr)dk
(P(”Ja) ;g}) I v](kcoshkh—Gsinhkh) () 0( ”) ’
A3 . h ¢ hk —h Gsinh k —h ~
. J sinh(v, )(COS (y—h)+Gsinhk(y ))G(k)k](,(kr)dk+ (3.14)

v, (kcoshkh— Gsinh kh)

7\.2+8

0

sin(v3t)(coshk(y —h)+Gsinhk(y— h))
+
I v3 (kcoshkh — Gsinh kh)

G (k) kI, (kr)dk

Free surface depression in the case of initial axially symmetric depression and for GA> I is given by

7\2*8 }\,3
N (r.f)=lim [ cos(v,)G (k)i ()i + [ cosh(v,0)G (k) el (kr)dk +
e—>
0

7\,2+8

(3.15)
+ [cos(vs0)G (k) ks () |
A3

Similarly, in the case of axially symmetric impulse at the free surface and GA> I, the expression for
depression of free surface at time ¢ is obtained as

7»2—8 }»3
ne(rt)=lim| 2 jv,sin(v,t)ﬁ(/c)ldo(iaw)dk—i [ V2 sinh(v,0F ()l (kr)dic+
0

7\,2+8

(3.16)

oL [vssin(vs0) F (k) ks, (k) dk |
Py

Case C (Gh=1):
For Gh=1 the graph of Q° (k) is shown in Fig.4 and in this case, Q’ (k) can be written as

1/ (k) f k<
0 (k) X; (k) for e<k<hy,
%o (k) for Ay <k <o

where € is an arbitrary small positive real number. Then by a similar procedure the form of the free surface in
the case of axially symmetric depression is obtained as

_7»4 0
ns(r.f)=lim [ cosh(z;00G (k) el (o) e+ [ cos (320G (k)i (k) ke |, (3.17)
e—> _a r

and in the case of axially symmetric impulse the form of free surface is obtained as

Ay )
ng (r.) = lim —é | xlsinh(xlt)l:“(k)lclo(kr)dk+é [asinGunF (kK (kr)dk | (3.18)

e—>0
Ly
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Fig.4. Graph of Q° (k) for Gh=1.

4. Asymptotic expansion

We are interested in the waves after a long lapse of time and at a large distance from the origin. For
this we use the method of stationary phase to evaluate the integral Eqs (3.11), (3.12) of Case A, Eqgs (3.15),

(3.16) of Case B and Eqs (3.17), (3.18) of Case C for large  and ¢ such that ? is finite.

Case A(Gh<1):

In particular, when the displacement is concentrated at the origin, then the initial axially symmetric
. : . - 1
depression G(r) of the free surface is taken as delta function. Therefore, we can take G(k)ZZ_ and
T

Eq.(3.11) becomes

7\.1 o0
nl(r,t)=2—1n j cosh(t)kJ, (kr)dk + j cos(u 1)k, (kr)dk | . 4.1)
0 )

Using the result

T
52

Jy (k) = ;jcos(kr c0s0)do ,
0

and applying the method of stationary phase on 0 -integral we have

Ao N2
n,(r.0)= ﬁ .[ (;J cosh(ult)cos(kr —%)dk +
0
] e}

12
+W I [éj cos(uzt)cos[kr —gjdk: I, +1,.
A

The integral /; does not contribute to 1, (r,¢) and I, can be written as



Generation of surface waves due to initial axisymmetric ... 633

r r
0

= 2(2;:)3—/ 7 Re kf{ﬁj’” e””eir(k_%jdk + kf (Ejm e_weir[k_%)dk .
0

For the first integral, we write

T
k)=k-—
fi(k)=k-—
and
1/2
a5 e
r

and r is large. Now

1

Ji(k)=1,

which has no zero in the range of integration.
Similarly, for the second integral we write

Lk =k-2, g (k):(ﬁjw i

4r’ r
and r is large. Thus /; does not contribute to 1, (r,t) as

£y (k)=—1,

which has no zero in the range of integration. For I, we have

0 1/2
1 k T T
rt)=———||— cos| Wyt +kr—— |+cos| ut —kr+—||dk =
(1) (2n)3/2J(Vj { (“2 4] (“2 4]}

A
(4.2)
w o \12] .2 R (RN 3
=ﬁRe (E) et(uﬁk’ 4’)+et(uz k’+4’) dk |.
T 2\

In Eq.(4.2) the first integral does not have any stationary point in the range of the integration. So this

1/2
integral does not contribute to 1, (r,t) . For the second integral let f; (k) =u,(k) - k; + % > &3 (k) = (EJ
-
and ¢ is large. Now
2 2 2 -1

, ; (Gh(]—tanh kh)—l)uz(k) (k h(]—tanh kh) + 2k tanh kh — G, (k) |
k)=— + -——.

/3 (K) 2 (k— Gtanhkh) (k — Gtanh kh) t

We see that f; (k) is monotonically decreasing in (A;,0) and has only one zero in the range of

. . r .
integration for —> 0. Let a be the unique real root of
t
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f5 (k)=0,
in the range of integration and f 3" (a) is negative. Then
2

N 21
) (2n): (|5 (@)

g3 (a)cos(tf3 (a)—gj. (4.3)

Similarly, in the case of Eq.(3.12) if initial impulse is assumed to be concentrated at the origin, then

F(k) :i and M, (r,7) can be written as

Y 0

1 . .

n, (r,t)zz—np —Iul sinh(p,;2)kJ (kr)dk+ _[Hz sin(u,)kJ,) (kr)dk =I;+1,. 4.4
0 Y

In Eq.(4.4) I; does not contribute to 1, (r,t) and by similar reasoning for large » and ¢, the

asymptotic form of n, (7,¢) is obtained as

2

1 2n i

ny(r.1)= : g4(B)sin(tf4(B)——j (4.5)
p(2m)s L4 (8) !

where
rom K\
y=w,(k)—k—+—, k)=w,(k)|—|
Fb) == kE 2 ()= £
and B is the unique real root of
fi(k)=0,

in the range of integration and negative sign is taken since the sign of f, 4" (B) is negative.

Case B(Gh>1):

For Gh> 1 if the displacement is concentrated at the origin and taking é(k):zi Eq.(3.15) becomes
T

7»2—8 7u3
ey i
g (r.t)=lim | — ! cos(v,t)/d,)(kr)dk+%x j+ Scosh(VZt)kJO(kr)dknL
2

(4.6)

1 o8]
= i[ cos(v ;) (kr)dk |.
3

In Eq.(4.6) by similar calculation the second integral does not contribute to m; (r,t) and the

asymptotic form of n; (r,t) is given by
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I
1/2 2
1 o 2n T
n;(r.t)= E [—j - cos(t‘l’z(al)——}r
SUr ) (o) 4

_H{m} 02

(271)3

4.7

rom
h Y,(k)=v,(k)—k—+—

where 2(k)=v, (k) Tt

and o, is the only zero of ¥, (k) in (0,1, —¢) and

T

.
Y.(k)= kK)—k—
5(k)=v;(k) t+4t

and o, is the only zero of ‘P;(k) in (kz,oo). Similarly, in the case of Eq.(3.16) if initial impulse is

- . oA 1 .
concentrated at the origin then taking F (k) =2— » Ny ( r,t) can be written as
s

7\,2 € )“3
n4(r,t)1imli jv,sin(v,t)kjo(kr)dk—zi [ V2 sinh(v,0ks, () i +
P

0| 2mp 0 Ao+e
(4.8)
15 .
+2—m}£v3s1n(v3t)k]0(kr)dk .
The asymptotic form of 1, (r,7) is given by
1
12 2
114(’”at)z;3\’1([31)(&j L Sin(t‘P4(B])—gj+
p(2m): )L (8
4.9)
1/2 2
+;3v3(ﬁz)([3—2} L cos(t‘l@(ﬁ”—%j
o(2n)2 ) ()
where
\1’4(k)=v,(k)—k£+%

and P, is the only zero of ¥, (k) in (0,%, —¢) and

T

r
Y. (k)= kK)—k—
5() v;(k) t+4t

and B, is the only zero of ¥ (k) in (A;,%).
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Case C(Gh=1):

Similarly, in the case of Gh=I the asymptotic form of mn; (r,t), taking initial depression
concentrated at the origin, we have

] m |

(Zn 5 f‘f5 0‘5)‘

ns(r.t)= g5(a5)cos(tf5(oc5)—gj (4.10)

where

I NG
f5(k)=X2(k)—k?+Z, g5(k)=[—j ,

and o is the unique positive real root of f5'(k) =0 in (M,oo) . Again, the asymptotic form of g (r, t)
taking initial impulse concentrated at the origin, we find

! o ‘ gg(m)sin(rfé (m)—ﬁ) @.11)

t‘fan(ﬁé)

ub; (l’,t)z y

where

AN
f() X2 (k) — kt+z g6(k)=X2(k)(7j )

and Py is the unique positive real root of f; (k)=0 in (hy,»).
Parabolic impulse

We consider a different type of axially symmetric impulse, namely parabolic impulse distribution at
the free surface given by

2
I—i(ij for rS\/ER
F(r)=y 2R

0 for r>x/§R

where R denotes the effective radius of initial impulse. The Hankel transform of F(r) is given by
Fky=—2,(N 2Rk
(k=55 (N 2Rk}
For Gh< 1 the free surface depression at time ¢ for parabolic impulse distribution is given by

A
Ny (ri)==2 j %sinh(u 05 (N2Rk) S, (ke ) i +
P (4.12)
+2 j sin(u, )./, (N 2Rk) J, (kr)dk.
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For Gh> 1 the free surface depression at time ¢ for parabolic impulse distribution is given by

s
n, (7, t)—llg}) A j —sm(v]t)JZ(\/ZRk)JO(kr)dk+
(4.13)
-z j —s1nh(v2t)J2(\/2Rk)J0(kr )k += j—s1n(v3t)J2(Vsz)Jo(kr)dk.
Ayte A3
Using the result

\/2Rk —%Icos(% —~/2Rk s1nt)d1:

and

T
2

T (kr) = %Icos(kr c0s0)d0 .
0

n 2' (r,t) can be written in terms of a multiple integral. This multiple integral can be evaluated approximately

by the method of steepest-descent(cf. Jeffreys and Lapwood [3]). Usually, the use of the method of steepest-
descent for a single integral requires a large parameter in the exponential term of the integrand. However,
Jeffreys and Lapwood [3] obtained steepest-descent approximations of multiple integrals whose integrands
do not have any large parameter explicitly in the exponential term. In this method one has to orient the
integration paths to pass through the saddle points and the maximum contribution to the integral comes from
the immediate neighbourhood of the saddle points. In the integral (4.12) the only contribution comes from

the second integral and n 2' (r,t) is written in the following form

nzl(r,t)

[ J'J'J' “2|: i(Wt+2r—/ 2Rk sin T+kr sin B) te i(1ot—=2F4+~/2 Rk sin T—kr sin B) n
an 7,00

+ei(pzt+2r7x/5Rksinrfkrsin[i) +ei(p2172r+\/5Rksinr+krsinB):|dBdrdk_J]+J2 +.]3 +J
= 4

The integrals J,and J, do not contribute to 1, (,¢) and for J, we have

O TTT
J,= Im”IG (k,B,7)exp g(k,B,v)dBddk
2pn’ %00
where
G(k,[s,r)zi k(k tanh kh — G)
(k — G tanh kh)
and

g(k,B,t)zi(uzt—2r+\/ERksinr—krsinB).

Saddle points k,t,,B, are the solution of
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% _%_%_,
ok op or

b

. . s . .. .
which gives B, = >’ k, 1s the positive root of the equation

2,2
t kt Rk,
The saddle point evaluation gives the integral to be
2
(l'\/2Tl',)

Im—————G,exp(g))
Py ,—AO 0 0

where
GOZG(ko,BO,T()) and g0=g(k0,[30,’50)

and A, is the value of the Hessian determinant A at the saddle points. Thus

2
@ Gy sin(g(k By, )_EJ
2pn2 \/A—o 010220 2)

and applying the same calculation to J,, we obtain the final form of n 2' (r,t) as,

J2:

(ix/%)z{G(ko,Bo,ro) , ( nj RAGEIED)

)= ky,Bp,Ty)—— i ki,B;, 4.14
n, (r.1) o /5, sin| g(kg,Bp,79) 5 /5, sin(g; (k.B.7)) | (4.14)
where
! [k(ktanhkh—G)
G(kB,t)=— R Ay =Alk,,By,
(k:p.7) k\/(k—Gtanhkh) 0= AkoBo-%0)
and

A(k,B,t)=~/2tw, (k) rRK? sin T+ 2R’ rk cos’t

and k,,B,,t, are the saddle points in 3,7,k - plane for the integral J, and
g (k,B,r) =i(|,t2t +2r —\/ERksinr—krsinB),

A, =A'(k1,[31,171) and A'(k,B,t)z—\/Etuwz (k)rRk2 sin T+ 2R’rk cos’t

and k;,B;,t; are the saddle points for the integral J;.

A similar process is applied to the integral (4.11) for the case Gh>1 and in this case the only
contribution comes from the third integral and the final result is obtained as

\ (i\/%)z G (ko'aﬁoyﬂoy) G (k1':[31vﬂ1')

ny (r.1)= 2o \/; sin(gz (koyyﬁo'afo')_gj*'TSin(& (kj'aBIV,TJV)) (4.15)
0 I




Generation of surface waves due to initial axisymmetric ... 639

where

G (k,B,r)=V3T(), Ay =" (k5 By )

and
A (k,B,r) = \/Etv"3 (k)rRk2 sint+ 2R’rk COSz‘C,

2, (k,B,r) =i(v3(k)t—2r+\/§Rksinr—krsinB)

and kov,Bov,rOV are the saddle points in B,t,k - plane and

A/ =A" (kIV,B]',r,') and A" (k,B,t)=—/2tv'; (k) rRk? sint+ 2R?rk cos’t
and
g;(k.B.7) =i(v3 (k)t+2r —\/ERksint—krsinB)

and kl',B 1',17 1' are the saddle points in 3,7,k - plane.

5. Numerical results

Case A (Gh<):

To study the form of the free surface due to initial axisymmetric surface disturbance in water with a
porous bottom, the non dimensional asymptotic form of mn, (r,t) is depicted graphically against » for fixed
time and against ¢ for a fixed distance from the origin in a number of figures. To visualize the nature of the
wave motion due to prescribed initial axially symmetric depression at the free surface, 1, (r,t) is plotted in
Fig.5 against ¢ for fixed »=250 and ¢ ranging from 220 to 280 and porosity parameter Gh=0,0.6,0.9. Also
n,(r,7) is plotted in Fig.6 for fixed time and variable distance from the origin. In Fig.6 n,(r.t) is plotted
for fixed t=1750 and r ranging from 220 to 280 and the porosity parameter Gh=0,0.6,0.9. From Fig.5 it is

observed that as ¢ increases, the amplitude of wave motion increases and from Fig.6 it is observed that as r
increases the amplitude of wave motion decreases.

x 107

1 1
220 230 240 250 260 270 280

Fig.5. Wave motion due to initial axially symmetric depression for a fixed distance r=250.
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220 230 240 250 260 270 280
Fig.6. Wave motion due to initial axially symmetric depression for fixed time t=150.

Similarly n, (r, t) obtained from Eq.(4.5) due to an initial disturbance in the form of an impulse

concentrated at the origin, is plotted in Figs 7 and 8. In Fig.7 n,(r,¢) is plotted against ¢ for fixed »=250
and franging from 220 to 280 and porosity parameter Gh=0,0.6,0.9 . From Fig.7 it is observed that the
amplitude of the wave profile increases as time increases. In Fig.8 m,(r.t) is plotted against » for fixed
t=150 and r ranging from 220 to 280 and porosity parameter Gh=0,0.6,0.9. From Fig.8 it is observed that
the amplitude of the wave profile decreases as distance increases.

-520 230 240 250 260 270 280

Fig.7. Wave motion due to initial axially symmetric impulse for a fixed distance r=250.

=104

1

220 230 240 250 260 270 280

Fig.8. Wave motion due to initial axially symmetric impulse for fixed time #=150.
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CaseBand C (Gh>1):

For the case Gh=1,n;(r,t) and ns(r,f) obtained from Eqgs (4.7) and (4.10) in the case of initial

axially symmetric depression concentrated at the origin are plotted in Fig.9 for fixed »=250 and ¢ ranging
from 220 to 280 and Gh=1,1.25,1.75.

Similarly, n;(7.,t) and n;(7,t) are plotted in Fig.10 for fixed time t=/50 and r ranging from 220
to 280 and Gh=1,1.25,1.75.

x107™

220 230 240 250 260 270 280

Fig.9. Wave motion due to initial axially symmetric depression for a fixed distance r=250.

3 X 104 T T T T T

—Gh=1

-- Gh=1.25|
2 --Gh=1.75|

F,

.2 1 o I 1 1
220 230 240 250 260 270 280
r

Fig.10. Wave motion due to initial axially symmetric depression for fixed time t=150.

Similarly, pn,(r,z)and png(r,) obtained from Eqs (4.9) and (4.11) in the case of impulse con-
centrated at origin are plotted in Figs 11 and 12. In the Fig.11 pn,(r,f) and pn,(7,t) are plotted against ¢ for
fixed »=250 and ¢ ranging from 220 to 280 and Gh=1,1.25,1.75. In Fig.12 pn,(r,t) and png(r,t) are plotted

against 7 for fixed =150 and r ranging from 220 to 280 and Gh=1,1.25,1.75. From Fig.9 to 12 it is observed
that as the porosity parameter increases the amplitude of wave motion does not behave in any specific manner.

x107*
2 T T T
—Gh=1
A--Gh=1.25
S\ Gh=1.75]
H
-z 1 1 1 1
220 230 240 250 260 270 280

Fig.11. Wave motion due to initial axially symmetric impulse for a fixed distance =250 and Gh>1.
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2 X1o-4 T T T
—Gh=1
% P --Gh-1.25
10 . - --Gh-1.75

220 230 240 280
Fig.12. Wave motion due to initial axially symmetric impulse for fixed time r=150 and Gh>1.

Parabolic Impulse :

For the parabolic impulse distribution the form of the free surface elevation in the case of Gh</
given in Eq.(4.14) is plotted in Figs 13 and 14. In Fig.13 pn 2'(r,t) is plotted against ¢ for fixed »=250 and
t ranging from 200 to 280 and Gh=0.2,0.6,0.9,R=10. In Fig.14 pnzv(r,t) is plotted against » for fixed
t=150 and r ranging from 220 to 280 and Gh=0.2,0.6,0.9,R =10. Similarly, pn4'(r,t) obtained from
Eq.(4.15) is plotted in Figs 15 and 16.

0.015

Fig.14. Wave motion due to parabolic impulse for Gh< ] and for fixed time ¢

=150.
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1
85 9% o5 100 105 110 115 120 125 130

Fig.15. Wave motion due to parabolic impulse for Gh> ] and for a fixed distance » =50.

0.0z

.8

oM

a.005 -

=0.01

D015 -

-0.02 -
o 75 &0 a5 9 85 100 105 110 115 120

Fig.16. Wave motion due to parabolic impulse for Gh>1 and for fixed time ¢ =150.

In Fig.15 pn4'(r,t) is plotted against ¢ for fixed »=50 and ¢ ranging from 80 to 130 and

Gh=1,1.25,R=10.In Fig.16 pn4'(r,t) is plotted against » for fixed t=/50 and r ranging from 70 to 120
and Gh=1,1.25,R=10.

6. Conclusion

Generation of surface waves in water with a porous bottom is considered here due to various types of
prescribed initial axisymmetric disturbances at the free surface. The initial disturbance on the free surface is
taken to be concentrated at the origin for the first two cases and in the form of a parabolic impulse
distribution at the free surface as in Krenzer Keller [4] for the third case. The fluid bottom is taken to be
porous and the porosity parameter G to be real and the cases when Gh< ] and Gh>1 and hbeing the finite
depth of water are considered. It is observed that when the bottom is rigid, the integral form of free surface
reduces to the form given in Kranzer and Keller [4] for the case of parabolic impulse distribution at the free
surface.
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Nomenclature

G — porosity parameter
G(r) — axially symmetric depression of the free surface at a distance » from the origin

g —acceleration due to gravity

F(r) - axially symmetric impulse per unit area of the free surface at a distance r from the origin
h — constant depth of water
n - free surface depression
p — density of water
¢ — velocity potential
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