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An analysis is presented to study the effects of thermal radiation, chemical reaction, viscous and Joule 
dissipation on MHD free convection flow between a pair of infinite vertical Couette channel walls embedded in a 
porous medium. The fluid flows by a strong transverse magnetic field imposed perpendicularly to the channel 
wall on the assumption of a small magnetic Reynolds number. The governing non linear partial differential 
equations are transformed in to ordinary differential equations and are solved analytically. The effect of various 
parameters viz., Eckert number, electric conductivity, dynamic viscosity and strength of magnetic field on 
temperature profile has been discussed and presented graphically. 
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1. Introduction 
 
 Magnetohydrodynamics is the study of flow of an electrically conducting fluid combined with 
magnetic field.  The phrase magnetohydrodynamics is derived from three Greek words. Magneto means 
magnetic field, Hydro means water, and dynamics means in motion. Hydrodynamics is the study of fluid 
flow and the forces, viz., inertial, thermal, buoyancy and viscous forces that cause the flow in the absence of 
electromagnetic field. 
 In fluid dynamics the word dissipation means conversion of energy from one form to other forms. In 
the viscous fluid flow, the velocity of the fluid takes energy from the motion of the fluid and transforms it into 
internal energy. This means the kinetic energy is dissipated, i.e., during the flow it is converted into internal 
energy. This process is irreversible in case of a viscous fluid and is known as viscous dissipation. Viscous 
dissipation acts as an energy source by changing the temperature distribution of the fluid which affects the heat 
transfer rate. The effect of viscous dissipation depends on whether the channel wall is cooled or heated.  
Joule dissipation is the process by which the passage of an electric current through a conductor produces heat 
by affecting the whole electric conductor. In an MHD flow Joule dissipation acts as volumetric heat source. 
 In thermodynamics, the internal energy of the system is the energy contained within the system 
excluding the kinetic energy of the motion of the system as a whole and the potential energy of the system as 
a whole due to external force fields. 
 An unsteady Hartmann flow between two infinite parallel plates with viscous and Joule dissipation 
under an exponentially decaying pressure gradient has been studied in [1]. Couette flow which is an 
important phenomenon with respect to engineering applications involving shear-driven has been studied in 
[2]. The problem of an unsteady MHD Couette flow of a viscoelastic fluid under an exponentially decaying 
pressure gradient with suction and injection through the plates and viscous and Joule dissipations and 
obtained graphical representations of the velocity and temperature distributions using the finite difference 
method considered in [3]. 
 The study of free convection flow is important in understanding natural circulation in geothermal 
reservoirs, problems involving the spread of pollution and other energy-related engineering applications. The 
steady hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall 
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heating conditions in the presence or absence of heat generation or absorption was studied in [4]. The effect 
of natural convection on an unsteady Couette flow has been investigated in [5]. The combined effect of 
natural convection and a uniform transverse magnetic field when the magnetic field is fixed relative to the 
plate or fluid has been discussed in [6]. 
 Thermal radiation effects in fluid flow are significant in many industrial applications where high 
temperatures are involved. In engine combustion chambers, furnaces and power plants for gas cooled nuclear 
reactors; thermal radiation has a considerable effect on heat transfer. The unsteady natural convection 
hydromagnetic Couette flow between two infinite vertical plates in the presence of thermal radiation was studied 
in [7]. The effects of viscous and Joule dissipations using Galerkin finite element has been studied in [8]. The 
effect of MHD on a free convection oscillatory Couette flow when the temperature and concentration oscillate 
with time in the presence of the thermal radiation and chemical reaction has been studied in [9]. 
  Flows of fluids through a porous medium are of main and principal interest because they occur 
frequently in nature. Such fluid flows have attracted the attention of many scholars due to their application in 
science and technology, viz., ground water flow, plasma studies, geophysics, geology, aerodynamics, 
geothermal reservoirs, thermal engineering, petroleum engineering and agricultural engineering. Many 
scholars have studied MHD free convective energy and concentration flow in a porous medium to examine 
flow of oil, water and natural gas. Free convective energy flow through a porous plate, in relation to the 
application of the areas mentioned was studied in [10]. Free convective flow through a porous medium 
between two vertical parallel plates is studied in [11]. Unsteady free convective MHD fluid flow past a 
vertical porous plate has been investigated in [12]. The effects of radiation on free convection over vertical 
flat plates embedded in a porous medium with high porosity are studied in [13]. The effect of radiation on 
chemically reacting MHD boundary layer flow of energy and concentration through a porous vertical flat 
plate is investigated in [14]. The effects of radiation on an unsteady MHD free convective flow past an 
oscillating vertical porous plate embedded in a porous medium with oscillatory heat flux are investigated in 
[15]. The effects of thermal radiation and magnetic field on an unsteady boundary layer mixed convection 
flow and heat transfer problem from a vertical porous stretching surface are studied in [16]. The 
simultaneous effects of opposing buoyancy force on heat and mass transfer by free convection in a fluid 
saturated by a porous medium are studied in [17]. 
 The effect of MHD on a free convection oscillatory Couette flow when the temperature and 
concentration oscillate with time in the presence of thermal radiation and chemical reaction has been studied 
in [9]. In this study the effects of viscous and Joule dissipation has not been considered.  
 The main objective of this study is to analyze the effect of MHD flow when temperature and 
concentration fluctuate with time in the presence of thermal radiation, chemical reaction, viscous and Joule 
dissipation embedded in a porous channel walls. 
 

 
 

Fig.1. Flow configuration and coordinate system of the model. 



Thermal radiation, chemical reaction, viscous and Joule ... 727 

2. Mathematical analysis 
 
 Consider a two dimensional free convection Couette flow of an unsteady, incompressible, viscous, 
electrical conducting, Newtonian, chemical reacting and radiating fluid. The fluid flow is bounded by two 
infinite vertical channel walls separated by a distance  h  embedded in a porous medium. Furthermore, the 
fluid is considered to be a gray in color, has radiation absorbing emitting nature but in a non-scattering 
medium in the optically thick limit. Roseland approximation is used to describe the radiative heat flux in the 
energy equation. It is also assumed that the radiation heat flux in the 'x  direction is negligible as compared 
to that in the 'y  direction.  

 The flow configuration and the coordinate system are shown in Fig.1. The '  x  axis is taken along the 

infinite channel walls and the ' y  axis is taken normal to the channel walls. The vertical moving channel wall is 

located at 'y 0  along the 'x  axis where the temperature is '
wT  and the concentration is '   wC . The other 

stationary channel wall is located at 'y h  where the temperature is '
hT  and the concentration is '   hC . 

 Initially, at t 0  , the stationary channel wall and the fluid are at the same temperature '
hT  and the 

concentration level of the fluid '
hC  is the same at all points. At a later time 't 0  the temperature of the 

moving wall and concentration of the fluid increase '  wT  and '  wC  respectively and are maintained constant 
thereafter. 
 Free stream oscillates with time and has the form  
 

       ' '' '       i t
oU t U 1 e    .                                                                                           (2.1) 

 

In Eq.(2.1),  0U  is the mean constant free stream velocity, '     is the frequency and '   t  is the time. 
 To derive the governing equations of the model the following model assumptions are made: 

(1) all fluid properties are constant except the influence of the density variation with temperature and 
concentration in the body force term, 

(2)  the Eckert number and magnetic Reynolds numbers are small so that the induced magnetic field 
of the fluid is negligible, 

(3)   the external electric field is zero and the electric field due to the polarization of charges is 
negligible, 

(4)  viscosity is also considered with the constant permeability of the porous medium, 
(5)  there exists a homogeneous chemical reaction of first order with a constant rate between 

diffusing concentration and the fluid in the moving plate, 
(6) a uniform magnetic field is applied in the direction perpendicular to the channel walls, 
(7) all the physical variables are independent of '.x  

 

Based on the model assumptions, the governing equation has the following form. 
 

       ' '' ' '   '
   '  '

' ' ''

2

h c h2

u U u J X B u
g T T g C C

t t ky

      
                   

.                           (2.2) 

 
 In Eq.(2.2), the vector cross product J x B  represents the Lorentz force. This term is a body force 

corresponding to magnetohydrodynamics flow. The total magnetic field is represented by  B . The density of 

the current is represented by  J  and ' k  denotes the permeability of the porous medium. The minus sign in 
the sixth term of the right hand side indicates that the fluid flows from a higher to a lower potential. 
 Also, the expression for Lorentz force reduces and takes the form as  
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    '2JxB B u  .                                                                 (2.3) 
 
 In view of the result Eq.(2.3), Eq.(2.2) reduces to  
 

     ' '' ' ' ( ' ') '
' '

' ' ''

2 2

h c h2

u U u B u U u
g T T g C C

t t ky

     
          

  
 .                 (2.4) 

 
 The energy equation of the model can be expressed as  
 

  
' ' ' '

 
' ' ''

22 2 2
r

2
p p p

qT T 1 u B u

t C y C y Cy

            
                               

.                           (2.5)                     

 
 The concentration equation of the model can be expressed as 
 

   '' '
( ' )

' '

2

r h2

C C
D K C C

t y

  
      

.                                                              (2.6) 

 
 Equations (2.4) – (2.6) govern the present model. Here   is thermal diffusivity,    the density of 

the fluid, g   the acceleration due to gravity,    the thermal expansion coefficient, c   the concentration 

expansion coefficient, 'T  the temperature of the fluid in the boundary layer, 'wT  the temperature of 

moving channel wall, '
hT  the temperature of stationary channel wall, pC   the specific heat capacity at 

constant pressure,   the dynamic viscosity,    electric conductivity, rq  the local radiative heat flux, 

B  the magnetic induction, 'C  the concentration of the fluid in the boundary layer, '
wC  the concentration 

of the moving channel wall, '
hC  the concentration of the stationary channel wall, D - the molecular 

diffusivity,  rK  the chemical reaction parameter.. 
 Since the free stream velocity, temperature and concentration fluctuates with time the boundary 
conditions of the model have the form 
 

   ' ' ' ,     '   i t
oy 0 u U 1 e     ,                            (2.7) 

 

   ' ' '  ' ''  i t
w w hT T T T e     ,                                                                         (2.8) 

 

   ' ' '  ' '' i t
w w hC C C C e     ,                                                                            (2.9) 

 

  ' '' ,   ' ,  ' , 'h hy b u 0 T T C C    .                                                                 (2.10) 
 
 The Roseland approximation for radiative heat flux [18] is given by 
 

  
'

'

4

r
s

4 T
q

3k y

    
      

.                                                                                    (2.11) 
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 In Eq.(2.11), the parameters     and sk represent the Stefan Boltzmann constant and the Roseland 
mean absorption coefficient, respectively. 

 Taking the Taylor series expansion of '  4T and neglecting terms with higher powers, we have  
 

  ' '' '4 3 4
h hT 4T T 3T  .                                                                               (2.12) 

 
 In view of Eqs (2.11) and (2.12), Eq.(2.4) reduces to 
 

   
'

'' ' ' '
'  

' ''

23 2 2 2
h 0

h2
p s p p p

16 T QT 1 T u B u
T T

t C 3k C C y Cy

               
                                        

. (2.13) 

 
 In Eq.(2.13) the third and fourth term denote viscous and Joule dissipation, respectively.  
 
3. Non dimensionalization of the model 
 
 The dimensionless form of the model is found by introducing the following non-dimensional 
quantities 
 

  ''/ ;   / ;  '/ ; '/ ; ' ';  ' / ;3 2
h s 0 0y y h R 4 T k u u U U U U t t h            

 

     ' ' ' 'Gc ; Gr ; Sc / ;  Pr / ; 2 2
c w h 0 w h 0g h C C U g h T T U D                     

 

 

      ' ' ' ;  ' h w hM Bh C C C C C        ;       ' 'Ec Δ ;  Δ2
o p w hU C T T T T   ;  

 

      ' ' '' h w hT T T T      ;       ' ' ; 2 2 2
0 0 h sK k U Q 16 T k    . 

 
 Substituting the non-dimensional quantities in Eqs (2.4) - (2.6) the non-dimensional form of the 
model takes the following form 
 

   Gr Gc
2 22

2 0
2 2

U ubu U u
C M u U

t t y K

  
         
   

,                                  (3.1) 

  

  Ec
Pr Gr

2 2 22
2o o

2
p p

Q B u U g1 4R u
1 h

t 3 C y Cy

                      
,                              (3.2)                     

 

  Sc
22

r
2

K CbC C

t Dy

 
  

 
.                                                                                      (3.3) 

 

 The corresponding non dimensional boundary conditions (2.7)-(2.10) take the form  
 

  , , ,it it ity 0 u 1 e 1 e C 1 e           ,                                             (3.4)                     
 

  , , ,y 1 u 0 0 C 0     .                                                                 (3.5) 
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 The system of Eqs (3.1)-(3.3) together with the boundary conditions (3.4)-(3.5) constitutes the non-
dimensional form of the present model. 
 
4. Method of solution to the model problem 
 
 When the amplitude of oscillations ( 1 ) is very small we can assume the solutions of flow 
velocity   u , temperature field   and concentration C  near the moving plate  as the sum of steady and small 
oscillating components. 
 Using the perturbation technique the solution of the model has the following form 
 

       , it
0 1u y t u y u y e   , (4.1) 

 

       , it
0 1y t y y e     ,                                                                                  (4.2) 

 

       , it
0 1C y t C y C y e   .                                                                                  (4.3) 

 
 In Eqs (4.1)-(4.3) ,   0 0u   and   0C represent mean velocity, mean temperature and mean 
concentration respectively. 
 Also, the non dimensional free stream velocity takes the form  
 

  itU 1 e   .                                                                                              (4.4) 
 
 Substituting Eqs (4.1)-(4.4) into Eqs (3.1)-(3.3), equating harmonic and non-harmonic terms and 
neglecting higher orders of   the following system of equations is obtained 
 

  " Gr Gc2 2
o 0 0 0u M u C M      ,                                                                          (4.5) 

 

     " Gr Gc2 2
1 1 1 1u i M u C i M        ,                                            (4.6) 

 

  " r o
0

K C h
C 0

D
  ,                                                                                             (4.7) 

 

  " Sc
2

r
1 1

K h
C C i 0

D

 
     

 
,                                                                                 (4.8) 

 

  " Ec '
Pr Gr

2 2 2
20 0 0 o

0 0
p p

Q h B u U g1 4R
1 u

3 C C

             
,                                    (4.10) 

 

  " Ec ' '
Pr Gr

2 2
0 0 1 o

1 1 0 1
p p

Q h 2 B u u U g1 4R
1 i 2 u u

3 C C

                     
.                        (4.10) 

 
 Further, the new boundary conditions corresponding to Eqs (3.4)-(3.5) are obtained as 
 
  , , , , , ,0 1 0 1 0 1y 0 u 1 u 1 1 1 C 1 C 1         ,                                   (4.11) 
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  , , , , , ,0 1 0 1 0 1y 1 u 0 u 0 0 0 C 0 C 0         .                               (4.12) 
 
 The variables , , , ,0 1 0 1 0u u C   and 1C are still coupled in Eqs (4.5)-(4.10). To solve Eqs (4.5)-(4.10) 
it is assumed that heat due to viscous dissipation is superimposed on the motion. Mathematically, this can be 
expressed by expanding the velocity, temperature and concentration terms in power of Ec. In the case of 
incompressible fluids, Ec is always very small and we assume that 
 

         Ec Ec2
0 1W y W y W y o   . 

 
 Here W  stands for any variable   , , , ,  and 0 1 0 1 0 1u u C C  . These variables can be expanded in powers 
of Ec as follows 
 
       Ec0 00 01u y u y u y  ,                                                                                    (4.13) 

 
       Ec1 10 11u y u y u y  ,                                                                                  (4.14) 

 
       Ec0 00 01y y y     ,                                                                              (4.15) 

 
       Ec1 10 11y y y     ,                                                                                   (4.16) 

 
       Ec0 00 01C y C y C y  ,                                                                            (4.17) 

 
       Ec1 10 11C y C y C y  .                                                                                (4.18) 

 
 Upon substituting Eqs (4.13)-(4.18) into Eqs (4.5)-(4.10) and equating terms free from Ec and with 
coefficients Ec and neglecting higher orders of Ec the following equations are obtained 
 

  " Gr Gc2 2
00 00 00 00u M u C M      ,                                                           (4.19) 

 

  " Gr Gc2
01 01 01 01u M u C     ,                                                                  (4.20) 

 

   " Gr Gc2
10 10 10 10u u i M C      ,                                                                (4.21) 

 

   " Gr Gc2
11 11 11 11u u i M C      ,                                                                    (4.22)     

 

  "
2

r 00
00

k C h
C 0

D
  ,                                                                                                (4.23) 

 

  "
2

r 01
01

k C h
C 0

D
  ,                                                                                             (4.24) 

 

  " Sc
2

r
10 10

k h
C C i 0

D

 
    

  
,                                                                               (4.25) 
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  " Sc
2

r
11 11

k h
C C i 0

D

 
    

  
,                                                                                 (4.26)   

 

  "
Pr Gr

2 2 2
0 00 00 0

00
p p

Q h B u U g1 4R
1 0

3 C C

            
,                                                       (4.27)   

 

  " '
Pr Gr

2 2
20 01 00 01 0

01 00
p p

Q h B u u U g1 4R
1 u

3 C C

             
,                                           (4.28) 

 

  "
Pr Gr

2 2
0 00 10 0

10 10
p p

Q h 2 B u u U g1 4R
1 i 0

3 C C

                    
,                                (4.29) 

 

  
( )

" ' '
Pr Gr

2 2
0 0 01 10 00 11

11 11 00 10
p p

Q h 2 B U g u u u u1 4R
1 i 2u u

3 C C

                      
,        (4.30) 

 
 Equations (4.19)-(4.30) are subjected to the new boundary conditions as given below 
 
  , ,00 10 00 10 00 10 01 11 01 11 01 11y 0 u u C C 1 u u C C 0                 ,   (4.31) 
 
  , 00 01 10 11 00 01 10 11 00 01 10 11y 1 u u u u C C C C 0                 .       (4.32) 
   
 Upon solving Eqs (4.19)-(4.30) together with the boundary conditions (4.31)-(4.32), the analytical 
solutions are obtained 
 

    Gr GcMy My 00 00
00 2

C
u y Ae Be 1

M
  

    ,                                                                 (4.33) 

 

  ' ' Gr Gc
( )  My My 01 01

01 2

C
u y A e B e 0

M
  

    ,                                                    (4.34) 

 

  
Gr Gc

( ) y y 10 10
10 2

C
u y ce de

M
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5. Results and discussion of simulation study        
 
 In this paper, the effect of thermal radiation, chemical reaction, viscous and Joule dissipation on 
MHD free convection flow in a porous vertical channel walls has been studied. The effect of physical 
parameters such as Eckert number, electric conductivity, strength magnetic field and dynamic viscosity on 
temperature has been analyzed. Perturbation technique is used to convert the governing non linear partial 
differential equations to a system of ordinary differential equations which can be solved analytically. 
MATLAB and GeoGebra software are used to draw the graphs. 
  For the sake of brevity only the graphical representation of the temperature profile for different 
values of the Eckert number, electric conductivity, strength of magnetic field and dynamic viscosity 
presented. The other parameters such as the Grashof number, i.e. based on temperature difference, the 
modified Grashof number, i.e. based on concentration difference, radiation parameter, chemical reaction 
parameter, the Prandtl number, Schmidt number and molecular diffusivity have not been discussed. 
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 In Fig.2 the influence of the Eckert number on temperature of the fluid has been presented. The graph 
of temperature versus distance for different values of the Eckert number has been drawn. From the simulated 
graph it can be concluded that as the Eckert number increases the temperature decreases. Physically, this shows 
how kinetic energy can be changed to internal energy by deformation of fluid elements. 
 

 
 

Fig.2. Temperature profile of the model problem for different values of the Eckert number. 
 
 Figure 3 illustrates the influence of electric conductivity on temperature of the fluid. The graph is 
plotted   y versus  representing respectively the distance between the channel walls and temperature. It can 
be observed from the graph that as electrical conductivity increases the temperature decreases.  
 

 
 

Fig.3. Temperature profile of the model for different values of electric conductivity. 
 
 In Fig.4 the simulated results of the influence of the strength of magnetic field on temperature profile 
has been investigated. The graph is drawn   y versus  where y  denotes the distance between the channel 

walls while   represents temperature of the fluid. From the results of the simulated graph it can be observed 
that as the strength of magnetic field increases the temperature of the fluid decreases. This is due to the 



Thermal radiation, chemical reaction, viscous and Joule ... 735 

Lorentz force which resists the fluid flow. Furthermore, the increment of the strength of magnetic field 
results in a decrement of both temperature and velocity of the fluid. The former theoretical fact has been 
verified by the simulation study. 
 

 
 

Fig.4. Temperature profile of the model for different values of strength of magnetic field. 
 
 In Fig.5 the simulated results of the influence of dynamic viscosity on the temperature profile have 
been presented. The graph is plotted   y versus  representing the distance between the channel walls and 
temperature, respectively. From the simulation study it can be observed that as the dynamic viscosity 
increases the temperature of the fluid decreases. The Prandtl number is directly proportional to dynamic 
viscosity and inversely proportional to thermal conductivity. This theoretical fact has been proved by the 
simulation study.  
 

 
 

Fig.5. Temperature profile of the model for different values of dynamic viscosity. 
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6. Conclusion   
 

 In this paper, thermal radiation, chemical reaction, viscous and Joule dissipation effects on MHD flow in 
a porous medium have been analyzed. The effects of various parameters, viz., the Eckert number, electric 
conductivity, dynamic viscosity and strength of magnetic field on the temperature profile have been studied.  
 From the simulation study the following results are obtained: 
I.  an increment of the non-dimensional quantity (Eckert number) results in a decrement of temperature profile; 
II.  as the values of electric conductivity increase the temperature profile of the fluid decreases. 
III.  increasing the values of strength of magnetic field results in a decrement of temperature. 
VI.  an increment of the values of dynamic viscosity results in a decrement of the temperature profile of the fluid. 
 

Nomenclature 
 

 C  dimension less concentration 
  pC   specific heat at constant pressure 

 'hC   concentration at channel wall at   y h  

 'wC   concentration at channel wall at y 0  

 D  mass diffusivity 
 Ec  Eckert number 
 Gc  modified Grashof number 
 Gr  thermal Grashof number 
 g  acceleration due to gravity 
 J  electric current density 
 rk   chemical reaction parameter 

 M  Hartmann number; 
 Pr  Prandtl number 
 R  radiation parameter 
 Sc  Schmidt number 

 'T   temperature of the fluid in the boundary layer 
 'wT   temperature of the moving channel wall 

 'hT   temperature of the stationary channel wall 

 t  time 

 'U   free stream velocity 
 U  dimensionless free stream velocity 

 'u   velocity component in the 'x  direction 
 rq   radiative heat flux 

 'v   velocity component in the 'y  direction 

  , x y   dimension less Cartesian coordinates 

 ' ',  x y   Cartesian coordinates 

    thermal diffusivity 
    thermal expansion coefficient 

 c   concentration expansion coefficient 

    amplitude of free stream velocity 
    dimensionless temperature 
    thermal conductivity 
    dynamic viscosity 

    kinematic viscosity 
    electric conductivity 
    frequency of oscillation 
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