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This article theoretically investigated mixed convection flow of heat generating/absorbing fluid in the 

presence of viscous dissipation and wall conduction effects. The flow is considered to be steady in a vertical 
channel with some boundary thickness. One of the plates is heated while the other is kept at ambient temperature. 
The governing flow equations were solved analytically using Homotopy Perturbation Method (HPM). The 
influences of the governing parameters were captured in graphs, tables and a table was constructed for validation 
of the work. It is worthwhile to stress that, both the velocity and temperature profiles decrease near the heated 
plate with an increase in boundary thickness (d) while the reverse cases were observed toward the cold plate. The 
velocity profile increases near the heated plate with increase in mixed convection parameter (Gre) and decreases 
towards the cold plate. Rate of heat transfer has been observed to decrease with increase in boundary plate 
thickness (d) while the critical value of (Gre) increases with growing boundary plate thickness. The study 
therefore established the importance of boundary plate thickness in mixed convection investigation. 
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1. Introduction 
 
 Research in fluid dynamics receives great concern due to its application in science and engineering. 
The influences of fluid flow and thermophysical properties are investigated to suit industrial technology and 
sciences. Applications of fluid dynamics can be found in lubrication industries, cooling of electrical 
appliances, gas turbines, geothermal energy, cooling of nuclear reactors, plasma physics, gas drainage, 
petroleum industries, food processing industries etc. 
 In lubrication industries, viscous dissipation cannot be neglected since internal mechanical energy 
generated as a result of fluid particles' interaction affects the fluid flow and thermal behaviour in the system. 
Likewise, the boundary thickness and the thermal conductivity have effects on the fluid flow and heat flux. 
Kevin and Barbaros [1] investigated effect of axial conduction on heat transfer in a liquid flow. They 
concluded that, the amount of heat carried away from the heated region by wall is controlled by the wall 
thickness and the wall thermal conductivity. In the study of effects of wall heat conduction on the reforming 
process of methane in microreactor, Michael and Dimos [2] found that, heat transport through the solid wall 
is not only dependent on the thermal conductivity of the wall but also on the cross-sectional area of the solid. 
Hassab et al. [3] conducted a research on the effect of axial wall conduction on heat transfer for a parallel 
plate channel. Their result showed that, increase in wall thickness is interpreted as increasing thermal 
resistance to the heat transfer. Ates et al. [4] presented a paper on transient conjugated heat transfer in thick 
walled pipes with uniform heat flux boundary condition. They found that more heat penetrated backward 
through the upstream region by axial conduction in thick walled pipes, while in thin walled pipes, heat flux 
values are high. Mei et al. [5] examined the criteria of axial wall heat conduction under two classical thermal 
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boundary conditions. They showed that, the temperature gradient number for the thin-wall tube is higher than 
that for the thick-wall tube. The effect of wall conduction on mixed convection heat transfer in externally 
finned pipes was studied by Moukalled et al. [6]. They observed that, axial wall conduction in the pipe wall 
is found to strongly affect the flow and thermal fields and also buoyancy effects are stronger when the pipe 
wall conductivity is considered which increases the overall heat transfer to the fluid. 
 Hamid and Behnam [7], Ajibade and Thomas [8] and Swati [9] reported that both velocity and 
temperature profiles increase with increase in mixed convection Gre. Jha et al. [10] investigated mixed 
convection in an inclined channel filled with porous material. They observed that, the flow is reversal type, 
the tendency of reversal has increasing trend with increasing positive mixed convection on the lower inclined 
channel wall whereas the trend increased with increasing negative mixed convection on the sinusoidally hot 
wall. Mehdi and Mohsen [11] examined mixed convection slip flow in a vertical parallel plate with 
asymmetric and uniform heat flux. Their result showed that, for a higher value of mixed convection 
parameter values, the slip velocity increases on the hot wall and drops on the cold wall for heat flux ratio 
( )rq . Jha et al. [12] investigated a steady fully developed mixed convection flow in a vertical parallel plate 
with bilateral heating and the microchannel is filled with porous material. They found that, increasing mixed 
convection parameter Gre leads to decrease in fluid flow near the cold wall, whereas near the hot wall, 
increasing Gre leads to an increase in velocity. They also concluded that, the fluid flow is not affected by the 
Gre at the middle of the channel. An exact solution of steady fully developed mixed convection flow in a 
vertical micro-porous-annulus was studied by Jha and Babatunde [13]. They concluded that, near the outer 
surface of the inner porous cylinder, increasing GR leads to decrease in fluid velocity whereas near the inner 
surface of the outer porous cylinder, increasing Gr leads to an increase in fluid velocity. 
 Dileep and Vikas [14] studied radiation effects on mixed convection flow and viscous heating in a 
vertical channel partially filled with porous medium. They indicated that, temperature increases due to 
viscous dissipation effects in the channel. Joseph et al. [15] examined effect of Brinkman number and 
magnetic field on Laminar flow in a vertical plate channel. They found that, Brinkman number has 
accelerating effect on the temperature. Viscous dissipation effects on the limiting value of Nusselt numbers 
for a shear driven flow between two asymmetrically heated parallel plates was investigated by Pranab and 
Sanchayan [16]. They showed that, a strong influence of viscous dissipation is quite significant for analysis 
of heat transfer in the conduction limit. 
 Jha and Ajibade [17] studied unsteady free convection Couette flow of heat generating/absorbing 
fluid where they discovered that, the fluid temperature is the same as that of the isothermal moving plate and 
thus there is no heat transfer between the fluid and the plate at the steady state. The work of Jha et al. [18] 
recently investigated steady fully developed mixed convection flow in a vertical channel with heat 
generation/absorption effect. They discovered that, the temperature profile increases with increase in heat 
generation parameter while a reverse trend occurs in the case of heat absorption parameter. Heat 
generation/absorption is considered as a linear function of local temperature in some articles. Vajravelu and 
Sastri [19-20] investigated Laminar free convection heat transfer of a viscous incompressible heat generating 
fluid flow past a vertical porous plate in the presence of free-stream oscillations. Part I of the article deals 
with the mean flow and heat transfer and part II deals with the unsteady flow and heat transfer. Also 
Vajravelu [21] in his work studied natural convection at a heated vertical plate with temperature dependent 

heat sources/sinks. Moalem [22] considered temperature dependent heat source of the type '

( )

1
Q

a bT



 on 

the steady state heat transfer within a porous medium. Foraboschi and Federico [23] considered volumetric 
rate of heat generation of the type ( )0 0Q Q T T   when 0T T . Therefore, due to the temperature difference 
which is directly proportional to channel walls, this work adopts the work of Foraboschi and Federico [23]. 
 None of the reviewed works above carried out a study on the viscous dissipation and wall conduction 
effects on steady mixed convection flow of heat generating/absorbing fluid in a vertical channel. Due to the 
application of viscous dissipation, wall conductivity, boundary thickness and mixed convection in lubrication 
industries, cooling of nuclear reactors, cooling of electric appliances etc. It is pertinent to investigate how 
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temperature, velocity, wall conduction and energy generated can be controlled in a vertical channel by these 
governing thermophysical and flow parameters, hence the present article. 
 The momentum and energy equations in the present model are coupled and nonlinear and as such, 
obtaining a closed form solution is a daunting task. various solutions method have been derived for such 
problems and this ranges from numerical solutions, perturbation methods and several other approximate 
solutions techniques, this problem has adopted the homotopy perturbation technique as the solution method. 
 
2. Mathematical analysis 
 
 A two-dimensional steady flow of an incompressible viscous fluid passes through vertical parallel 
plates is considered (see Fig.1). The plate 1p  is heated while 2p  is kept at ambient temperature with 

thickness *d . The fluid and energy flow in the channel is subjected to mixed convection and wall conduction 

in the presence of viscous dissipation. The flow is assumed to be along *x  direction and *y  is normal to the 
plates. Internal energy is generated as a result of fluid particles interaction and the thermophysical properties 
are assumed to be constant of the linear momentum equation as approximated by Boussinesq approximation. 
It is assumed that, the physical equations that describe the situation following the work of Jha and Ajibade 
[17] taking into account: viscous dissipation, boundary thickness, pressure gradient and wall conduction 
effects are given as 
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where *y  and *x  are the dimensional distances along and perpendicular to the plate. *u  and *
fT  are the 

dimensional fluid velocity and fluid temperature. 0Q ,  , k ,  , pc ,   and g  are the dimensional heat 

source/sink coefficient, kinematic viscosity, thermal conductivity, density, specific heat at constant pressure, 
thermal expansion coefficient and acceleration due to gravity of the fluid respectively. 1  and 2  are the 

thermal diffusivity of 1p  and 2p  respectively. *P  is the dimensional pressure gradient. The first, second 
and third term of Eq.(2.1) are the viscosity, thermal buoyancy and pressure gradient effects on the fluid. Also 
the first, second and third term of Eq.(2.3) are thermal conductivity, heat source/sink, and viscous dissipation 
effect of the fluid. 
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Fig.1. Schematic diagram of the problem. 
 

 To maintain the steady state flow, we assume that the appropriate boundary conditions of the model 
are 
 

  *u U                        at          *y 0 , 
 

  *u 0                            at           *y h ,  
 

  *
1p wT T                    at         * *y d  , 

 

  * *
1p fT T                    at         *y 0 , 
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* *
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1

dT dT
k k

dy dy
           at         *y 0 , (2.5) 
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  *
2pT 0                     at      * *y h d  . 

 

 The temperature and flux conditions at *y 0  and *y h  are the inter-facial temperature and flux 

conditions respectively. U , wT  and 0T  are the velocity of the moving plate, temperature of the heated and 
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cold plate respectively. 1k  and 2k  are the thermal conductivities of 1p and 2p respectively. Below are the 

dimensionless quantities used 
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 Using the dimensionless quantities (2.6) above, the momentum and energy Eqs (2.1)-(2.4) are 
presented as 
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and the boundary conditions are 
 
  u 1                       at         y 0 , 
 
  u 0                         at          y 1 ,  
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where Gre is the mixed convection parameter, Pr  is the Prandtl number, Ec is Eckert number, S  is heat 
generation/absorption parameter, Ec Pr Br  Brinkman number. 1kr  and 2kr  are the thermal conductivity 

ratios of the bounding slabs 1p  and 2p . 
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3. Method of solution 
 
 There are so many analytical and numerical methods to find the approximate solution of nonlinear 
differential equations. Such methods are: Homotopy Analysis Method (HAM), Adomian Decomposition 
Method (ADM), Differential Transform Method (DTM), Finite Difference Method (FDM), Finite Element 
Method (FEM), Runge Kutta Method etc. Homotopy Perturbation Method (HPM) is chosen in this work 
because the method requires no small parameters in equations and can readily eliminate the limitation of 
traditional perturbation techniques. The method is also simple and furthermore, the first order 
approximations are of extreme acuracy than the second order of traditional perturbation. The method 
converges as shown by Jafar and Hossein [24], Asma et al. [25], Elsayed et al. [26] and Jafar et al. [27]. The 
method was first initiated by He [28] to solve linear, nonlinear and coupled problems in partial or ordinary 
form. He [29], He [30] and He [31] also used the new method to solve nonlinear and boundary value 
problems. He [28] presented the method by considering the nonlinear differential equation 
 
      ,A u f r 0     r . 

 
 With the boundary condition 
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where A  is the general differential operator, B is a boundary operator,  f r  is a known analytic function, 

  is the boundary of the domain  . The operator A  can be divided into two parts, that is, L  and N , where 
L  is linear and N  nonlinear parts. Therefore the nonlinear differential equation can be presented as 
 
       L u N u f r 0   . 
 

 Convex Homotopy can be constructed from the nonlinear differential equation and its boundary 
condition as 
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where  ,p 0 1  is an embedding parameter, 0u  is the initial approximation of the nonlinear differential 

equation. which satisfies the boundary conditions. Therefore 
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 Now the solution of the nonlinear differential equation is expressed as 
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 Since the zeroth order is linear and can be solved directly, then there is no need of initial 
approximation 0v , therefore 
 

  
2

f2

d u dP
p GreT

dxdy

    
.            (3.3) 

Such that 
 

  ...2 3
0 1 2 3u u pu p u p u      

 

  ...
0 1 2 3

2 3
f f f f fT T pT p T p T      

   (3.4) 

  ...
1 1 1 1 10 1 2 3

2 3
p p p p pT T pT p T p T        

 

  ...
2 2 2 2 20 1 2 3

2 3
p p p p pT T pT p T p T      

 
 Substituting Eqs (3.4) into Eq.(3.3), we have 
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 Similarly, since no initial approximation for Eqs (2.8), (2.9) and (2.10) also, then they are 
transformed as 
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Eq.(2.9) is transformed as 
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and Eq.(2.10) is transformed as  
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 The boundary conditions are transformed as 
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 Solving from above Eqs (3.6). (3.11), (3.18) and (3.22) and applying the boundary conditions (3.27) 
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 Solving Eqs (3.7), (3.12), (3.19) and (3.23) 
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2 3 2

1 4 5 8 9
y dP y y

u Gre A A A y A
2 dx 6 2

 
     

  
,            (3.32) 

 
  

11
p 10 11T A y A  ,            (3.33) 

 

  Br
1

3 2 2

f 4 5 12 13
y y y

T S A A A y A
6 2 2

 
     

  
,            (3.34) 

 
  

21
p 14 15T A y A  .            (3.35) 

 
 Applying the boundary conditions (3.27) 
 

  , 4 5
9 8
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, 
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. 

 
 Solving Eqs (3.8), (3.13), (3.20) and (3.24), and applying the boundary conditions (3.27) 
 

  Br
5 4 4 3 2

2 4 5 12 13 16 17
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p 18 19T A y A  ,            (3.37) 
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            (3.38) 

 

  
22

p 22 23T A y A              (3.39) 

 

where   
Br

, 4 5 1312
17 16

A A A GreA GreGre
A 0 A GreS

120 24 24 6 2
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       

BrBr Br13 4 5 8A S A 2A A2 dP Gre

2 1 2d 3 1 2d dx 1 2d 4 3 1 2d
          

, 
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  21 20A A d . 
 
 Solving Eqs (3.9), (3.14), (3.21) and (3.25) 
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13
p 26 27T A y A  ,            (3.41) 
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 (3.42) 

 
  

23
p 30 31T A y A  .            (3.43) 

 
 Applying the boundary conditions (3.27) 
 
  ,25A 0  
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  29 28A A d . 
 

 Therefore, the approximate solution of momentum and energy Eqs (2.7) and (2.9) as p 1  are 
 

  ...0 1 2 3u u u u u     ,            (3.44) 
 
  ...

0 1 2 3f f f f fT T T T T     .            (3.45) 
 

 The physical quantities of interest are the shear stress, rate of heat transfer, reverse flow and pressure 
gradient of the fluid.  
 To obtain the pressure gradient required to derive this flow for a constant mass flux q  the integral 
 

  
1

0
udy q ,            (3.46) 

 

is evaluated so as to obtain the pressure gradient for varying value of q . The pressure gradient can be 
expressed as 
 

  
dP A

dx B
             (3.47) 

where  
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and 

   
   

Br Br Br1 Gre Gre Gre d
B

12 144 144 1 2d 72 1 2d
   

 
. 

 

 To know the values of mixed convection parameter Gre  (critical values) at which the velocity of the 
fluid gives a negative value (reverse flow) at the plate y 1 , then the critical values at y 1  are obtained 

from the turning point of the velocity, i.e y 1
du

0
dy    while at y 0   is not possible due to the moving nature 

of the plate. The critical values for different flow parameters are captured in Tab.2.  
 The skin friction   expressed as coefficient of surface skin stress is given by 
 

  0 1 y 0
du

dy    , 

 

  1 2 y 1
du

dy    . 

 

 The rate of heat transfer expressed as local Nusselt number Nu at both plates is given by 
 

  Nu f
0 1 y 0

dT
k

dy  , 

 

  Nu f
1 2 y 1

dT
k

dy  . 

 

4. Validation  
 

 By setting Br 0 , 
dP

0
dx

  and d 0 , the work of Jha and Ajibade has been recovered, see Tab.5.  

 

5. Result and discussion 
 

 Viscous dissipation and wall conduction effects on a steady mixed convection Couette flow of heat 
generating/absorbing fluid moving in a vertical channel of some thickness d has been studied. The steady flow 
is governed by six basic parameters: that is Gre , which is mixed convection parameter, S  heat 
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generating/absorbing parameter, Br Brinkman number, Pr Prandtl number, d  the boundary thickness and q  

the constant mass flux. The value of Pr  is chosen to be .0 71  throughout the work for air as the working fluid. 
 Figures 2 and 3 display the influence of Brinkman number Br on velocity and temperature. It can be seen 
that, velocity profile increases near the heated plate with increase in Br. This is true since, Brinkman number is the 
ratio of heat produced by viscous dissipation to heat transported by molecular conduction, therefore, the heat 
generated by viscous dissipation is higher than the external heating, which reduces the density of the fluid, hence 
increases the fluid flow and thermal boundary layer thickness. A reverse case was observed near the cold plate. 
This is because; the dissipation and wall conduction near the cold were low which increases the density of the 
fluid, hence retards the fluid flow. In Fig.3, the temperature profile increases with increase in Brinkman number. 
This is because; the heat generated by dissipation and wall conduction raises the temperature of the fluid. It is also 
observed that the inter-facial temperature grows on both surfaces due to the increase in dissipation heating.  
 

 
 

Fig.2. Velocity profile for different values of Br( . , , . , ).S 0 4 Gre 20 d 0 2 q 1     
 

 
 

Fig.3. Fluid temperature profile for different values of Br( . , , . , )S 0 4 Gre 20 d 0 2 q 1    . 
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 Figures 4 and 5 show the effect of heat generating/absorption parameter S  on velocity and 
temperature profiles. The velocity profile increases near the heated plate with increase in heat generation 
S 0 . This is physically true since heat generated raises the fluid temperature which in turn reduces the 
density and increase the convection current of the fluid hence increases the fluid flow. However the fluid 
flow at the heated wall decreases with increase in heat absorption S 0 . This is physically true since the 
heat generated is absorbed by the fluid which makes the fluid dense, therefore reduces the temperature and 
slows down the fluid flow as well. The temperature profile increases with increase in heat generation S 0 , 
since the heat generated by wall conduction and dissipation increases the fluid temperature. On the other 
hand, the temperature profile decreases with increase in heat absorption S 0 . Furthermore the inter-facial 
temperature is more pronounced at the heated plate than the cold plate. 
 

 
 

Fig.4. Velocity profile for different values of (Br . , , . , )S 0 2 Gre 20 d 0 2 q 1    . 
 

 
 

 

Fig.5. Fluid temperature profile for different values of (Br . , , . , )S 0 2 Gre 20 d 0 2 q 1    . 
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 The effect of mixed convection Gre  is depicted on Figs 6 and 7 for velocity and temperature profiles 
respectively. The velocity profile increases with increase in Gre  at the heated plate. This is true, when buoyancy 
forces dominate the viscous forces of the fluid, the velocity of the fluid increases, while near the cold plate a 
reverse case was observed. In Fig.7, the temperature profile at the heated plate increases with increase in mixed 
convection Gre . This is true, since the heat generated by wall conduction and dissipation is diffused by the 
buoyancy forces which in return increases the fluid temperature. Furthermore, the temperature profile decreases 
near the cold plate with increase in the thermal buoyancy forces. The effect of thermal buoyancy forces near the 
cold is so minimal and the inter-facial temperature is more influenced at the heated plate. 
 

 
 

Fig.6. Velocity profile for different values of mixed convection parameter 
(Br . , . , . , )Gre 0 2 S 0 4 d 0 2 q 1    . 

 

 
 

Fig.7. Fluid temperature profile for different values of mixed convection parameter 
(Br . , . , . , )Gre 0 2 S 0 4 d 0 2 q 1    . 
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 For different boundary layer thickness d , Figs 8 and 9 show the velocity and temperature profiles 
respectively. It can be seen from the graphs that, both the velocity and temperature profiles decrease near the 
heated plate with an increase in d . This is physically true since increase in the thickness of a material reduces the 
heat penetration through the system, which in return decreases the temperature as well as the velocity of the fluid. 
Toward the cold plate, the velocity and temperature profiles increase with increase in d . It is further observed 
that the inter-facial temperature is more affected by the boundary thickness at the cold plate. 
 

 
 

Fig.8. Velocity profile for different values of (Br . , . , , )d 0 2 S 0 4 Gre 20 q 1    . 
 

 
 

Fig.9. Fluid temperature profile for different values of (Br . , . , , )d 0 2 S 0 4 Gre 10 q 1    . 
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 Figures 10 and 11 display the velocity and temperature profiles for different values of constant mass 
flux q  respectively. The velocity profile increases with increasing q . This is true since, increase in pressure 
gradient leads to increase in constant mass flux which eventually leads to increase in fluid flow. The 
temperature profile decreases with increase in q  as shown in Fig.11.  
 

 
 

Fig.10. Velocity profile for different values of (Br . , . , , . )q 0 2 S 0 4 Gre 20 d 0 2    . 
 

 
 

Fig.11. Fluid temperature profile for different values of (Br . , . , , . )q 0 2 S 0 4 Gre 20 d 0 2    . 
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 Table 1 shows the variation of pressure gradient with the flow formation in the channel. It can be seen 
that, the pressure gradient increases with increase in mass flux q . An increase in mass flux requires an increase in 

pressure gradient to drive the flow. This is clearly obtained when Gre  is relatively small. However, for large 
value of Gre  in which natural convection dominance is pronounced, it requires a pressure gradient to act against 
the flow so as to maintain the desired flow mass flux, Hence the positive values of pressure at large Gre . The 
table further shows that, the pressure gradient required decreases when heat generation S 0  increases. This is 
physically true since growing heat generation enhances the buoyancy and increase the natural convection so that 
with little contribution from the forced convection, the decreased mass flux is achieved. 

Table 1. Variation of pressure gradient 
dP

dx
 
 
 

 for different values of S , q , d  and Gre  where Br .0 2 . 

 
S  

q   . ,d 0 2 Gre 10   . ,d 0 2 Gre 20   . ,d 0 5 Gre 20 
  dP

dx  
dP

dx  
dP

dx  

.0 4  .0 0875 .5 9271 .7 3219

.0 2  .0 3259 .5 4502 .6 3850
0 1 .0 5490 .5 0041 .5 5429
.0 2  .0 7567 .4 5887 .4 7955
.0 4  .0 9490 .4 2041 .4 1429
.0 4  .12 0875 .6 0729 .4 6781
.0 2  .12 3259 .6 5498 .5 6150

0 2 .12 5490 .6 9959 .6 4571
.0 2  .12 7567 .7 4113 .7 2045
.0 4  .12 9490 .7 7959 .7 8571

 

 Table 2 shows the critical values of Gre  at the cold plate y 1 . It can be observed from the table 
that, smaller critical values can be obtained by enhancing the viscous dissipation parameter Br or the heat 
generation parameter S 0 . This is so because as the viscous dissipation or heat generation increases, the 
convection current of the fluid increases hence, it requires a lower value of the mixed convection parameter 
to nullify the boundary friction on the plate. However, increasing the boundary plate thickness, mass flux and 
heat absorption raise the critical value of Gre . This is in line with the fact that, fluid temperature decreases 
thereby weakening the convection current so that an increased Gre  is required to nullify the boundary 
friction. A general view of this table indicates that, each phenomenon that boosts convection current requires 
a decrease in Gre  while the reverse case is observed for each activity that weakens the convection current. 
 

Table 2. Critical values of Gre at the stationary plate y 1  for different values of the flow parameters. 
 

S  Br  . ,d 0 2 q 1    . ,d 0 2 q 2   . ,d 0 5 q 2 
  1Gre  1Gre 1Gre  
.0 4  .58 4196 .133 1999 .137 6610
.0 2  .60 9293 .139 8852 .152 8247

0 .0 2 .63 5794 .146 9752 .170 7078
.0 2  .66 3715 .154 4536 .191 5662
.0 4  .69 3040 .162 2847 .215 2908
.0 4  .50 1215 .104 4946 .97 36120
.0 2  .52 3964 .109 1904 .106 4693

0 .0 4 .54 8072 .114 0664 .116 7303
.0 2  .57 3546 .119 0935 .128 1226
.0 4  .60 0352 .124 2328 .140 4834
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 Table 3 displays the shear stress   between the fluid and the plates. It is observed that, the skin 
friction increases at the heated with increase in mixed convection while it decreases with increase in 
boundary plate thickness. Increase in mixed convection Gre  leads to a decrease in skin friction while it 
increases with increase in boundary plate thickness d . On the other hand, when heat generation S 0  is 
increased, there is an increase in skin friction at the heated and cold plates while it decreases with an increase 
in heat absorption S 0 . 
 
Table 3.  Skin friction   at the heated plate y 0  and the cold plate y 1 , for different values of S , d  and 

Gre  where Br .0 2  and q 1 . 
 

S   . ,d 0 2 Gre 10   . ,d 0 2 Gre 20   . ,d 0 5 Gre 20 
 0  1 0 1 0  1
.0 4 .2 4946 .3 1844 .3 0053 .2 8722 .2 6570 .3 4347
.0 2 .2 4965 .3 1827 .3 0027 .2 8356 .2 6331 .3 3477

0 .2 4980 .3 1814 .2 9997 .2 8017 .2 6108 .3 2702
.0 2 .2 4991 .3 1803 .2 9963 .2 7766 .2 5900 .3 2021
.0 4 .2 4998 .3 1796 .2 9925 .2 7422 .2 5707 .3 1436

 
 The rate of heat transfer Nu has been captured in Tab.4. It shows that, the rate of heat transfer at the 
heated plate decreases with increase in heat generation S 0  while it increases at the cold plate except in the 
cases when the boundary plate thickness is increased to .0 5 . Increase in dissipating parameter Br leads to a 
decrease in heat transfer at the heated plate while it increases at the cold plate for relatively small heat 
generation S 0 . Decrease in heat transfer at the heated and increase in heat transfer at the cold plates is 
attributed to induced buoyancy of the hydrodynamic and thermal strength of the fluid brought about by the 
actions of growth in shear stress which leads to an increase in temperature difference near the cold plate and 
a reduction near the heated plate. It's further observed when the boundary plate thickness is increased, the 
rate of heat transfer on both the channel plates (heated and clod) decreases. 
 
Table 4.  Rate of heat transfer Nu at the heated plate y 0  and the cold plate y 1 , for different values of 

S , d  and Br where Gre 10  and q 1 . 
 

S   . ,Br .d 0 2 0 2   . ,Br .d 0 2 0 5   . ,Br .d 0 5 0 5 
 Nu0  Nu1 Nu0 Nu1 Nu0  Nu1

.0 4 .0 3709 .1 1646 .0 1883 .1 5641 .0 0882 .1 2181

.0 2 .0 4181 .1 1322 .0 2132 .1 5526 .0 1013 .1 2194
0 .0 4608 .1 1031 .0 2325 .1 5445 .0 0980 .1 2326
.0 2 .0 4997 .1 0769 .0 2471 .1 5390 .0 0827 .1 2534
.0 4 .0 5354 .1 0528 .0 2579 .1 5351 .0 0593 .1 2780

 
6. Conclusion 
 
 The present work studied effect of wall conduction on a steady mixed convection flow in the 
presence of viscous dissipation and boundary layer thickness. The work concluded that, the velocity profile 
increases near the heated plate with increase in Br and Gre  while it decreases towards the cold plate with 
increase in Br and Gre . Moreover, the velocity profile decreases near the heated plate with increase in heat 
absorption S 0  and d  and reverse cases were observed toward the cold plate. It is concluded that, the 
temperature profile increases with increase in Br and heat generation parameter S 0  while it decreases with 
increase in heat absorption S 0  and constant mass flux q . The inter-facial temperature is affected by the 
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governing flow parameters. It is further observed that the rate of heat transfers on heated and cold plates 
decrease with increasing boundary plate thickness d . Likewise, the shear stress decreases on the heated 
plate with growing d  and increases at the cold plate with increase in d . It is further concluded that, smaller 
critical values can be obtained by enhancing the viscous dissipation Br. When suppressing Brinkman 

number, pressure gradient and boundary plate thickness, i.e ( Br 0 ,
dP

0
dx

  and d 0 ), the work of Jha and 

Ajibade [17] is recovered, (see Tab.5). 
 
Table 5. Comparison of the present work and Jha and Ajibade (2010). 
 

S Jha and Ajibade (2010) 
Gr , .10 y 0 5   

Present Work 

Gr , . ,Br , ,
dp

10 y 0 5 0 d 0 0
dx

      

 Velocity Temperature Velocity Temperature 
1 1.065905580149630 0.443409441985037 1.066514756944445 0.443348524305556 

0.5 1.094022828643205 0.470298858567840 1.094102647569445 0.470294867621528 
-0.5 1.159295152484090 0.532964757624204 1.159206814236111 0.532960340711806 
-1 1.197469636622746 0.569746963662275 1.196723090277778 0.569672309027778 

 
Nomenclature 
 
 Br  Brinkman number 
 d   boundary plate thickness ( )L  

 Ec  Eckert number 
 Gre  mixed convection parameter 

 g   acceleration due gravity ( )2ms  

 k   thermal conductivity of the fluid ( )1 1Wm k   

 1k   thermal conductivity of the plate 1p ( )1 1Wm k   

 2k   thermal conductivity of the plate 2p  ( )1 1Wm k   

 1kr   thermal conductivity ratio between the fluid and plate 1p  

 2kr   thermal conductivity ratio between the fluid and plate 2p  

 P   pressure of the fluid ( )Pa  

 Pr  Prandtl number 
 1p   channel plate 1 

 2p   channel plate 1 

 0Q   heat generation/absorption coefficient 

 fT   temperature of the fluid ( )K  

 
1pT   temperature of the plate 1p ( )K  

 
2pT   temperature of the plate 2p ( )K  

 wT   temperature of the heated wall ( )K  

 0T   temperature of the cold wall ( )K  

 u   velocity of the fluid ( )1ms  

 x   distance along y -direction  

 y   distance along x -direction 

 1   thermal diffusivity of the plate 1p ( )2 1m s  
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 2   thermal diffusivity of the plate 2p  ( )2 1m s  

    thermal expansion coefficient ( )1k  

    kinematic viscosity ( )2 1m s  

    fluid density ( )3kg m  
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