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Forced convective heat and mass transfer flow of hydromagnetic, radiating and dissipative fluid over a porous 
nonlinear stretching sheet in the presence of non-uniform heat generation/absorption is investigated numerically. 
The system of nonlinear partial differential equations governing the physical problem is reduced to nonlinear 
ordinary differential equations by means of suitable similarity transformations and are solved numerically using 
Nachtsheim Swigert shooting iteration scheme together with fourth order Runge Kutta method. The effects of 
various physical parameters on velocity, temperature and concentration distributions are depicted graphically. 
The important findings of this study exhibited that the effect of non-uniform heat generation/absorption parameter 
and  radiation parameter have significant role in controlling thermal boundary layer thickness and temperature. 
Numerical values of the skin friction coefficient, temperature and concentration at the wall are shown in a tabular 
form. A comparison is made with previously published data which results in good agreement. 
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1. Introduction 
 
 In recent years, considerable attention has been paid to the study of boundary layer flow over a 
porous surface due to its importance in the engineering and practical life such as manufacturing technology, 
agriculture, ceramics and metallurgy process, engineering and soil mechanics. Further, investigations of 
laminar boundary-layer flow and heat transfer of an incompressible fluid over a nonlinear stretching surface 
has attracted the attention of many researchers due to their applications over a broad spectrum of science and 
technology disciplines, such as wire and fiber coating, aerodynamic extrusion of plastic sheets, cooling of 
metallic plates, drawing of polymer sheets, annealing and thinning of copper wires. 
 Sakiadis [1a, b] initiated the study of boundary layer flow over a continuous solid surface moving 
with constant speed. This problem has been extensively studied by taking into account various combinations. 
Crane [2] studied the boundary layer flow past a stretching sheet and he obtained a closed form solution. 
Hydromagnetic flow over a stretching sheet with heat transfer of a constant surface temperate was discussed 
by Chakrabarti and Gupta [3]. Gupta and Gupta [4] extended this problem for the case in the presence of 
suction or blowing at the moving surface. Ali [5] investigated the thermal boundary layer flow by 
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considering the nonlinear stretching surface. The flow and heat transfer over a stretching surface under 
various physical situations have been analysed by many researchers. Chiam [6] examined the numerical 
solution of MHD flow and heat transfer over a nonlinear stretching surface with power law velocity. Heat 
transfer over a nonlinear stretching surface with variable surface heat flux was studied by Elsayed and 
Elbashbeshy [7]. Anjali Devi and Ganga [8] analysed MHD nonlinear flow and heat transfer over a 
stretching porous surface of constant heat flux. 
 In a physical situation which deals with high temperatures, the role of thermal radiation effect on 
flow and heat transfer processes is important a Raptis and Massalas [9] discussed MHD flow over a flat plate 
in the presence of radiation. Raptis et al. [10] investigated the numerical solution of the flow field with the 
influence of both the magnetic field and radiation. Abbas and Hayat [11] analysed the radiation effects on 
MHD flow in a porous space.  
 The study of boundary layer problems with heat transfer, taking into consideration dissipation 
effects, adds a new dimension to it. Gebhart [12] was the first who analysed viscous dissipation effects in 
natural convection. Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and 
internal heat generation was studied by Vajravelu and Hadjinicolaou [13]. Cortell [14] studied the effects of 
radiation and viscous dissipation on the thermal boundary layer over a nonlinearly stretching sheet with PST 
and PHF case. Bataller [15] analysed the boundary layer flow and heat transfer with thermal radiation. 
Dissipation effects on nonlinear MHD flow over a stretching surface with prescribed heat flux were analysed 
by Anjali Devi and Ganaga [16]. Recently, Jamaludin et al. [17] investigated the numerical solution of heat 
transfer past a stretching sheet with viscous dissipation and internal heat generation with prescribed surface 
temperature.   
 However, the effects of non-uniform heat generation/absorption on the flow and heat transfer have 
not been taken into account in most of the investigations. The effect of non-uniform heat generation or 
absorption is more important in several physical problems such as fluids undergoing exothermic or 
endothermic process. The blowing/suction effect on hydromagnetic heat transfer by mixed convection from 
an inclined continuously stretching surface with non-uniform internal heat source/sink was first studied by 
Abo-Eldahab and El Aziz [18] and later the effects of non-uniform heat generation/absorption were analysed 
by several investigators under various physical situations. Recently, Anjali Devi et al. [19] investigated the 
effects of radiation on MHD flow over a non-linearly stretching sheet with non- uniform heat source/sink. 
 Combined heat and mass transfer ensues in many processes such as absorption, evaporation, drying, 
precipitation, membrane filtration and distillation. So it is necessary to investigate such combined features of 
momentum, heat and mass transfer in laminar flow over a porous nonlinear stretching surface. Ganga and 
Anjali Devi [20] analysed the hydromagnetic flow with heat and mass transfer over a stretching porous 
surface with prescribed heat, mass flux and viscous dissipation effects. Anjali Devi and Kayalvizhi [21] 
studied the nonlinear hydromagnetic flow with radiation and heat source over a stretching surface with 
prescribed heat and mass flux embedded in a porous medium. Jat et al. [22] discussed heat and mass transfer 
for viscous flow over a nonlinearly stretching sheet in a porous medium. Effects of radiation and partial slip 
on heat and mass fluxes of viscous dissipative flow over a stretching sheet were examined by Kayalvizhi et 
al. [23]. 
  Motivated by the investigations and applications mentioned above, the main objective of this 
analysis is to study the effects of heat and mass fluxes and non-uniform heat generation/absorption on 
hydromagnetic flow over a porous nonlinear stretching surface in the presence of thermal radiation and 
viscous dissipation. Using similarity transformations, the governing nonlinear partial differential equations 
are transformed into a system of nonlinear ordinary differential equations and then are solved numerically 
using the Nachtsheim Swigert shooting iteration technique along with the fourth order Runge-Kutta 
integration method.   
 
2. Mathematical formulation  
 
 Consider a steady, laminar, two-dimensional hydromagnetic flow of a viscous, incompressible 
electrically conducting and radiating fluid over a porous nonlinear stretching surface in the presence of non-
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uniform heat generation/absorption and viscous dissipation with prescribed heat and mass fluxes. The flow is 
generated due to stretching of the surface that is caused by a simultaneous application of two equal and 
opposite forces along the x-axis. Keeping the origin fixed, the surface stretches non-linearly with the velocity 
uw(x).The flow is assumed to be in the x-direction, which is chosen along the surface and the y-axis is 
perpendicular to it and u and v are the fluid tangential velocity and normal velocity, respectively. A 
transverse magnetic field B  is applied to the sheet.  

The magnetic Reynolds number mR is assumed to be small and hence when ,mR 1  the induced 

magnetic field is assumed to be negligible in comparison to that of the imposed magnetic field [cf. Davidson 
[24]]. Since the flow is steady, curl E = 0 and also div E = 0 in the absence of surface charge density. Hence 
E = 0 and it is also assumed that the electric field due to polarization of charges is negligible. The fluid is 
considered to be a gray, absorbing, emitting radiation but non-scattering medium. The radiative heat flux in 
the x-direction is considered to be negligible in comparison to that in the y-direction and the boundary layer 
approximations are made. The Rosseland approximation is used in the energy equation to describe the 
radiative heat flux. The flow configuration and the co-ordinate system are shown in Fig.1. 

 

 
Fig.1. Schematic diagram. 

 
 The governing equations of the problem under consideration are given in [14] 
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where k is the thermal conductivity, σ is the electrical conductivity,  is the density,   is the viscosity, 
 
is 

the kinematic viscosity, T is the flow temperature, C is the fluid concentration, Cp is the specific heat at 
constant pressure, D is the coefficient of mass diffusivity. In order to obtain a similarity solution, a special 

form of the magnetic field such as 2

1n

0 xBB


  is chosen following Chiam [6] where B0 is the constant 

magnetic field, and q   is the non-uniform heat generation/absorption [non-uniform heat source/sink] 
defined as [18] 
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wu x bx , b is a constant, n is the power-law index, Tw  is the temperature of the wall, A* and B* are 

exponentially decaying parameters of space and temperature dependent internal heat generation/absorption 
respectively. Here A* > 0 and B* > 0 correspond to internal heat generation while A* < 0 and B* < 0 
correspond to internal heat absorption. The Rosseland approximation [10] for the radiation heat flux is given 
by  
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where   and k  are the Stephan-Boltzman constant and Rosseland mean absorption coefficient. It is 
assumed that [15] the temperature differences within the flow are such that the term T4 may be expressed as a 
linear function of temperature. Expanding T4 using the Taylor series and neglecting higher order terms yields  
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 Substituting Eqs (2.6) and (2.7) in Eq.(2.3) we have 
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constants, r is the heat flux exponent, m is the mass flux exponent, T∞ is the temperature of the ambient fluid, 
C∞ is the concentration of the ambient fluid.  
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3. Similarity transformations 
 
 The mathematical analysis of the problem is simplified by introducing the following dimensionless 
variables f and the similarity transformations which are defined by Cortell [14] 
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 Employing the transformations (3.1) and (3.2), the nonlinear partial differential Eqs (2.2)-(2.4) are 
transformed to the following nonlinear ordinary differential equations [14]  
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 The important physical quantities of interest are the skin friction coefficient, Nusselt number and 
Sherwood number which are defined as   
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where the wall shear stress w , the surface heat flux wq  and mass flux at the surface wm  are given by 
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 Substituting Eq.(3.8) in Eq.(3.7), the skin friction coefficient, local Nusselt number and Sherwood 
number are obtained as  
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4. Numerical solution 
 
 The set of administering Eqs (3.3)-(3.5) with boundary conditions (3.6) constitute a highly nonlinear 
boundary value problem of third order in f and second orders in and  . Since the exact solution does not 
seem to be feasible for the system of nonlinear equations, a numerical solution is sought. The nonlinear 
boundary value problem is converted into a nonlinear initial value problem using the prominent shooting 
method, namely, the Nachtsheim Swigert [25] shooting iteration scheme to satisfy asymptotic boundary 
conditions. The resulting initial value problem is solved using the Runge Kutta fourth order technique for 
different values of the physical parameters.  
 The suitable guess values for ( ), ( ) and ( )f 0 0 0    are obtained using the Nachtsheim Swigert 
iteration technique and later initial value problems are solved with the assistance of the classical fourth order 
Runge Kutta method. The step size h = 0.01 is employed to obtain the numerical solutions with five decimal 
place accuracy as a criterion of convergence. The convergence criterion is based on the difference of the 
present and the previous iteration values which matches up to a tolerance of 10-5 and the choice of ηmax= 7 
confirmed that entire numerical results approached the pertinent asymptotic values. The numerical solutions 
are obtained for various values of the physical parameters for the flow field, dimensionless temperature and 
concentration distributions. Numerical values of the skin friction coefficient, temperature and concentration 
at the wall are also achieved. 
 
5. Results and discussion  
 
 A numerical solution of the physical problem is sought for different values of the physical parameters in 
order to have a clear physical insight into the problem. The effects of various physical parameters such as the 
magnetic interaction parameter, power-law index, suction parameter, Prandtl number, space dependent heat 
generation/absorption parameter, temperature dependent heat generation/absorption parameter, radiation 
parameter, Eckert number and Schmidt number are displayed graphically through Figs 2-16a.      
 In order to verify the validity and accuracy of the numerical computations, a comparison of the 
present results with earlier published data has been made and the results are displayed through Tab.1. A 
comparative study of the skin friction coefficient for different values of n in the absence of the magnetic 
interaction parameter (M2 = 0) and suction parameter (S = 0) with the existing results of Cortell [14] 
elucidates the fact that the present results are in excellent agreement with these of Cortell [14] which also 
validate the accuracy of numerical computations.  
 

Table 1. Comparative study of ( )f 0  for various values of n. 
 

n 
( )f 0  

Cortell [14] Author’s result 
0.1 0.705897 0.705925 
0.3 0.815696 0.815714 
0.6 0.918172 0.918178 
0.9 0.983242 0.983247 
1.0 1.000000 1.000000 
1.5 1.061587 1.061601 
3.0 1.148588 1.148593 

10.0 1.234875 1.234875 
 

 Further, the wall temperature  0  for various values of the power-law index, radiation parameter, 

Prandtl number and Eckert number in the absence of A*=0, B*=0 and S=0 is compared with this reported by 
Cortell [14] which is displayed through Tab.2 and it is noted that the results are found to be in good 
agreement. 
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Table 2.  Comparative study of wall temperature  0  for various values of n, Pr, NR and Ec when A*= 0, 

B*= 0 and S = 0. 
 

n Pr NR EC 
 0  

Cortell [14] Author’s result 

1.5 1.0 1.0 0.1 1.210117 1.210060 
3.0    1.092587 1.092590 

10.0    0.998433 0.998432 
1.5 1.0 1.0 0.1 1.210117 1.210005 

 2.0   0.786038 0.785907 
 5.0   0.473743 0.473736 

1.5 2.0 1.0 0.1 0.786038 0.785907 
  2.0  0.647865 0.647834 
  5.0  0.557023  0.557001 

1.5 2.0 1.0 0.05 0.774378  0.774374 
   0.1 0.786038 0.785907 
   0.5 0.878262 0.878262 

 
 Figure 2 illustrates the influence of the magnetic field on the dimensionless velocity distribution. It is 
clearly noted that the effect of the magnetic field retards the velocity at all points of the flow field. Since the 
applied magnetic field produces a drag in the form of Lorentz force, which opposes the flow field, the 
velocity and momentum boundary layer thickness diminish in magnitude with the increase of the magnetic 
interaction parameter.  
 The dimensionless velocity for different values of the power-law index n is plotted in Fig.3. An 
increasing value of the power-law index is to reduce the dimensionless velocity and momentum boundary 
layer thickness. However, this effect is less significant. Figure 4 shows the effect of the suction parameter S 
on the dimensionless velocity distribution. It is noted that the velocity decelerates with increasing values of 
the suction parameter, which also leads to a reduction in momentum boundary layer thickness. 
 

     
 

Fig.2. Dimensionless velocity profiles for different 
values of M 2. 

Fig.3. Dimensionless velocity profiles for different 
values of n. 

 
The effect of the magnetic field on the dimensionless temperature distribution is depicted in Fig.5. 

The effect of the magnetic field has the tendency to enhance the temperature and thermal boundary layer 
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thickness. This happens due to Lorentz force, which produces a considerable amount of frictional heating. 
Further, the increase in the magnetic interaction parameter leads to thickening of the thermal boundary layer. 
The dimensionless temperature distribution for different values of the power-law index n is exhibited in 
Fig.6. It is noted that an increase in n leads to a decline in temperature.  
 

      
 
Fig.4. Dimensionless velocity profiles for different 

values of S. 
Fig.5. Temperature distribution for different 

values of M2. 
 

      
 

Fig.6. Effect of n on the temperature distribution. Fig.7. Temperature distribution for different  
          values  of S. 

 
The influence of the power-law index on the thermal boundary layer thickness becomes less 

significant. Figure 7 illustrates the impact of the suction parameter S on the dimensionless temperature 
distribution. This implies that the temperature and thermal boundary thickness decrease for increasing values of 
the suction parameter. Figure 8 describes the salient effect of the Prandtl number Pr on the dimensionless 
temperature distribution. As the value of the Prandtl number increases, both the temperature and thermal 
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boundary layer thicknesses get decreased due to the lowering of thermal conductivity. Henceforth, the Prandtl 
number controls the relative thickness of the thermal boundary layer. The influence of the space dependent heat 
generation/absorption parameter A* on the temperature distribution is shown in Fig.9. It is observed that energy 
is created in the boundary layer for increasing values of the heat generation parameter A* (A* > 0). Physically, 
exothermic reactions which ensued in the system and a significantly large amount of heat increase the 
temperature distribution of the fluid. In case of heat absorption (A* < 0), energy was absorbed in the boundary 
layer, hence the temperature reduces considerably with the increasing values of heat absorption.  

      
 

Fig.8. Temperature distribution for different values of Pr. Fig.9. Effect of A* on the temperature distribution. 
 

Figure 10 depicts the impact of the temperature dependent heat generation/absorption parameter B* 
on the dimensionless temperature. Energy is produced in the boundary layer for increasing values of the 
temperature dependent heat generation parameter B* (B* > 0). Hence the thermal boundary layer thickness 
increases. While in the presence of heat absorption B* < 0, energy is absorbed for increasing values of B*. 
Hence, the thermal boundary layer thickness as well as the temperature decrease. 
 

      
 

Fig.10. Temperature distribution for different   
values of B*. 

Fig.11. Temperature distribution for different 
values of NR. 
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The effect of the radiation parameter NR on the dimensionless temperature is illustrated in Fig.11. 
When the value of the radiation parameter is amplified, the temperature declines and consequently the 
thermal boundary layer thickness become smaller. This is consistent with the well-known fact that the 
thermal boundary layer thickness decreases rapidly with increasing values of the radiation parameter. Figure 
12 demonstrates the dimensionless temperature distribution for different values of the Eckert number Ec. 
Increasing values of the Eckert number cause the storage of energy in the fluid region as a result of 
dissipation which is caused by viscosity thus creating heat due to frictional heating. It reveals that increasing 
values of the Eckert number upgrade the temperature as well as the thermal boundary layer thickness.  

 

      
 

   Fig.12. Temperature distribution for different  
              values of Ec. 

Fig.13. Concentration distribution for different   
           values of M 2. 

 

Figure 13 elucidates the effect of the magnetic field on the dimensionless concentration distribution. 
An increase in the magnetic interaction parameter enhances the dimensionless concentration and the 
thickness of concentration boundary layer. The influence of the power-law index n on the dimensionless 
concentration is shown in Fig.14. It is noticed that the concentration distribution and concentration boundary 
layer thickness decrease with an increase of the power law index n. 

 

      
 

Fig.14. Concentration distribution for different  
values of n. 

Fig.15. Concentration distribution for different         
           values of S. 
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The dimensionless concentration distribution for various values of the suction parameter S is 
illustrated in Fig.15. It is clear that the suction parameter reduces the dimensionless concentration and also 
boundary layer thickness for its increasing values. Figure 16 shows the concentration distribution for 
different values of the Schmidt number Sc. It is observed that the effect of the Schmidt number is to decrease 
the dimensionless concentration. Since an increase in the Schmidt number results in an increase of the 
viscous diffusion rate, it reduces the concentration boundary layer thickness. To reveal the convergence part, 
Fig.16a is presented. 

 

   
 

Fig.16. Concentration distribution for different values of Sc. Fig.16a. Effect of Sc on concentration distribution. 

The numerical results of the skin friction coefficient for various values of the magnetic interaction 
parameter, power-law index and suction parameter are given in Tab.3 and it is seen that the skin friction 
coefficient increases in magnitude for their increasing values.  
 
Table 3. Skin friction coefficient for various values of M 2, n and S. 
 

M 2 n S ( )f 0  ( ) ( )2 n 1 f 0 

0.0 3.0 1.5 2.10472 5.95299 
0.5   2.28050 6.45017 
1.0   2.43744 6.89406 
1.5   2.58065 7.29911 
1.5 1.0 1.5 2.50000 7.07100 

 2.0  2.55408 7.22396 
 3.0  2.58065 7.29911 
 4.0  2.59644 7.34377 

1.5 3.0 1.5 2.58065 7.29911 
  2.0 2.94438 8.32788 
  2.5 3.33252 9.42570 
  3.0 3.74046 10.5795 
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Table 4 depicts the numerically computed values of the non-dimensional rate of heat transfer for 
different values of the physical parameters M 2, n, S, Pr, A*, B*, NR and Ec. The dimensionless rate of heat 
transfer gets enhanced for increasing values of the power-law index, suction parameter, Prandtl number, non-
uniform heat sink (A* < 0, B* < 0) parameter. However, this trend is reversed for increasing values of the 
magnetic interaction parameter, Eckert number, radiation parameter and non-uniform heat source (A* >0,  
B* >0) parameter.  
 
Table 4. Nusselt number for various values of M 2, n, S, Pr, A*, B*, NR and Ec. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5 shows the numerical results of the non-dimensional rate of mass transfer for various values 

of the magnetic interaction parameter, power-law index, suction parameter and Schmidt number. The non-
dimensional rate of mass transfer is reduced for increasing values of M 2 and enhanced for increasing values 
of n, S and Sc.  

Physical parameters  0   ( )
R

R

3N 4 n 1 1

N 2 0

  
   

 

M 2 = 0.0 0.88854 2.65272 
         0.5 0.91073 2.58809 
         1.0 0.92989 2.53476 
         1.5 0.94684 2.48938 
n = 1.0 1.12761 1.47808 
        2.0 0.99929 2.04266 
        3.0 0.94684 2.48938 
        4.0 0.91831 2.86964 
S = 1.5 0.94684 2.48938 
       2.0 0.83049 2.83814 
       2.5 0.73406 3.21097 
       3.0 0.65420 3.60295 

Pr = 0.71 0.94684 2.48938 
         1.5 0.48593 4.85059 
         2.3 0.33858 6.96157 
         7.0 0.13461 17.51019 
A*= -0.2 0.87232 2.70204 
        -0.1 0.89717 2.62720 
         0.1 0.94684 2.48938 
         0.2 0.97168 2.42574 
B*= -0.2 0.87628 2.68983 
        -0.1 0.89693 2.62791 
         0.1 0.94684 2.48938 
        0.2 0.97822 2.40953 
NR= 2.0 0.94684 2.48923 
        3.0 0.83505 2.44617 
        5.0 0.74557 2.40249 
        109 0.61072 2.31563 
Ec = 0.0 0.94213 2.50183 

           0.01 0.94684 2.48938 
           0.05 0.96571 2.44074 

         0.1 0.98930 2.38254 



Effects of non-uniform heat generation/absorption ... 49 

Table 5. Sherwood number for various values of M 2, n, S and Sc. 
 

 
M 2 

 
n 

 
S 

 
Sc 

 
( )0  

( )

n 1 1

2 0


  

0.0 3.0 1.5 0.62 0.61420 2.30251 
0.5    0.62493 2.26297 
1.0    0.63423 2.22979 
1.5    0.64250 2.20109 
1.5 1.0 1.5 0.62 0.70606 1.41631 

 2.0   0.66195 1.85014 
 3.0   0.64250 2.20109 
 4.0   0.63155 2.50352 

1.5 3.0 1.5 0.62 0.64250 2.20109 
  2.0  0.56103 2.52072 
  2.5  0.49384 2.86368 
  3.0  0.43853 3.22486 

1.5 3.0 1.5 0.22 1.61979 0.87308 
   0.62 0.64250 2.20109 
   0.78 0.52732 2.68186 
   1.3 0.34194 4.13581 

 
6. Conclusion  
 
 In this paper, numerical investigation has been carried out to analyse hydromagnetic heat and mass 
transfer flow of an electrically conducting and radiating fluid over a porous nonlinear stretching surface with 
prescribed heat and mass fluxes in the presence of non-uniform heat generation/absorption and viscous 
dissipation. Numerical results are obtained for various values of physical parameters and their effects on the 
flow field, temperature and concentration distributions as well as on the skin friction co-efficient, non-
dimensional rate of heat and mass transfer are analysed. The numerical results are found to be in excellent 
agreement with those of Cortell [14], justifying the adopted numerical scheme. On the basis of the above 
study, the following observations are made: 

 The effect of the magnetic field declines the momentum boundary layer thickness, non-dimensional 
rate of heat and mass transfer whereas it enhances the dimensionless temperature, concentration and 
skin friction co-efficient in magnitude. The velocity and temperature of the hydromagnetic flow can 
be controlled by suitably regulating the strength of the external magnetic field. 

 The power-law index decelerates the dimensionless velocity, reduces the temperature and 
concentration distributions whereas it enhances the non-dimensional rate of heat and mass transfer 
and skin friction co-efficient in magnitude. 

 The radiation parameter and Prandtl number diminish both the temperature and thermal boundary 
layer thickness. The non-dimensional rate of heat transfer is enhanced by the Prandtl number 
whereas the effect of the radiation parameter is to suppress it. 

 The suction parameter has the tendency to reduce the velocity, temperature, concentration boundary 
layer thickness while, it enhances the skin friction co-efficient in magnitude and the non-dimensional 
rate of heat and mass transfer.  

 The energy dissipation due to viscosity broadens the thermal boundary layer thickness but it 
decreases the non-dimensional rate of heat transfer. 

 The space dependent heat generation parameter A* (A* > 0) and temperature dependent heat 
generation parameter B* (B*>0) increase the thermal boundary layer thickness as well as the 
temperature, while the space dependent heat absorption (A*<0) and temperature dependent heat 
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absorption (B*<0) have the opposite effect to reduce both the temperature and thermal boundary 
layer thickness. It is also noted that the non-dimensional rate of heat transfer decreases for increasing 
heat generation parameter whereas it enhances due to heat absorption parameter for its increasing 
values.   

 The Schmidt number has a significant influence on the concentration boundary layer thickness so as 
to reduce it, whereas its effects on the non-dimensional rate of mass transfer show an opposite trend.  
It is worth mentioning that the present study may find applications in space technology, 
exothermic/endothermic processes, geothermal energy systems and cooling of nuclear reactors. 

 
Nomenclature 
 
 A*  space dependent heat source/sink parameter 
 B*   temperature dependent heat source/sink parameter 
 B0  magnetic field strength 
 b  dimensional constant 
 C  concentration of the fluid 
 Cf   skin friction coefficient 
 Cp   specific heat at constant pressure 
 C∞  concentration of the ambient fluid 
 D  mass diffusivity coefficient 
 E0,E1  positive constant 
 Ec  Eckert number 
 k   thermal conductivity 
 k*  Rosseland mean absorption coefficient 
 M 2 magnetic interaction parameter 
 mw  mass flux at the surface 
 Nux   Nusselt number 
 n   power-law index 
 Pr  Prandtl number 
 q'''  non-uniform heat source/sink parameter 
 qr  radiative heat flux 
 qw  surface heat flux 
 Rd  radiation parameter 
 Rex  local Reynolds number 
 r  heat flux exponent 
 S  suction parameter 
 Sc  Schmidt number 
 Shx  Sherwood number 
 T  fluid temperature 
 Tw   temperature of the sheet 
 T∞  temperature of the free stream fluid 
 vw(x)  suction velocity  
 β  mass flux exponent 
 η  similarity variable 
 µ  viscosity of the fluid 
 ν  kinematic viscosity of the fluid 
 ρ  density of the fluid 
 σ  electrical conductivity of the fluid 
 σ*  Stefan Boltzmann constant 
 τw   shear stress at the wall 
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