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The present study deals with the propagation of waves in a transversely isotropic micropolar generalized 
thermoelastic material possessing temperature dependent elastic properties. After developing the solution for LS, 
GL and CT theory, the phase velocities and attenuation quality factor have been obtained. The expressions for 
amplitudes of stresses, displacements, microratation and temperature distribution have been derived and 
computed numerically. The numerically evaluated results have been plotted graphically. Some particular cases of 
interest have also been obtained. 
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1. Introduction 
 
 Eringen [1], purposed the concept of microcontinuum theory by considering the microstructure effects, 
although the theory itself was still a continuum formulation. At the initial stage, the micro-continuum theory 
consists of the micropolar, microstretch and micromorphic theories, depending on the number of microdegrees 
of freedom involved. These theories turn out to be a potential tool to model the behavior of the material with a 
complicated microstructure. For instance, in a foam composite the size of the reinforced phase is comparable to 
the intrinsic length scale of the foam, so in this situation the consideration of microstructure of the foam to 
some extent is must. Hence, a high order continuum model must be assigned for the foam matrix. A similar 
behavior is observed in the case of nanocomposites where the scale of the reinforced phase is very small and 
the surrounding matrix cannot be homogenized as a simple material (Cauchy medium). 
 It is predicted from the classical theory of heat conduction that the effect of thermal disturbance from 
a heat conducting material subjected to a thermal disturbance will be felt instantaneously at distances 
infinitely far from the point of its origin. This forecast seems unrealistic from a physical point of view, in 
particular, for problems involving sudden heat inputs. This inadequacy of the theory stems from the 
governing parabolic type partial differential equation of temperature distribution, which allows an infinite 
speed for thermal signals. During last three decades this drawback of non- classical theories has been 
overcome by considering the modified version of classical Fourier’s law of heat conduction, which involves 
hyperbolic-type heat transport equation and admit finite speed for thermal signals. 
 Nowacki [2] and Eringen [3] included the thermal effects in the micropolar theory and developed the 
micropolar theory of thermoelasticity. The basic equations of linear theory of micropolar thermoelasticity 
were also derived by Tauchert et al. [4]. Dost and Tabarrok [5] obtained the equations for micropolar 
generalized thermoelasticity by considering the Green -Lindsay theory. Dhaliwal and Singh [6] presented a 
review on the theory of micropolar thermoelasticity. The micropolar theory including heat-flux among the 
constitutive variables was developed by Chandrasekhariah [7]. 
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 The elastic modulus is an important physical property of materials reflecting the elastic deformation 
capacity of the material when subjected to an applied external load. Most of the investigations were made 
under the assumption of the temperature-independent material properties, which limit the applicability of the 
solutions obtained to certain ranges of temperature. Modern structural elements are often subjected to 
temperature change of such magnitude that their material properties may no longer be regarded as having 
constant values even in an approximate sense. Fernandes and Stouffer [8] gave the general theory for elastic 
solids with temperature dependent mechanical properties. Lomarkin [9] showed that at high temperature the 
material characteristics, such as the modulus of elasticity, coefficient of thermal expansion and thermal 
conductivity are no longer constants. The thermal and mechanical properties of the materials vary with 
temperature, so the temperature-dependence of the material properties must be taken into consideration in the 
thermal stress analysis of these elements. 
 Various authors investigated the problem of based on temperature dependent elastic modulus for the 
thermoelastic, thermo-viscoelastic, micropolar medium (Ezzat et al. [10], Othman [11], Aouadi [12], Othman et al. 
[13]).  
 In the present paper, we discussed the propagation of waves in a transversely isotropic micropolar 
generalized thermoelastic half space under temperature dependent properties. The phase velocities and 
attenuation quality factors are obtained and plotted numerically for different theories of thermoelasticity. The 
expressions for the amplitude ratio of components of displacement, microrotation, stresses and temperature 
distribution are also obtained. Some special cases of interest are also deduced. 
 
2. Basic equations 
        
          The basic equations in the dynamic theory of plain strain of a homogeneous, transversely isotropic 
micropolar generalized thermoelastic solid in the absence of body forces, body couples and heat sources are 
given by: 
 
Balance laws 
 

  ,kl k lt u  , (2.1) 

 

 
 ,kl k lmn mn lm t j     ,                                                                                             (2.2) 

                      
and the heat conduction equation is given by 
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2
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The constitutive relations can be given as 
 

                  klmn mn klmn mn kl 1t A E G 1 Tkl t

        
,                                                            (2.4) 

 

                    kl lkmn mn mnlk mnm B E G                                                                                          (2.5) 
  
where the deformation and wryness tensor are defined by 
 
   , ,,mn n m nmk k mn m nE u       . (2.6) 

 
 The list of symbols are given in the nomenclature. 
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3. Problem formulation and solution 
 
 Following Slaughter [14], appropriate transformations have been used on the set of Eqs (2.1)-(2.5) to 
derive equations for a transversely isotopic micropolar generalized thermoelastic medium.  
 We consider a homogeneous, transversely isotropic micropolar generalized thermoelastic half space 
initially in undeformed state and at uniform temperature 0T . We take the origin of the coordinate system on 

the top plane surface and the 3x  axis pointing normally into the half-space, which is thus represented by 

3x 0 . We choose the 1x -axis along the direction of wave propagation so that all particles on a line parallel 

to the 2x -axis are equally displaced. Therefore, all the field quantities will be independent of 2x  coordinate. 
Further, the disturbance is assumed to be confined to the neighborhood of the free surface and hence 
vanishes as 3x  . So, we assume the components of the displacement and microrotation vector of the 
form 
 

  
( , , )1 3u 0 uu ,          ( , , )20 0  . (3.1) 

 
 Thus, the field equations reduce to 
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where , , , , ,1 11 1 13 3 3 31 1 33 3 1 56 55 2 66 56 2 1A A A A K A A K A A X K K                 and we have 

used the notations , , , ,11 1 33 3 12 7 13 6 23 5      for the material constants. 

 For the Lord and Shulman (L-S) theory we take ,1 00 n 1   , for the Green and Lindsay (G-L) [15] 

theory we take ,1 0 00 n 0     , and for the coupled theory (CT) ,1 0 00 n 0     . 
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 Our aim is to investigate the effect of temperature dependence of modulus of elasticity, keeping the 
other elastic and thermal parameters as constant. Therefore we assume 
 

  
 
 
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where i = 1, 3,  *( )f T 1 T   and *  is called the empirical material constant. Using Eq.(3.9) in Eqs 

(3.2)-(3.5) yields 
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where          *R 1 1 T  .                                                                       

 
 For further considerations, it is convenient to introduce the dimensionless variables defined by 
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where   is the characteristic frequency of the material and 1c  is the longitudinal wave velocity of the 
medium. 
 
4. Plane wave propagation 
 
 Let  , ,1 3p 0 pp  denote the unit propagation vector, c and ξ are respectively the phase velocity and 

the wave number of the plane waves propagating in the 1 3x x  plane.  
 We assume plane wave solution of the form 
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( )( , , , ) ( , , , ) 1 3i x mx ct
1 3 2 3 2 1u u T 1 u T u e                                                                  (4.1) 

 
where   is the wave number, c   is the angular frequency and c is the phase velocity of the wave, m is 

the unknown parameter which signifies the penetration depth of the wave, , ,3 2u T , are respectively, the 

amplitude ratios of the displacement 3u , microrotation 2  and temperature distribution to that of the 

displacement 1u . 
   With the help of Eqs (3.14) and (4.1) on the set of Eqs (3.10)-(3.13), and solving the resulting 
equations for non-trivial solution of , , and1 3 2u u T   
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where     
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    Solving the determinant (4.2), a quartic equation in 2c  is obtained that can be written as  
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 Equation (4.4) is quartic in 
2c , therefore, the roots of this equation give four values of 2c . Each 

value of 2c  corresponds to a velocity of propagation of four possible waves. The waves with velocities  

jc (j = 1, 2, 3, 4) correspond to four types of quasi-coupled waves. The complex coefficients A, B, C, D in 
Eq.(4.4), imply that four roots of this equation may be complex. The complex velocity of a quasi-wave ’j’, 

i.e., j R Ic c ic   j = 1, 2, 3, 4, defines the phase propagation velocity  2 2
j R I RV c ic c   and attenuation 

quality factor /1
j I RQ 2c c    for the corresponding wave. Therefore, the four waves propagating in such a 

medium are attenuating waves. Let us name these four waves: quasi-longitudinal displacement (qLD) wave, 

quasi-coupled transverse microrotational (qTM) wave, quasi-coupled transverse displacement(qTD) wave 

and quasi-thermal wave (qT), that are propagating with the descending phase velocities jV , (j=1, 2, 3, 4), 
respectively. 
 
5. Boundary condition 
 
 For a stress-free surface 3x 0 , the boundary conditions are:  
 
(i) Vanishing of the normal stress component, i.e., ,33t 0                                                              (5.1)  
 
(ii) Vanishing of the tangential stress component, i.e., ,31t 0                                                         (5.2) 
 
(iii) Vanishing of the tangential couple stress component, i.e., ,32m 0                                          (5.3) 
 

(iv) Vanishing of the temperature gradient field, i.e., 
3

T
hT 0

x


 


                                                  (5.4) 

 
where h is the surface heat transfer coefficient; 
 
  h 0  corresponds to thermally insulated boundaries and 
 
  h   refers to isothermal boundaries.                                    (5.5) 
 
6. Amplitudes of stresses and temperature distribution 
 
 In this section, the expression for the amplitude of the components of displacement, microrotation, 
stresses and temperature distribution for plane waves can be obtained as 
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where,     
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7. Particular case 
 
(i) Substituting R=1 in the above equations, we will obtain the resulting expressions for the micropolar 

generalized thermo elastic half-space.  
(ii) Taking R=1, ,11 33A A 2 K       ,55 66A A K     , , ,13 56 66 77A A B B        ,1 2      

, with /1 3 1 2K K X 2 K        we obtain the corresponding expressions for the isotropic 
micropolar generalized thermoelastic half space. 

 
8. Numerical results and discussion 
 
 In order to illustrate theoretical results obtained in the preceding sections, we now present some 
numerical results. For numerical computation, we take the value for relevant parameters for the transversely 
isotropic micropolar thermoelastic solid as 
 

. , . , . , . ,10 2 10 2 10 2 10 2
11 33 55 66A 17 8 10 Nm A 1 843 10 Nm A 4 357 10 Nm A 4 42 10 Nm            

 

. , . , . , . .10 2 10 2 9 9
13 56 77 66A 7 59 10 Nm A 1 89 10 Nm B 2 63 10 N B 5 648 10 N          

 

. / ,31 74 Kg m     . 2j 0 02m ,   * . /1K 1 7 Cal K ,   * . /C 1 04Cal K ,   T 298 K ,   . , . .0 10 4 s 0 8 s     
 
 Figures 1 and 2 show the variation of phase velocities iV , i = 1,..4, and attenuation quality factors 

iQ ,i = 1,..4. In these figures the solid curve represents the case of a transversely isotropic micropolar 

generalized thermoelastic (MTITD) half space with temperature dependent properties, while the dotted curve 
represents the case of a micropolar transversely isotropic generalized thermoelastic (MTITI) half space 
without temperature dependent properties. The comparison of three theories of generalized thermoelasticity, 
viz, the coupled thermoelasticity (C-T), Lord and Shulman (L-S) theory and Green Lindsay (G-L) theory, 

have been shown in all the graphs. The solid lines and broken lines correspond to the variation for  = 

0(TD),  = 0.5(TI), respectively. The solid and dotted lines without a center symbol correspond to the C-T 
theory, solid and dotted lines with a center symbol )(  oo  correspond to the L-S theory and the solid and 

dotted lines with a center symbol )(  correspond to the case of G-L theory.   
 It can be seen from Fig.1a that the value of phase velocity V1 starts with a sharp initial decrease 
within the interval (0, 5), then attains a constant value, for all the three theories of thermoelasticity. The 
variation pattern of MTITD and MTITI is similar with difference in their amplitudes. Figure b shows that the 
value of phase velocity V2, for all the cases sharply increases within the interval (0, 1) and then sharply 
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decreases to attain a constant value at the end. The amplitude of variation for MTITI is more as compared to 
MTITD. It is evident form Fig.c that the value of phase velocity V3, for the case of MTITD and for all the 
theories of thermoelasticity, sharply decreases in a short interval and then attains a constant value. Similar 
variations are observed for the case of MTITI, when the case of L-S theory is concerned, while for the case 
of G-L and C-T theories, its value smoothly decreases to attain a constant value with an increase in 
frequency. The values of amplitudes for the case of MTITD are less as compared to those of MTITI. Figure d 
represents the variation in the value of phase velocity V4 with frequency. It can be seen from this figure that 
the variation pattern is similar to the case of Fig.c except with difference that the variations for MTITD in the 
present figure are similar to those of MTITI of Fig.c and vice-versa, with difference in there amplitudes.  
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Fig.1. Variations in the phase velocity (a) V1 (b) V2 (c) V3 (d) V4  of waves with respect to frequency. 
 

 Figure 2 represents variations in the value of attenuation quality factors Qi, i=1, ... 4. It is shown in 
Fig.a that the value of attenuation quality Q1 for the case of MTITD increases with an increase in frequency, 
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for all the theories. For MTITI and for L-S theory its value increases with an increase in frequency and 
flattens out to become constant at the end, while for G-L and C-T theories its value initially decreases and 
then attains a constant value. Figures b and d represent the variation of attenuation quality factors Q2,Q4 
with frequency. It can be seen from these Figures that for the case of MTITD the value of attenuation quality 
factor shows a small hump within the interval (0, 3) and then attains a constant value for all the 3 theories, 
while for Q4 it shows a large hump and the remaining pattern of variation is similar to those depicted in 
earlier case. While for MTITI, its value initially decreases, then increases to attain a constant value with an 
increase in frequency. It can be seen from Fig.c that the value of attenuation quality factor Q3 sharply 
increases, then decreases and then attains a constant value for all the cases.  
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Fig.2.  Variations in the attenuation quality factor (a) Q1
-1 (b) Q2

-1 (c) Q3
-1 (d) Q4

-1 of waves with respect to 
frequency. 
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 Figures 3-9 show the variations of stress, temperature distribution and components of displacement 
and microrotation with distance. All numerical computations are carried out for a single fixed value of 
frequency and for two given values of wave number 0.25 and 0.35. The computations were carried out 
within the range 0 ≤ x1 ≤ 10. It follows from Figs 3 and 4 that the variation of stresses starts with initial 
increase within the range 0 ≤ x3 ≤ 2 and then decreases with an increase in distance from the surface x1 = 0. 
With an increase in wave number the value of stresses gets decreased. The variations for all the 3 theories are 
similar with slight difference in there amplitude.  
 

  
 
     Fig.3. Variations of normal stress with distance.            Fig.4. Variations of tangential stress with distance. 
 

 
 

Fig.5. Variations of tangential couple stress with distance. 
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 Figure 5 shows that the value of tangential couple stress goes on increasing with an increase in distance 
up to a value 6 of distance, but after that it decreases with a further increase in distance, when wave number is 
0.25. However, as the value of wave number gets increased, the value of tangential couple stress initially 
oscillates and then decreases. Figures 6-9 depict the variation of amplitudes and displacement, microrotation 
and temperature distribution with distance. It is illustrated in these figures that the value of displacements and 
microrotation goes on decreasing as the distance from the surface increases. This variation pattern is physically 
admissible since the characteristics of Rayleigh waves are that amplitude of the wave decreases rapidly with 
depth. The rate of decrease depends on the wavelength. Figure 9 shows the value of temperature distribution 
which initially increases at a depth of 5 units from the surface and then goes on decreasing with a increase in 
distance from the free surface. The value of displacements and microrotation gets decreased with an increase in 
wave number while that of temperature distribution gets increased. The variation pattern for all the three 
theories of thermoelasticity varies in same pattern with a slight difference in the magnitude. 
 

    
 

Fig.6. Variation of normal displacement with distance.       Fig.7. Variations of tangential displacement with distance. 
 

      
 

       Fig.8. Variations of microrotation with distance.          Fig.9. Variations of temperature distribution with distance. 
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Conclusions 
 
  The importance of thermal stresses in causing structural damages and changes in functioning of the 
structure is well recognized whenever thermal stress environments are involved. Propagation of waves in a 
transversely isotropic micropolar generalized thermoelastic half space under temperature dependent elastic 
properties have been discussed. The phase velocities and attenuation quality factor has been computed and 
plotted graphically for three different theories of elasticity. The expressions for amplitude of stresses, 
displacements, microrotation and temperature distribution have been derived and computed numerically. It is 
observed form all the figures that the variation pattern for all the three theories of thermoelasticty is similar 
with a very slight difference in the amplitude. The value of phase velocities of first 3 waves gets decreased 
due to temperature dependence elastic constants, while for the fourth wave a reverse behavior is observed. 
Similarly, the attenuating quality factor of all the waves also gets decreased due to temperature dependence 
elastic constants except for the case of the second wave. The numerically computed results are found to be in 
close agreement with the theoretical result. 
 
Nomenclature 
 

 , ,ijkl ijkl ijklA G B
 
 are characteristic constants of material following the symmetry properties given by [1] 

 *C   specific heat at constant strain 
 j   microinertia 

 
*
ij i ijK K 

 
 thermal conductivities 

 ijm   components of couple stress tensor 

 T   temperature change 
 0T   uniform reference temperature  

 ijt   components of stress tensor 

 iu   components of displacement vector 

 ij i ij      is the thermal elastic coupling tensor  

 ij   Kronecker delta 

 nmk   permutation symbol 

    density 

 ,0 1    thermal relaxation times 

 i   components of microrotation vector 

    microrotation vector 
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