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Interstitial space, also called interstitum, separating the vital organs of a human body, is the primary source of 

lymph and is a major fluid compartment in the body. 
Interstitial space (IS) is filled out by thick collagen (CL) bundles which form lattices represented by a network of 
capillaries. This network has the structure similar to a sponge porous matrix (SPM) with pores-capillaries of 
variable cross-section. 
To analyse the mass transport of interstitial fluids (IFs) through the porous matrix it is assumed that the SPM is 
composed of an irregular system of pores which may be modelled as a fractal porous matrix. The interstitial 
fluids can be either bio-suspensions or bio-solutions and therefore they have to be modelled as non-Newtonian 
fluids. Analysing the fluid flow through the porous matrix it is assumed that the SPM is modelled as capillary 
tubes of variable radii. Introducing a hindrance factor allowed us to consider the porous matrix as a system of 
fractal capillaries but of constant radii. 
Classical and fractal expressions for the flow rate, velocity and permeability are derived based on the physical 
properties of the capillary model of interstitial structures. Each parameter in the proposed expressions does not 
contain any empirical constant and has a clear physical meaning, and the proposed fractals models relate the flow 
properties of the fluids under consideration with the structural parameters of interstitium as a porous medium. 
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1. Introduction 
 
 All tissues and organs contain a mixture of cells and non-cellular components, which form bio-
networks called extracellular matrices (ECMs). These matrices provide not only bio-mechanical scaffolds 
into which cells are embedded but also regulate many cellular and intercellular processes such as growth, 
migration, differentiation, survival, homeostasis and morphogenesis [1-4]. The ECMs consist of a large 
variety of matrix macromolecules whose precise composition and specific structures vary from tissue to 
tissue. The major constituents of ECMs are fibrous forming proteins such as collagens (CLs), elastin (EL), 
fibronectin (FN), laminins (LAs), glycoproteins (GPs), proteoglicans (PGs) and glycosaminoglycans (GAGs) 
which are highly acidic and hydrated molecules. 
 ECMs can be classified into two major types that vary in composition and structure: the interstitial 
and pericellular matrices; the interstitial matrices (ISMs) surround cells, whereas the pericellular matrices 
(PCMs) are in close contact with cells [4]. 
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 The latest research indicates that interstitial structures create probably one of the largest organs of the 
human body [5-7]. They are present in all body; Fig.1 shows schematically the location of identical 
histologic structures seen in fibroconnective tissues throughout the body. 
 

 
 

Fig.1. Schematic location of an interstitial space. 
 
 The interstitial space, also called interstitium, is the primary source of lymph and is a major fluid 
compartment in the body [6]. The interstitium is a fluid-filled space existing between a structural barrier such 
as cell walls or the skin and internal structures such as organs including muscles and the circulatory system 
[7]. The fluid in this space - called interstitial fluid (IF) - comprises water and solutes, and drains into the 
lymph system [8]. 
 The non-fluid parts of the interstitium are predominanty collagens (CLs) of type: I, III and V, elastin 
(EL) and glycosaminoglycans (GAGs) such as hyaluronate (HA) and proteoglycans (PGs) that are cross-
linked to form a honeycomb-like reticulum [9-12]. Such structural components exist both for the general 
interstitium of the body [6-8] and within individual organs such as e.g., the heart and kidney [9, 13]. 
 The interstitial fluid is a reservoir and transportation system for nutrients and solutes distributing 
among organs, cells and capillaries for signaling molecules communicating between cells and for antigens 
and cytokines participating in immune regulation [8]. This fluid flowing across the capillary walls must cross 
the interstitial spaces between parenchymal cells to gain access to the lymphatic vasculature and to the 
vascular system. The interstitium does not simply represent a passive conduit system for the flux of fluid and 
solutes but also functions as a highly dynamic and complex structure whose physical properties exert profound 
influences on the fluid and solute exchange and the behaviour of tissue cells. Capillary filtration drives the fluid 
through the interstitium which is essential for proteins transport from the blood to parenchymal and interstitial 
cells because these macromolecules are too large to readily diffuse through the ensemble of extracellular matrix 
components that fill the space between the vascular and lymphatic micro-systems [4]. The composition and 
chemical properties of the interstitial fluid vary among organs and undergo changes in chemical composition 
during normal function as well as during body growth or, for instance, conditions of inflammation and 
development of diseases such as heart failure or chronic kidney disease [6-8]. 
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 The total fluid volume of the interstitium in a healthy man is about 20% of body mass but this 
quantity is dynamic and may change in volume and chemical composition during immune responses and in 
conditions such as cancer and specifically within the interstitium of tumors. The amount of the interstitial 
fluid varies from about 10% in skeletal muscle to about 50% of the tissue mass in skin [8]. 
 It may be hypothesised that the interstitial space is filled out by thick collagen bundles which form 
complex lattices representing a network of capillaries or lymphangioles. This network has the structure 
similar to a sponge porous matrix (SPM) [7] and it is schematically presented in Fig.2. 
 

 
 

Fig.2. Schematic model of a sponge porous matrix (MSPM). 
 
 One suggests that this network of capillaries may serve for the transport of circulating tumor cells 
(CTCs) which are cancer cells that shed from a primary tumor and circulate in the interstitial structure [14]. 
Note that cancer is the leading cause of death worldwide and metastasis is responsible for more than 90% of 
the mortality of cancer patients [15]. 
 Metastasis occurs when tumor cells leave the primary tumor, travel through the blood or lympha 
steam as CTCs, and then colonize secondary tumors at sites distant from the primary tumor. Since the 
discovery of CTCs in 1869 by Ashworth [14], researchers have utilized CTCs for the early detection of 
aggressive cancer and the treatment of advanced disease. CTCs are extremely rare - approximately one CTC 
is mixed with one million (106) of leucocytes or one billion (109) of erythrocytes - in circulating blood and 
their detection is possible using the techniques of high specificity and high sensitivity [14, 15]. The rarity of 
CTCs has not any effect on the mass transport through the interstitial structure but the knowledge on flows of 
interstitial fluids is very essential to the detection of CTCs. 
 The aim of this work is to present general analytical methods for deriving mathematical relations 
between interstitial fluid pressure (IFP) losses and the volumetric flow rate for laminar flows of IFs in a 
porous medium such as the interstitial structure. This structure is modelled as the sponge porous matrix 
(Fig.2) when capillary tubes are tortuous and of variable cross-section (e.g.: convergent - divergent; see 
Fig.3a). The flows through interstitial structures are analysed twofold: as classical flows or as fractal flows 
[16, 17]. The interstitial fluids are modelled as Newtonian fluids (it is acceptable as the first order 
approximation for the case of a healthy human organism) or as non-Newtonian fluids (for all other cases). 
 
2. Classical flows through the interstitial structures 
 
 In what follows we will consider the classical models of flow through the interstitial structures 
considered as a sponge porous matrix (SPM) composed of capillary tubes. Assuming that the capillaries are 
tortuous and have variable cross-sections, we will present the formulae for the flow of the following fluids: 
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Newtonian, generalized viscoplastic (Shulman model), pseudoplastic (DeHaven and Sisco model) and polar 
fluids (micropolar and couple-stress) [16, 18]. Detailed mathematical considerations can be found in [16, 17, 
19-22]. 
 These considerations will be successively supplemented by deliberations on the capillary tortuosity 
and variability of cross-section (see Fig.3a). 
 The tortuosity of capillaries may be defined by a tortuosity factor being the ratio of actual capillary 
tube length LT to the thickness (length) L0 of the porous layer 
 

  T
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   (2.1) 

 
where T is the tortuosity factor. 
 Next notion is the porosity of a porous medium which is defined by the following relation 
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where: V is the total volume of the porous medium, Vp is the total volume of open pores; A is the total area of 
the sample cross-section (see Fig.2.), Ap is the total pore area of the considered sample. 
 The last notion is the hindrance factor connected with the following property of the porous medium, 
i.e., the real volumetric flow through the pores of variable cross-section is less than the (theoretic) flow 
through the pores modelled as capillaries of constant cross-section. This factor is defined by the ratio 
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where: Qv is the real flow rate through capillary of variable cross-section, Qt  is the theoretic flow rate 
through capillary of constant cross-section. 
 Introduction of the hindrance factor allows us to evade not always possible but always tedious 
calculations [19-22]. 
 
2.1. Newtonian fluids 
 
 Newtonian fluids may model - in the first approximation - all flows through the lymph system of the 
healthy human body. 
 The average flow velocity through the porous matrix (Fig.3a) of a Newtonian fluid is given as 
follows (Fig.3b) 
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 (2.4) 

 
where rc is the constant capillary radius, p  is the porosity of the porous matrix, N  is the hindrance factor 

for Newtonian fluids flow,   is the Newtonian viscosity T is the tortuosity factor (only for tortuous capillary 
tubes); here: 1 T 2  ; note that 
 
  T=1 for straight capillary, 
 
  T>1 for tortuous capillary. 
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 The term dp dy  denotes the pressure gradient which may be replaced by the local thrust provoked 
on the mucosa by the surrounding environment; thus we have 
 

  
dp p

dy h


    (2.5) 

 
where p  is the local thrust, h is the thickness of the interstitial structure (porous layer). 
Therefore (2.4) may be written in the following form 
 

 
 
Fig.3. Porous matrix composed of rectilinear parallel capillary tubes (a); capillary tube with Newtonian 

fluid flow (b), capillary tube with Shulmanian fluid flow (c). 
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whereas the total amount of the lymph which is transported through the interstitial surface of an area A is 
equal to 
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where NQ  is the total flow rate of the Newtonian fluid, N is the number of capillary tubes on the area A of 
the porous matrix. 
 
2.2. Generalized viscoplastic fluids of a Shulman type 
 
 These fluids may model more exactly the lymph flows with many biological agents and also the 
blood flows with different therapeutic substances. 
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 To analyse the flows of generalized viscoplastic fluids the model of a Shulman fluid is often used. 
This model - in one dimensional form - and the other simpler models of viscoplastic fluids derived from the 
Shulman model are presented in Tab.A.1 (see Appendix) [16-18]. The full analysis of the flows of these 
fluids can be found in [16, 19]. The flow field of a viscoplastic fluid in a capillary tube is shown in Fig.3c. 
The average velocity flow of this fluid in a capillary tube of constant cross-section is given as follows [17] 
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where: m, n are the flow behaviour indices,   is the plastic viscosity and 
 

   
   

m 3n m 3nm
im in n

mn
i 0

n
T 1 C 1

m 3n i

 




 
     
    

  (2.9) 

whereas 
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 Introducing into (2.8) the hindrance factor Sh  and the tortuosity factor T we may write the 
following formula for the velocity flow through a porous matrix composed of the capillaries of variable 
cross-section 
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it may be assumed for the rectilinear capillary tubes of variable cross-section that 
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 For a special case of a Shulman fluid, when , 0n 1 r 0   (there is no core flow), we deal with an 
Ostwald-de Waele (power-law) fluid and then  
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 Note that for flows with a large core, 1   and for flows with a small core when 1  , one can 
use the following approximations: 
– for a large core 
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– for a small core 
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 Note that these formulae are important for all fluids derived from the Shulman fluid, namely: for the 
Casson fluid   ,m n  Vočadlo fluid  m 1 , Herschel-Bulkley fluid  n 1  and Bingham fluid 

 m n 1   and they are presented in Tab.1. 
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 Note that in medical applications all these approximations above are important only for m, n being 
odd numbers (m, n = 1, 3, ...). 
 Taking into account formula (2.7) and (2.12) we may now write the following equation for the total 
amount of the Shulman fluid in the flow through the interstitial surface of an area equals to A 
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where ShQ  is the total flow rate of the Shulman fluid. 
 
2.3. Pseudoplastic fluids 
 
 We will consider two essential models of these fluids, namely: DeHaven and Sisko fluid; many well-
known but more complicated models reduce - for suitable selected material coefficients - either to DeHaven 
or to Sisko fluids. These models - in one dimensional forms - and similar models are presented in Tab.A.2 
and Tab.A.3, respectively (see Appendix) [16-18]. 
 The viscosity of a DeHaven fluid displays a non-linear relationship between the shear stress and the 
shear strain rate. To be more precise, the shear strain rate is a non-linear function of the shear stress. This 
fluid is characterised by a shear viscosity  , which is similar to the Newtonian viscosity, material coefficient 
ki and power exponent ni, which represent aforementioned non-linearity of the shear strain rate. 
 The averaged flow velocity through a porous matrix composed of the capillaries of variable cross-
section is given as follows [16, 17] 
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The total flow rate through the area A of the interstitial structure is as follows 
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Here A  is the additional hindrance factor. 
 The viscosity of a Sisko fluid displays a non-linear relationship between the shear stress and the 
shear strain rate. This fluid is characterised by a shear viscosity   which is similar to the Newtonian 

viscosity, the additional viscosity i  and power exponent ni. 
 The flow velocity through the porous matrix composed of the capillaries of variable cross-section is 
given as follows [16, 17] 
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where s  is the additional hindrance factor. 
 The total flow rate through the area A of the interstitial structure is given by following formula 
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 Note that both these models of pseudoplastic fluids render it possible - for respectively chosen 
material parameters: , , ,i i ik n   - to consider the interstitial fluids with different  biological additives and 
agents. 
 
2.4. Polar fluids 
 
 These fluids are characteristic for all interstitial fluids being suspensions composed of particles 
having mean value of molecular weight, so they may model the flows of lymph and blood in a thinning state 
(e.g. after using some cardiological drugs). 
 Let us consider at first micropolar fluids. These fluids are described by two viscosities: the first of 
them is similar to the Newtonian shear viscosity  , the other one, k, is the vortex (coupling) viscosity 
describing the particle rotation [16]. 
 For the interstitial structure being a matrix composed of a large number of capillary tubes the flow 
velocity is given as follows (see Appendix) [16, 17] 
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 The amount of the micropolar fluid in the flow through the interstitial surface of an area A is equal to 
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 Let us now consider the flow of a couple-stress fluid in the matrix composed of capillary tubes. 
The couple-stress fluid is composed of a mother fluid and rotated (in general) suspended particles. 
 This fluid is described by three viscosities: the first of them is a well-known Newtonian shear 
viscosity , the second ones,  and ', are connected with an existence of so-called couple-stresses and their 
influence on the fluid flow; these stresses result from the rotation of particles suspended in the mother fluid. 
 For the interstitial structure represented by a matrix with a large number of capillary tubes we have [16] 
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is a material constant having the dimension of length. 
 If    , then 
 

  
2 2

c p N
cs 2

c

r 4l dp
1

8 T dyr

    
         

. (2.25) 

 

In a special case when cr 1
l
  and    , then 
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This formula may be used to describe the blood flow in capillarity vessels. 
 The total flow rate is equal to 
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Note that for two left cases when     and     all formulae will be similar. 

 
3. Fractal flows through interstitial structures 
 
 Fractal is a natural phenomenon or geometric set that exhibits a repeating pattern at every scale. It is 
also known as evolving or expanding geometry [16, 17]. Fractal geometry was popularized by Mandelbrot 
[23] when he showed that for a decreasing unit of measurement the length of a natural coastline does not 
converge but, instead, increases monotonically. His study on the length of the coastline, being scale-
dependent, marked the origins of fractal geometry which has now found numerous applications in 
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characterizing and describing disordered phenomena in science and engineering (Mandelbrot [24]). More 
information on the engineering fractals applications may be found in the monograph [16]. 
 Euclidean geometry describes objects such as points, curves surfaces and cubes using integer 
dimensions: 0, 1, 2 and 3, respectively. Measures of the object such as: the length of a line, the area of a 
surface and the volume of a cube are associated with each dimension. These measures are invariant with 
respect to the unit used to measurement. However, numerous objects found in nature [24] such as rough 
surfaces, porous media, coastlines, mountains, rivers, lakes and islands are disordered and irregular, thereby 
they do not follow the Euclidean description due to the scale - dependent measures. These objects are exactly 
called fractals and their dimensions are non-integral being defined as fractal dimensions. 
 The measure M(L) of a fractal object is related to the length scale L by a scaling law in the following 
form [24] 
 

    FM L L   (3.1) 

 
where F is the fractal dimension of an object. 
 Porous media in nature and also in medicine have been shown to be fractal objectives, and the fractal 
geometry theory has been proven to be powerful for the flow analysis in these media. 
 The tortuosity of pores is connected with the fractal properties of interstitial structure and it may be 
defined by a tortuosity factor being the ratio of the actual capillary tube length TL  to the length (thickness) 

of the interstitium 0L . In what follows we will limit the considerations to the interstitium being a matrix of 
capillary tubes. 
 The fractal scaling law for the tortuous capillary is as follows [25] 
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where T  is the fractal tortuosity factor the same as the classical tortousity factor given by Eq.(2.1). 
 Taking into account the above formula we may write for the pressure gradient [16, 17] 
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 The cumulative size distribution of pores in the porous interstitium also follows the fractal scaling 
law (3.2) and it is given as [26-28] 
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where maxcr  is the maximum pore (capillary) radius and F  is fractal dimension for pores the same as in 
Eq.(3.1). Equation (3.4) leads to 
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it follows from this expression that the number of pores decreases with the increase of pore sizes. 
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 The area fA  of the porous interstitial matrix is now equal to 
 

  
 

 
max

min

max
c

c

2r
c ppf 2

c
p p pr

F r 1A 1
A r dN

2 F

  
    
      (3.6) 

 
where pA  is the total pore area, 

 

  2 F
p r

     (3.7) 

 
is now the fractal porosity [27] and 
 

  min

max

c
r

c

r

r
  ,          min maxc cr r . (3.8) 

 

In general, min max
2

c cr r 10  in fractal porous media [27, 28]. 

 
3.1. Fractal model of a Newtonian fluid flow through a porous interstitial matrix 
 
 The flow rate q through a single capillary tube of variable cross-section for a Newtonian fluid is 
given as follows (see also Eq.(2.4)) 
 

   
p

4
2 c N

c c N T 1
T

r dp
q r r

8 dy  

  
       

; (3.9) 

 
here the fractal tortuosity of a capillary tube was taken into account. 

The total flow rate f
NQ  over matrix cross section can be obtained integrating Eq.(3.9) over the entire interval 

of pore sizes 
 

   
max

min

c

c

r
f

cN
r

Q q r dN   ; (3.10) 

 
taking into account Eqs (3.3), (3.5) and (3.8) we will obtain 
 

  
 
 

max
3 T 3 T F

N c rf
N 4 T T 1

Fr 1 dp
Q

dy2 h T 3 T F

  

 

    
  

    
 (3.11) 

 
here 0L h  is the thickness of the interstitial matrix (see Fig.3). 
Note that the following inequalities hold for the epidermis as the porous matrix 
 
  ,1 T 2 0 F 2    , 
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then the exponent 3 T F 2   . In general, 2
r 10  , then 3 T F

r 1   . Hence Eq.(3.11) can be reduced 
to 
 

  
 

max
3 T

f N c
N 4 T T 1

Fr dp
Q

dy2 h T 3 T F



 
 

  
    

. (3.12a) 

 
Dividing Eq.(3.12) by Eq.(3.6) gives the average velocity for the flow of a Newtonian fluid through the 
porous matrix 
 

  
 
  

max
1 T
c p Nf

N 4 T T 1
p

r 2 F dp

dy2 h T 3 T F 1



 

    
   

      
 . (3.13a) 

 
It is easy to see that the fractal flow velocity of a Newtonian fluid through the porous interstitial matrix is 
more complicated than Eq.(2.1) describing the classical case of this flow. Equation (3.13a) is related not only 
to the characteristic parameter of the fluid such as viscosity   but also to the structural parameters of the 

matrix such as: max, , ,c ph r T  and F . 

Note that Eqs (3.12a) and (3.13a) may also be written in the following forms 
 

  f
nN

dp
Q Q

dy

 
  

 
, (3.12b) 

and 

  f n
N f

Q dp

dyA

 
   

 
 (3.13b) 

where 

  
 

max
3 T

N c
n 4 T T 1

F r
Q

2 h T 3 T F



 



  

. 

 
 To find the total amount of the interstitial fluid transported through the porous interstitial matrix 
evoked by the local thrust p  provoked on the mucosa Eq.(2.5) can also be used. 
 
3.2. Fractal model of the flow of a generalized Shulman viscoplastic fluid through a porous interstitial 

matrix 
 
 Let us consider at first the flow of a generalized Shulman fluid with a large core through a porous 
interstitial matrix. The asymptotic flow rate q  through a single tortuous capillary of variable cross-section is 
as follows 
 

     
.

m 3n m
m 3n m 1 n nc Shn

c m m
Tm 3n n

1 r dp
q r

dy3C
2


 



   
   

 


  (3.14) 

 
Introducing relationships (2.10)1 and (3.3) into the above equation and integrating the result over a matrix 
cross-section we will obtain the total flow rate 
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m

nf
LcSh

dp
Q Q

dy

 
  

 
  (3.15) 

 
Here all small quantities were neglected. Dividing Eq.(3.15) by Eq.(3.6) gives the asymptotic average fractal 
velocity for the flow of a Shulman fluid with a large core through a porous interstitial matrix 
 

  

m

nf Lc
Sh f

Q dp

dyA

 
   

 
. (3.16) 

 
Expression for QLc is presented in the Appendix. Both these formulae are important for m being an odd 
number. 
 Let us now consider the flow of a Shulman fluid with a small core through a porous matrix. 
The asymptotic flow rate q  through a single tortuous capillary of variable cross-section is given as follows 
 

     

 
.

m 3n m
1 n nSh cn

c m
T

n

m m 3n nr dp
q r 1

m 3n 1 dy
2 m 3n


               

  (3.17) 

 
Dealing here similarly as in the previous case we will obtain the total flow rate 
 

  

m

nf
ScSh

dp
Q Q

dy

 
  

 
. (3.18) 

 
Here all small quantities were neglected. Dividing this equation by expression (3.6) gives the fractal average 
velocity for the Shulman fluid flow with small core through the porous matrix 
 

  Sc

m

nf
Sh f

Q dp

dyA

 
   

 
. (3.19) 

 
Expression for QSc is also presented in the Appendix. 
 These formulae are also important for all fluids derived from the Shulman fluid. Note that for the 
Bingham fluid we have  min0r 0 0      and m=n=1; the formulae for the rate flow and the velocity 

will be, respectively 
 

  f
BLB

dp
Q Q

dy

 
  

 
, (3.20) 

 

  f BL
B f

Q dp

dyA

 
   

 
, (3.21) 

 
for the flow with a large core and 
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  f
BSB

dp
Q Q

dy

 
  

 
, (3.22) 

 

  f BS
B f

Q dp

dyA

 
   

 
, (3.23) 

 
for the flow with a small core. 
 Flows of the power-law (Ostwald-de Waele) fluid are characterized by the following material 
parameters:  min0r 0 0      and n=1; taking into account formulae (3.18) and (3.19) we can write 

 

  
m

f
0 w0 w

dp
Q Q

dy
 

  
 

, (3.24) 

 

  
m

f o w
0 w f

Q dp

dyA



 

   
 

. (3.25) 

 
Expressions for QBL , QBS and Q0-w are given in the Appendix. Note that the last formulae for m=1 represent 
the Newtonian fluid flow and they become the same as formulae (3.12) and (3.13) 
 
3.3. Fractal models for pseudoplastic fluids 
 
 Let us consider at first the flow of the DeHaven fluid. 
The flow rate q  through a simple tortuous capillary of variable cross-section for a DeHaven fluid is as 
follows 
 

   
 

ii

i

n 1n 44
c N i c a

c n 1
T Ti

r k rdp dp
q r

8 dy dy2 n 4





      
           

. (3.26) 

 
Introducing this equation into Eq.(3.10), after integration and taking into account Eqs (3.3), (3.5), (3.8), and 
neglecting the terms of small values, as a result we will obtain the following formula 
 

  
in 1

f f
ADH N

dp
Q Q Q

dy


 

   
 

. (3.27) 

 
Dividing Eq.(3.27) by Eq.(3.6) gives the average velocity for the flow of the DeHaven fluid through the 
porous interstitial matrix 
 

           
in 1

f f A
DH N f

Q dp

dyA


 

     
 

 (3.28) 

 

where f
NQ  and f

N  are given by Eqs (3.12) and (3.13), respectively. 
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 It is easy to see that the fractal velocity of the DeHaven fluid through the porous matrix is related not 
only to the structural parameters of the matrix such as: max, , ,c ph r T  and F  and the pressure gradient but 

also to the characteristic parameters of the fluid: , ,i ik n . 

 The flow rate q  through a single tortuous capillary of variable cross-section for a Sisko fluid is 
given by the following formula 
 

   
 

ii

i i

n 1n 44
c N i c S

c n 1 n 2
T Ti

r rdp dp
q r

8 dy dy2 n 4



 

      
           

 . (3.29) 

 
Because Eqs (3.26) and (3.29) are similar we can also deal similarly with calculations. As a result we have 
 

  
in 1

f f
SNS

dp
Q Q Q

dy


 

   
 

, (3.30) 

 

        
in 1

f f S
NS

f

Q dp

A dy


 

     
 

. (3.31) 

 
Expressions for QA and QS are given in the Appendix. 
 It can be see that in the case of this fluid the velocity depends not only on the structural parameters 
but on the characteristic parameters of the fluid which are now: , ,i in  . 
 
3.4. Fractal models for polar fluids 
 
 The asymptotic flow rate of a micropolar fluid through a fractal tortuous capillary tube is given as follows 
(see Eq.(2.21)) 
 

   
4
c N

c
T

r dp
q r

8 k dy

    
       

; (3.32) 

 

therefore the total flow rate f
mQ  over a matrix cross section will be (see Section (3.1)) 

 

  
 

max
3 T

f N c
m 4 T T 1

Fr dp
Q

k dy2 h T 3 T F



 
   

         
  (3.33a) 

 
whereas the average flow velocity 
 

  
 
  

max
1 T
c N pf

m 4 T T 1
e p

r 2 F dp

k dy2 h T 3 T F 1



 

     
            

. (3.34a) 

 
Note that the last equations may be written in the form 
 

  f
m n

dp
Q Q

k dy

  
      

, (3.33b) 
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        f n
m f

Q dp

k dyA

  
       

. (3.34b) 

 
Let us consider now the fractal velocity model for the flow of a couple-stress fluid. The asymptotic flow rate 
of this fluid through a fractal tortuous capillary tube is as follows (see Eq.(2.23)) 
 

   
4 2
c N

c 2
Tc

r 4l dp
q r 1 1

8 dyr

     
           

. (3.35) 

 
Applying the same procedure as in Section 3.1. we will obtain [16] 
 

  
 
max

2 1 T
f f c

NCS 2 T T 1

l Fr dp
Q Q 1

dy2 h T 1 T F



 

    
          

, (3.36a) 

 
whereas the average flow velocity is given by the formula 
 

  
 

  
max

2 T 1
c pf f

NCS 2 T T 1
p

l r 2 F dp
1

dy2 h T 1 T F 1



 

     
             

; (3.37a) 

 
note that the last two formulae are only important for 1 T F 1    (the case of 1+T-F=0 is excluded). 
Writing the last equations in an abbreviated form we have 
 

  f f
C SNCS

dp
Q Q Q

dy
 

   
 

, (3.36b) 

and 

        f f CS
NS f

Q dp

dyA

 
     

 
 (3.37b) 

here 

  
 
max

2 1 T
c

C S 2 T T 1

l Fr
Q

2 h T 1 T F



  



  

.  

 
4. Classical and fractal permeability of the interstitium 
 
 For a sufficiently small porous region, such as interstitial areas being undergo of a mucosa subjected 
to thrust pressure, the fluid flow is described by the Darcy law, which - for a Newtonian fluid has the form 
[16] 
 

  
i

i N dp

dy

 
     

 (4.1) 

 
where the index i corresponds to 
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for classical flow,

for fractal flow;

c
i

f


 

   

 
i
N  is the coefficient of permeability. 

Comparing this formula with Eqs (2.4) and (3.13) we find that: 
 for a classical Newtonian flow there is 

 

  
2

c p NC
N

r

8T

 
   (4.2) 

 

 whereas for a fractal Newtonian flow we have 
 

  
 
  

max
1 T
c p Nf n

N f4 T T 1
p

r 2 F Q

A2 h T 3 T F 1



 

   
  

   
; (4.3) 

 

in the case of a straight capillary the tortuosity factor is equal to T 1  and 
 

  
 

  
max

2
c p Nf

N
p

r 2 F

8 4 F 1

  
 

  
. (4.4) 

 
It is easy to see that for a tortuous capillary system the fractal permeability of the interstitium depends on its 
thickness h and its fractal porosity p , whereas for a straight capillary system this permeability only depends 

on its fractal porosity. 
Note that the three - dimensional form given below is a more general form of the Darcy law   
 

   grad
i

i N p


 


v  (4.5) 

 

where: iv  is the velocity vector for classical flow  cv  or for fractal flow  fv . 

 For viscoplastic fluids described by a Shulman model the generalised form of the Darcy law is given 
as follows [17, 29] 
 

   grad
i m

i Sh np


 


v  (4.6) 

 

where: i
Sh  is the interstitial permeability for the Shulman fluid. 

For a one-dimensional flow there is 
 

  

m
i ni Sh dp

dy

 
     

. (4.7) 

 
 For pseudoplastic fluids the generalisation of the Darcy law has the following forms [17]: 

 for the DeHaven fluid 
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     grad grad i
i i

n 1i N DH
DH p p

 
   

 
v  , (4.8) 

 
in a one-dimensional flow there is 
 

  
in 1i i

i N DH
DH

dp dp

dy dy


    

           
  (4.9) 

 
 for the Sisko fluid 

 

     grad grad i
i i

n 1i N S
S p p

 
   

 
v   (4.10) 

 
and in a one-dimensional flow 
 

  
in 1i i

i N S
S

dp dp

dy dy


    

           
. (4.11) 

 
For polar fluids the generalization of the Darcy law is as follows: 

 for the micropolar fluid 
 

   grad
i

i N
m p

k

  
     

v  (4.12) 

 
whereas in a one-dimensional form  
 

  
i

i N
m

dp

k dy

   
        

, (4.13) 

 
 for the couple-stress fluid 

 

   grad
i i

i N C S
C S p


 
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
v  (4.14) 

 
while in a one-dimension case  
 

  
i i

i N C S
C S

dp

dy



  

     
. (4.15) 

 

The coefficients i  for all fluids under consideration are presented in Tab.2. 
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Table 2. Coefficients of permeability for considered fluids. 
 

Model of fluid Coefficient of permeability 
 Classical flow Fractal flow 
Newton 2

c p NC
N

r

8T

 
    

f n
C f

Q

A


   

Shulman 

 
 

 

m 3

n
m c p ShC

Sh n m

n

r
T

2T



 
   

for large core

for small core

f Lc
LC f

f Sc
SC f

Q

A
Q

A


 


 

 

DeHaven 

   

i

i

n 2
i c p N AC

DH n 1
i

k r

2T n 4





  
 


 

f A
DH f

Q

A


   

Sisco 

   

i

i

n 2
i c p N SC

S n 1
i

r

2T n 4





   
 

 
 

f S
S f

Q

A


   

Couple-stress 2
p NC

CS

l

2T

 
   

f C S
CS f

Q

A


   

 
Conclusions 
 
 In this paper we have focused on an analytical description of mass transport through interstitial 
structures also called interstitium. Interstitium was modelled as a porous layer being a sponge porous matrix 
(SPM) in which the pores form tortuous capillaries of variable cross-sections. 
 Introducing a notion of the hydraulic radius 
 

  h
2A

R
P

   

 

where A is the non-circular capillary area, P is the capillary perimeter wetted by a flowing fluid, one may 
pass from the sponge capillary to the capillary tube of radius equal to h cR r . 
 The interstitial space is filled out by thick collagen bundles which form complex lattices represented 
by network of capillaries. This structure creates the formation of a fractal system passing through the whole 
thickness of the interstitium. 
 The flow in this structure was analysed twofold: first, as classical flow, and next as fractal flow. 
Using the formulae for classical flow we present the new formulae for fractal flow. An input of hindrance 
factors allow us, in a simple procedure, to take into account the variability of the cross-sections of the 
capillaries or lymphangioles passing through the interstitium. 
 To make it possible to consider mass transport through the interstitial structure of the IFs in different 
consistence we presented the flow formulae for various models of fluids, such as: Newtonian, generalized 
second grade of the Shulman type, pseudoplastics and polar fluids. 
 Based on the theory of fractal geometry, the fractal expressions for the flow rate, flow velocity and 
fractal permeability for different fluids were presented. The proposed fractal models are expressed as 
functions of fluid characteristic parameters, structural parameters of the porous matrix and pressure gradient. 
The obtained results have a clear physical meaning and relate the properties of the fluids under consideration 
to the structural parameters of the porous matrix such as the interstitium. 
 It seems that the proposed improvements of the flow analysis in a porous bio-matrix broadens the 
general knowledge on the bio-flow and also allows further practical applications, e.g. an analysis of the flow 
through the cartilage of biobearings. 
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Appendix 
 
          Taking into account the considerations of Section 2.2 we will present the following auxiliary formulae. 
 
Table A.1. Models of viscoplastic fluids. 
 
Model of fluid Form Remarks 

Shulman  
n1 m1 n

0
     
 

   for m=n, Casson model 

Casson  
n1 n1 n

0
     
 

  for n=2, simple model of Casson 

Vočadlo 
n1 n

0
        

it is sometimes called Robertson-
Stiff model 

Herschel-Bulkley  1 m
0      for m=1, Bingham model 

Bingham 0       

 

 Here   is the shear stress, 0  is the yield shear stress,   is the shear strain rate,   is the plastic 
viscosity (consistency factor). 
 To find three-dimensional forms of the stress tensor T, corresponding to the above given one-
dimensional forms of  , we may use the following formulae [16] 
 

if   f     ,         then       p  T I   
 

where    1f A A ,                   tr
1 2

2
1

1
A

2
    

 . 

 

 The equations of motion of generalized second grade fluids are as follows 
 

  div 0v , 
 

  div
d

dt
   f T

v
 

 

where T depends now on a model of the fluid. Let us assume here two models proposed by Walicki and 
Walicka in 1998, based on the Shulman model of plastic viscosity. Thus, we have two constitutive equations: 
 

- for model I 
 

  2
1 1 1 1 2p M     T 1 A A A , 

 

- for model II 
 

   2
1 2 1 2 2p M     T 1 A A A , 

where 

     , tr

n1 1 21
1 2n m 10

1
M A A A

2


              
Α , 

 

here and1 2A A  are the first two Rivlin-Ericksen kinematic tensors defined by 
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    ,T T
1 2 1 1 1       A 2D A A A Av v v v  

 

and  , ,i i i 1 2    are material constants. 

 Now, if we define a modified pressure p through 
 

   
2

j 1
Sh i i

d
p p 2 M

dr
        
 

  

 

where j=1 for model I, j=2 for model II, we will obtain Eq.(2.8) for the average velocity flow through 
capillary tube. For  i i Sh0 p p     we have the flow of the Shulman fluid and Eq.(2.8) is correct. 

Now, we present two auxiliary tables for Section 2.3. 
 

Table A.2. Models of fluids similar to the DeHaven fluid model. 
 

Author(s) Original model 
Model taken 
into account i  Comments 

in n  
“ ”n 1  

power models 

DeHaven  n
0 1        –    

Meter 
 

0
n

1




       
   

  
n

n
0

0

1
 

        
  

n

0




 0     

in n 1  “n” power model 

Ellis 
0

n 1
1


 

 
  


  n 1

0 1
           

in 2  
“Cubic” 
models 

Rotem-
Shinnar 

0
n

2i
i

i

1

 
 

  


  2

0 1         
The model has  

a practical meaning for 
i 1  

Ree-Eyring 
 

 
sinh

1

0


 

     
  

  ,
2

2
0 1

6

 
       

 
  

2

6


  

Rabinowitsch 0
21

 
 

 


  2

0 1          

Reiner-
Philippoff  

0
2

1




  
     
   

  
2

2
0

0

1
 

        
  

2

0




 0     

in 1  “Quadratic” models 

Peek-McLean  
0

1



  

        
  0

0

1
 

       
  

0




 0     

Seely  
0

e


 

   
     

 
  0

0

1
 

       
  

0





 0     
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Table.1.3. Model of fluids similar to the Sisko fluid model. 
 

Author(s) Model Reduced model i Comments 

in n  
“n+1”  

power models 

Sisko 
n

0
       
 

 
 

–    

Carreau-
Yasuda  

0

n n1


 

 
        
      





 

 n0 n

        
 

; 
 

0     

n

n




 

Cross model for 
n    

Williamson- 
Moore model for 

n 1    

Elsharkawy-
Hamrock  

0
1

n n1

 
 

  
 




 

 n0
0 n

        
 

 

n
0

n

 


 
 

in 2 “Cubic” models 

Prandtl 
 

 
arcsin

0


   






  20

0 6

        
 

2
0

6

   

Eyring- 
Sutterby 

 arsinh
n

0
  

     





 

 20
0

n

6

        
 

2
0n

6

 


 

Prandtl-Eyring 
model for n 1  

Sutterby 

 

 arsinh

0

n

 

      


      





 

 20
n

6

        
 

; 
 

0     

2n

6




 

Powell-Eyring 
model for  

n 1  

Gecim- 
Winer 

 
 

tanh
0

 
      





 

 20
0 3

        
 

 

2
0

3

 


 
 

in 1  
“Quadratic” 

models 

Bair-Winer 0
1 e 

      





 

 0
0 2

        
 

 

0

3

 


 
 

 
 Considering the flow of a micropolar fluid in a capillary tube (see Section 2.4) we have the following 
expression for the straight capillary [16] 
 

  
   

2
c

m
r dp

1 m
4 2 k dy

 
       

  

where 

  
 
 

, , ,
1 2

2
m c

1

2 I M k 2 k k
p M mr m

M I M k k

   
           
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and   is the spin viscosity coefficient, whereas    ,1 2I M I M  are the modified Bessel functions of the first 

and second order and the first kind, respectively. 
 This expression is correct for all values of M; for small values of M it will be 
 

  
2

c
m

r dp

8 k dy

  
        

. 

 
 Considering the flow of a couple-stress fluid in a capillary tube (see Section 2.4) we have the 
following expression for the straight capillary [16] 
 

   
2

c
C S CS

r dp
1

8 dy
 

      
  

where   

  
   
     

 
,2 c

CS 2
0 1

4 I 4 r

lI I

     
      

         
. 

  
 Taking into account the considerations of Section 3.2 we will present in what follows all auxiliary 
formulae 

  
 

   
 

max min

m 3nm
1 Tm 1 nn

Sh c
Lc m mm m

T 12 Tm 3n nn n

1 Fr
Q

3C m
2 T h T 1 F

n






  


     

  

 

where  min
max

0

c

r

r
  ,  

 

             
 

   
 

 
max

min

m
3 T1 n

Sh cn
Sc mm m

T 12 T
nn n

m
m m 3n 3 T F

nFrn
Q 1

mT 1 mm 3n 1 3 F 2 m 3n T h 3 T Fn n





           
                   

, 

 

  
 

max min
3 T 4

B c
BL 1 2 T T 1

4

Fr1
Q

3C 2 Th T 1 F



 
 


  

, 

 

  
 
   

max
min

3 T
B c

BS 4 T T 1

4 3 T F Fr
Q 1

3 2 T F 2 Th 3 T F



 

   
         

, 

 

         
max

3 mT
0 W c

0 W m 2 T m T 1m

Fr
Q

2 m 3 T h 3 T F




  




   
. 

 
 Taking into account the considerations of Section 3.3 we will present in what follows the auxiliary 
formulae 
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 

         
max

i

ii i

3 n 1 T
a i c

A n 1 T 1n 1 2 T n 1
i i

k Fr
Q

2 n 4 h T 3 n 1 T F

 

   




      
, 

 

  
 

         
max

i

i ii i

3 n 1 T
S i c

S n 1 2 T n 1 T 1n 2 n 1
i e i

Fr
Q

2 n 4 h T 3 n 1 T F

 

    

 


      
. 

 
Nomenclature 
 
 A  – area  

 fA  – area of porous interstitial matrix 
 pA  – fractal pore area  

 F – fractal dimension of an object 
 h  – thickness  
 k  – vortex viscosity  
 ik  – material coefficient for a DeHaven fluid  

 0L  – nominal capillary length 

 TL  – actual (tortuous) capillary length 

 ,m n  – power exponents for Shulman fluids 

 N – number of pores 
 in  – power exponents for pseudoplastic fluids 

 P  – wetted perimeter of a fissure 
 p  – pressure 
 Q  – total flow rate  
 q  – capillary flow rate  

 hR  – hydraulic radius  

 cr  – capillary radius  

 T  – fractal tortuosity factor  

 ( )
( )

m
nT  – polynomial function for a Shulman fluid 

   – flow velocity 
 v – velocity vector 
 ,i i    – material constants for Rivlin-Ericksen fluids 

    – spin 
    – shear strain rate 
 ,     – additional couple-stress factors 

   – shear or plastic viscosity  
 i  – material coefficient for a Sisko fluid  

   – shear stress 

 i   – coefficient of permeability 
 p  – classical porosity 

 p  – fractal porosity 

 r  – radii ratio 

   – hindrance factor 
   – relative core flow radius 
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Abbreviations 
 
  CL – collagen 
 CTCs – circulating tumor cells 
 ECMs – extracellular matrices 
 EL – elastin 
 FN – fibronectin 
 GAGs – glycosaminoglycans 
 GPs – glycoproteins 
 HA – hyaluronate 
 IF – interstitial fluid 
 IFP – interstitial fluid pressure 
 ISMs – interstitial matrices 
 ISs – interstitial structures 
 LAs – laminis 
 PCMs – pericellular matrices 
 PGs – proteoglicans 
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