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In this work, we explore the possibilities of the widespread Finite Element Model Updating method (FEMU) 
in order to identify the local elastic mechanical properties in heterogeneous materials. The objective function is 
defined as a quadratic error of the discrepancy between measured fields and simulated ones. We compare two 
different formulations of the function, one based on the displacement fields and one based on the strain fields. We 
use a genetic algorithm in order to minimize these functions. We prove that the strain functional associated with 
the genetic algorithm is the best combination. We then improve the implementation of the method by 
parallelizing the algorithm in order to reduce the computation cost. We validate the approach with simulated 
cases in 2D. 

 
Key words: identification - elasticity - heterogeneous material - genetic algorithm - parallel computation. 

 
1. Introduction 
 
 Thanks to low-cost optical devices enabling 2D and 3D displacement fields measurements, 
identification of material properties based on the full-field measurement method, has become very popular. 
Especially, digital image correlation (DIC) consists of a sampling of the displacement fields over a surface or 
within a volume of the sample on a regular grid is most frequently used. The identification approach is a 
particular case of inverse problem which aims to identify the map of material properties that underlies the 
experimental measurements.  
 An abundant literature exists on the identification of linear and non-linear constitutive equation 
parameters but materials are generally assumed to be homogeneous [1], [2], [3], [4]. In the last decade, the 
need to identify mechanical properties in heterogeneous materials has become an active research domain in 
order to better understand these complex mechanical behaviors. Indeed, the identification allows to 
mechanically characterize the materials to eventually know the stress fields. In this way, the entire 
constitutive equation is known and not just the kinematic part. In this work, we focus on the identification of 
global isotropic linear elastic but heterogeneous behaviors at a global scale. 
 Until now, five well-known identification techniques have been proposed: the virtual field method 
(VFM) proposed by [5], the constitutive equation gap method (CEGM) proposed by [6], the reciprocity gap 
method (RGM) proposed by [7], the equilibrium gap method (EGM) proposed by [8] and the finite element 
model updating method (FEMUM) proposed by [9]. All of these methods have been extensively used to 
identify global mechanical parameters, recent overviews compared them to build an optimal framework [10] 
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and to evaluate their performances in elastic and elasto-plastic identifications [11]. Widespread variants of 
these methods are vibration-based methods as in [12] where the authors identified orthotropic properties of 
plates. In order to identify local mechanical parameters where the homogeneous hypothesis is not verified, 
some of these methods have been modified to be adapted to heterogeneous materials. The Fourier series-
based VFM [13] and the constitutive compatibility method (CCM) [14], based on a reformulation of CEGM, 
are examples of recent developments in this area. As far as we know, there is no work in the literature which 
has tested the FEMU method in this case. Thus, we intend here to explore the possible application of this 
method to identify local parameters in the case of heterogeneous materials. 
 In the first part, we recall the classical definition of an identification problem with the governing 
equations. Then, we describe the principle of the FEMU method and we detail the finite element method 
equations for our method and the chosen minimization algorithm, the genetic algorithm. The third part 
presents the parallelization of the algorithm, which allows us to save computation time. Finally, the last part 
presents simulated cases in 2D to validate the approach and shows the capabilities of the method to identify 
local elastic parameters. 
 
2. Identification problem 
 
2.1. Governing equations 
 
 Let us suppose an elastic solid, see Fig.1, which lies in the domain Ω in the undeformed 
configuration. This domain is subjected to the prescribed strength field T  over the boundary part TΓ  and 

the prescribed displacement field u  over the boundary part uΓ . The domain Ω is assumed to be a 
heterogeneous isotropic elastic material. Three sets of differential equations govern this elastic problem: 
 The kinematics compatibility equations of the strain-displacement relation and the compatibility with 

the prescribed field u  
 

       T1

2
  ε u u u      in     Ω, (2.1) 

 
    u u     over    uΓ  (2.2) 

 

where   and T  are, respectively, the gradient operator and its transpose, and ε  - the linearized Green-
Lagrange strain tensor. 
 The equilibrium equations consisting of the interior equilibrium of the domain, assuming no body 

forces, and the equilibrium with the prescribed field T  
 

    div 0σ     in    Ω, (2.3) 
 

    . Tnσ     over    TΓ  (2.4) 

 
where div is the divergence operator, n  - the external unit vector normal to TΓ  and σ  - the Cauchy stress 

tensor. 
 The constitutive equation consisting of the stress-strain relation 
 
      : [ ] uσ θ ε  (2.5) 

 
where   denotes the fourth order elasticity tensor depending on the elastic parameters θ . 
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 These equations are used to solve a direct problem which consists of computing the mechanical 
fields of the domain governed by a constitutive equation and are subjected to prescribed quantities. These 
fields can be kinematics fields, such as displacement and strain fields, or stress fields. This is usually done by 
using the finite element method. 
 

 
 

Fig.1. Elastic domain subjected to non-overlapping static and kinematic boundary conditions. 
 
2.2. Identification problem 
 
 An identification problem consists in inverting the direct problem in order to retrieve the parameters 
θ  of the constitutive equation which drive to the measured mechanical fields. The measurements are usually 
done with a full-field measurement technique such as digital image correlation. It allows us to measure 
displacement fields at discrete locations on a grid. Thus, strain fields can be deduced afterwards. So, we 
experimentally have access to the kinematic fields. 
 The identification problem aims to provide values for the mechanical parameters of the constitutive 
equation. We have to find θ  in a way that Eqs (2.1), (2.2), (2.3) and (2.4) are satisfied through the 
constitutive Eq.(2.5). 
 
3. Finite element model updating method 
 
3.1. Principle of the method 
 
 The FEMU method is based on overdetermined full-field measurements to identify material 
constitutive parameters. The principle of the method, illustrated in Fig.2, consists of iteratively updating the 
material constitutive parameters of a finite element model in order to minimize a functional based on 
measured fields and simulated fields with an adequate minimization algorithm. 
 In this study, we use two different functionals, uJ  expressed as a function of displacement fields 
 

    
n 2exp sim

u i i
i

1
J u u

2
  θ , (3.1) 

 
and EJ  expressed as a function of Green-Lagrange strain fields 
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      
n 2exp sim

E i i
i

1
J E E

2
  θ  (3.2) 

 
where n  is the total number of measured points and θ  is the vector gathering the unknown material 

constitutive parameters. exp
iu  and exp

iE  are, respectively, the measured displacements and strains obtained by 

DIC and sim
iu  and sim

iE  are, respectively, the simulated displacements and strains obtained by the finite 
element model. These two functionals are compared in order to select the one that fits better for 
identification of local mechanical parameters. 
 In this work, we use the isotropic linear-elasticity constitutive equation which can be expressed as 
follows with Lamé’s parameters 
 
     tr 2   Iσ ε ε . (3.3) 

 
 Numerically, Young's modulus E and Poisson's coefficient   are preferred to Lamé’s parameters. 
One should note that   is considered fixed and constant in the materials for all cases in this work because it 
can be determined experimentally with the ratio between the transverse strain and the normal strain. 
 

 
 

Fig.2. Principle of the FEMU method. 
 
3.2. Finite element model 
 
 The virtual work principle makes it possible to write the weak formulation of the direct problem 
governed by the Eqs (2.1) to (2.5) 
 

     
Ω

[ ] :  :  .dV dS 
TΓ

u u T uε θ ε   . (3.4) 

 
 Generally, the finite element method is used to solve this problem. The finite element procedure is 
implemented in an in-house C code and is based on the classical finite element equations. In this work, we 
use a linear Lagrange finite element in 2D which has four nodes, see Fig.3. The mesh of the model is 
constructed in such a way that each node corresponds to each measured point. With this approach, we ensure 
a compatibility between the experimental fields and the simulated ones. As a consequence, the mesh is a 
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regular grid with a constant gap between the nodes like the correlation grid. We briefly resume the equations 
of the finite element method. 

 The elementary rigidity matrix [ ]eK  of an element e  of the mesh can be written 
 

  [ ] [ ][ ]e e T e e

V

K B D B dV      (3.5) 

 

where [ ]eB  is the shape function derivative matrix of the element e  and [ ]eD  is the constitutive equation 

matrix for the volume V  of the element e  which is a function of the unknown mechanical parameters and 
can be expressed in 2D plane stress  
 

  e
2

1 0
E

D 1 0
1

1
0 0

2

 
 
           
 
 

. (3.6) 

 

 The elementary force vector  eF  of the element e  of the mesh can be written 

 

     [ ]e e T e

S

F N T dS   (3.7) 

 

where  eT  is the external force vector applied to the surface S  of the element e  and [ ]eN  is the shape 

function matrix of the element e . 

 Once all the elementary quantities eK 
   and  eF  are computed, we can assembly them into global 

quantities [ ]K  and  F  

 

   
te e e

e

K L K L            , (3.8) 

 

     te e

e

F L F     (3.9) 

 

where [ ]eL  is the localization matrix of the element e  in the mesh. 
 Before the resolution, boundary conditions have to be applied to the system. We do this in a way that 
preserves the symmetry of [ ]K . 

 The solution of the finite element problem, the simulated displacement field  simu , consists of 

resolving the following linear system 
 

      simK Fu . (3.10) 
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 Different algorithms can solve this system but the preconditioned conjugate gradient method is 
particularly adapted in this case because [ ]K  is symmetric and sparse. 
 The strains are computed using a classical finite difference scheme. This choice is motivated by the 
fact that it is the same technique as the one used for experimental strain calculation. 
 

 
 

Fig.3. 2D linear Lagrange element. 
 
3.3. Minimization algorithm 
 
 Standard gradient based minimization algorithms cannot be selected in our case. The unknowns are 
structure-dependant because the derivative of the functional for one mechanical parameter does not keep its 
sign constant when the other parameters change. It means that the derivative cannot be trusted to guide the 
algorithm so we need to use non-gradient based minimization methods. 
 We select the genetic algorithm because it has been applied to many different problems and has the 
advantage to converge quickly to the global optimum. The authors used it in [15] to identify the Mooney-
Rivlin parameters of hyperelastic materials. Its disadvantage is that it requires many generations to reach the 
global optimum. The genetic algorithm belongs to evolutionary strategies to solve optimization problems. It 
has been developed in the 1970s and is based on the natural selection mechanisms [16]. The main idea is to 
define a randomly distributed initial population and to apply some genetic operators to adapt the population 
to the functional of the problem, see Fig.4. 
 We briefly describe these operators: 
 ranking: it assigns a fitness value to the individuals which consists in a linear application of the 

objective function ; 
 selection: this step consists in choosing the best individuals of the population. Different techniques have 

been developed [17], in this work we choose the roulette wheel selection [18]. It can be seen as a wheel 
in which each individual occupies a surface proportional to its fitness value, see Fig.5a; 

 crossover: this is done by combining some genes of two individuals, called parents. We use the uniform 
crossover technique which consists in selecting some genes of the parents following a distribution, see 
Fig.5b. A review of the different techniques for crossover operator can be found in [19]; 

 mutation: this step modifies a gene of an individual. The probability that this operator occurs is usually 
small %mutP 1 . The mutation is illustrated in Fig.5c; 

 convergence criterion: we do not define a specific criterion, the algorithm iterates until the maximum 
number of generations is reached. 
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Fig.4. Principle of the genetic algorithm. 
 

 
 

(a) Roulette-wheel selection (b) Uniform crossover (c) Mutation 
 

Fig.5. Illustration of the genetic algorithm operators. 
 
4. Parallel implementation 
 
 Because of the iterative process of the FEMU method, it can be time consuming. Therefore, in order 
to reduce the computation time, we chose to parallelize the genetic algorithm. Several different parallel 
genetic algorithms are available [20] but we selected the master-slave model (MSM), see Fig.6, because it 
renders it possible to get a significant speed-up of the process without having to modify much of the 
algorithm. 
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Fig.6. Master-slave model. 
 
4.1. Master-slave parallel genetic algorithm 
 
 In this model, all genetic operators are done in the master processor. The most common operation 
that is parallelized to slave processors is the objective function evaluation because it only requires the 
knowledge of the individual being evaluated so there is no need to communicate during this phase. In our 
case, it is particularly adapted because the evaluation of the objective function consists of solving the finite 
element linear system (15) which can be time consuming when the number of nodes increases. 
 A fraction of the population is sent to the slave processors to evaluate some individuals of the 
population. The MSM is implemented as synchronous, meaning that the master waits for all slave processors 
to return their results before continuing the minimization process. So basically, it works exactly like a simple 
genetic algorithm. 
 
4.2. Message passing interface paradigm 
 
 To implement this parallel architecture of the genetic algorithm, we used the Message Passing 
Interface (MPI) paradigm, which is the most common way to do parallel computation for distributed-
memory computers [21]. All processors form a network and specific communication functions allow us to 
communicate between these processors, see Fig.7. The program is written in C code and calculations have 
been performed on the supercomputer facilities of the University of Poitiers (Mésocentre de calcul de Poitou-
Charentes). 
 

 
 

Fig.7. Distributed-memory principle. 
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 In order to have the best speed-up factor, we balance the computation load over the processors in 
such a way that slave processors have the same amount of calculations and that the master processor is 
slightly underloaded compared to the slave processors. 
 
5. Simulated tests 
 
5.1. Description of tests 
 
 Here, we consider a reference problem in order to validate the approach described above. The 
distribution of Young's modulus and the boundary conditions of the elastic problem are shown in Fig.8. 
Three different areas with three different Young's modulus values define the mechanical properties field. The 
Poisson's coefficient is fixed to .0 3  . This case is particularly adapted to evaluate the method when 
mechanical properties are constant in some regions and suddenly vary in other regions. 
 The reference problem was solved using a finite element solver called Cast3M [22]. The 
displacement fields solution of this problem is used as experimental data. 
 

 
 

Fig.8. Reference problem in 2D. 
 
5.2. Results with no noise 
 
 In this section, the displacement fields of the reference case are given to the identification method 
with no noise added. The FEMU method is applied successively 10 times on the reference case described 
above. The size of the population of the genetic algorithm is equal to 15 individuals per unknown and iterates 
during 10000 generations. The number of selected individuals represent 93 %  of the complete population. 
The probability for an individual to mutate is fixed to 1 % . For these parameters, a non-parallel program 
would take approximatively 13 hours. Using the supercomputer facilities and our parallelized code on 100 
cores, it takes around 10 minutes. The speed-up factor is about 80, which is a huge improvement of the 
computation time. We clearly see the advantage of this approach. 
 Figure 9 shows the average identified Young's modulus for the 10 identifications and their relative 
gaps for the two different functionals. We observe that the results with the EJ  functional are better than 

those with the uJ  functional. The different mechanical areas are well reconstructed in both cases but there is 

less dispersion with the EJ  functional. If we look at the relative error between the reference and identified 
values of Young's modulus in Fig.9, the same remark can be made. We can add that the values of relative 
error for UJ  vary 30 %  and are higher than those for EJ  which vary 10 % . Moreover, we remark that the 
relative errors increase when elements are close to the inner boundary and conversely the errors are 
decreasing when the elements are close to the upper boundary where the load is applied. It indicates that 



Identyfication of local elastic parameters in heterogeneous ... 149 

elements which are more deformed are easier to identify in comparison with those which have weak values 
of displacements/strains. 
 Figure 10 shows the mean kinematics residuals of the 10 identifications at the end of the process. As 
previously, residuals are weaker for the EJ  functional for all kinematic fields. 

 Figure 11 shows the mean evolution of the best individual minf  during the identification process for 
the two different functionals and for the 10 identifications. In order to do a fair comparison between these 
functionals, the values of the objective functions are normalized by the maximum value max( )minf  for each 

of them. Then, the values vary between 0 and 1. We see that the EJ  functional converges very quickly and 

faster than uJ  during the first thousand generations. At the process end, the convergence speed is the same 
for both functionals but is quite slow compared to the beginning of the process. 
 Figure 12 shows the evolution of the best individual for the element 22 for the two functionals. We 
chose these particular evolutions because the identified values of Young's modulus are the worst for the two 
functionals. These evolutions show that the EJ  functional continues to converge towards the reference value 

but this is not the case for the uJ  functional. We can see that it almost stops to converge around the 
generation 2000. As we noticed before, the convergence is quite slow at the end of the process. We observe 
that from the generation 1000 to the end, the improvement in the values is weak, so we can think about the 
reduction of the maximum number of generations. The choice is up to the user: if one reduces this number, 
there will potentially be an increase of the errors in the identified values but the process will be faster. 
 

 uJ  

  

 EJ  

  

   idE  
 

ref id

ref

E E

E


 

Fig.9. Identified Young's modulus and mean relative errors. 
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Fig.10. Kinematic residuals for the two functionals of the FEMU method. 
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Fig.11. Mean best individual evolution for the two functionals for 10 identification. 
 

 
 

Fig.12. Evolution of the best individual for the element 22 for the two functionals. 
 
5.3. Influence of noise 
 
 In this section, a numerical noise is added to the displacement fields of the reference case in order to 
evaluate the performances of the method when data are noisy. This is done with the following formula 
 

  , , . .noise ref
x y x yu u r a  (5.1) 

 

where r  is a normally distributed random number with zero mean and a unit standard deviation, a  is the 
amplitude of noise expressed in millimeters. We test the identification method for four values of noise 
amplitude .a 0 01mm  to .a 0 04mm . These values typically are the values of DIC measurement errors. In 
the same manner as we did before for the reference case, we did successively 10 identifications for each 
noise amplitude. 
 Figure 13 shows the mean relative errors on the values of identified Young's moduli. We clearly see 
the influence of noisy data on the identification process. Indeed, results for the uJ  functional show that it is 

less sensitive to noise compared to the results for EJ . This is an expected observation because the strain 
calculation consists basically on the derivation of displacement fields. So, it can be seen as a high-pass filter. 
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It means that small variations of displacements will be increased by the strain calculation scheme. It explains 
that the EJ  functional is more sensitive to noise. Nevertheless, we observe that this functional has still better 
results than the other one. 
 Figures 14 and 15, respectively, show the mean identified Young's modulus, with the relative errors, 
and the mean kinematic residuals for the 10 identifications for the two functionals for a noise amplitude
 .a 0 02mm . We observe that the results are better in terms of identified values with weaker relative errors. 
Nevertheless, for the reconstructed kinematic fields, we see that the residuals are quite similar for both 
functionals. This observation added to the previous one indicates that the EJ  functional provides better 
results with similar errors in the kinematic fields. It motivates once again the use of this functional for 
experimental cases. 
 

 
 

Fig.13. Mean identified values for different levels of noise. 
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Fig.14. Identified Young's modulus for a noise amplitude a=0.02. 
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Fig.15. Kinematic residuals for the two functionals of the FEMU method for a noise amplitude a=0.02. 
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6. Concluding remarks 
 
 In this study, we have explored the capability of the FEMU method to identify local mechanical 
elastic parameters. The classical implementation of this method is done for homogeneous materials, so for 
very few mechanical parameters. Here, we have implemented it using a non-gradient minimization 
algorithm, genetic algorithm, which is more robust and efficient in the case of many unknown parameters. 
The inconvenience of this method is its iterative formalism which can be very time consuming in 
computations. In order to reduce this issue, we have proposed a master-slave parallel implementation of the 
algorithm. This new implementation is very efficient and we have achieved a high speed-up factor around 
80. We have shown on a simulated case, with or without noise, that the method can provide local differences 
of mechanical behavior in heterogeneous materials. We compared a functional based on displacements and 
another one based on strains. The one based on strains allows a faster convergence and better identification 
of moduli with less disparity than the one based on displacements. 
 These promising results offer some interesting perspectives for the characterization and the 
understanding of mechanical behavior of heterogeneous materials. We are currently working on some in-
plane experimental applications of this method. Some recent work, such as [23], show that hybrid 
OpenMP/MPI parallel computing can be even more efficient than pure MPI, it could be a promising 
perspective to reduce the execution time of our method. 
 
Nomenclature 

 
    fourth order elasticity tensor 
 a   amplitude of noise expressed in millimeters 

 [ ]eB   shape function derivative matrix of the element e  

 [ ]eD   constitutive equation matrix of the element e  

 exp
iE   measured Green-Lagrange strains obtained by DIC 

 sim
iE   simulated Green-Lagrange strains obtained by the finite element model 

  F   global force vector for all elements 

  eF   elementary force vector of the element e  

 minf   value of the functional of the best individual of the population of the genetic algorithm 

 EJ   functional expressed as a function of Green-Lagrange strain fields  

 uJ   functional expressed as a function of displacement fields  

 [ ]K   global rigidity matrix for all elements  

 [ ]eK   elementary rigidity matrix of element e  

 [ ]eL   localization matrix of the element e  

 [ ]eN   shape function matrix of the element e  

 n   the external unit vector normal to TΓ  

 r   normally distributed random number with zero mean and a unit standard deviation 
 u   prescribed displacement field 
 T   prescribed strength field 

  eT   external force vector applied to the surface of the element e  

 exp
iu   measured displacements obtained by DIC 

 sim
iu   simulated displacements obtained by the finite element model 

 TΓ   boundary part of Ω with prescribed strength field T  

 uΓ   boundary part of Ω with prescribed displacement field u  
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 ε   linearized Green-Lagrange strain tensor 
 θ   elastic parameters 
 λ, μ  Lamé’s parameters 
 σ   the Cauchy stress tensor 
 Ω  domain of the solid in the undeformed configuration 
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