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The classical problem of water wave scattering by an infinite step in deep water with a free surface is 
extended here with an ice-cover modelled as a thin uniform elastic plate. The step exists between regions of finite 
and infinite depths and waves are incident either from the infinite or from the finite depth water region. Each 
problem is reduced to an integral equation involving the horizontal component of velocity across the cut above 
the step. The integral equation is solved numerically using the Galerkin approximation in terms of simple 
polynomial multiplied by an appropriate weight function whose form is dictated by the behaviour of the fluid 
velocity near the edge of the step. The reflection and transmission coefficients are obtained approximately and 
their numerical estimates are seen to satisfy the energy identity. These are also depicted graphically against 
thenon-dimensional frequency parameter for various ice-cover parameters in a number of figures. In the absence 
of ice-cover, the results for the free surface are recovered. 
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1. Introduction 
 
 Study of water wave problems in which the water is covered by a thin elastic plate has gained 
considerable attentionin recent times due to the importance of finding the application in the construction of 
very large floating structures like oil storages bases, offshore pleasure cities, floating runways, etc. So, it is 
worthwhile to consider wave propagation problem where the bottom of the water consists of an infinite step 
which exists between regions of a combination of finite and infinite depth. 
 A mathematical model describing the interaction of ocean waves by shore fast sea-ice modelled as a 
thin elastic plate has been considered by Fox and Squire [1]. They used a matching technique based on 
minimizing a certain error integral evaluated at the point of discontinuity on the upper surface of water. 
Hermans [2] used a method based on solving an integral equation to investigate interaction of water waves 
with floating flexible strips modelled as a thin elastic plate. Gayen et al. [3] used Havelock's inversion 
theorem to reduce the boundary value problem describing interaction of water waves by a surface strip to 
two coupled singular integral equation of the Carleman type which were solved approximately for large strip 
width. 
 In our study, we investigate the infinite step problem in the presence of an ice-cover by reducing it to 
solving an integral equation for the horizontal component of velocity on the cut above the infinite step. The 
integral equation is solved numerically by using the Galerkin approximation in terms of simple polynomials 
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multiplied by a weight function whose form is dictated by the behaviour of the fluid velocity near the edge of 
the step. The energy identity has been evaluated and matched with the numerical estimates for the reflection 
and transmission coefficients. These are also depicted graphically against a non-dimensional frequency 
parameter in a number of figures for different ice-cover parameters. When the ice-cover parameters are 
considered very small, they are seen to be very similar to the results obtained by Newman [4] for an infinite 
step with free surface. Both the cases of wave incidence from deep water region to the finite depth region 
and from finite depth region to deep water region have been considered. 
 It may be mentioned here that Newman [4] first considered this type of geometry of an infinite step 
below a free surface and studied water wave scattering by such a step. In our paper, we have replaced the 
free surface by a thin ice-cover modelled as a thin elastic plate and solved the corresponding water wave 
scattering problem by formulating the problem in terms of an integral equation which is solved numerically 
by the Galerkin approximation followed by numerical evaluation of the reflection and transmission 
coefficients. Due to a significant increase in the scientific activities in the cold regions during the last few 
decades, a section of the community of hydrodynamic researchers generalized many free surface problems to 
ice-cover problems wherein the ice-cover is modelled as a thin elastic plate. Thus it is felt that the problem 
considered here is of some interest for the researchers on water waves.  
 
2. Mathematical formulation 
 
 A rectangular Cartesian co-ordinate system is chosen in which the y-axis is taken vertically 
downwards into the fluid region and the xz -plane coincides with the mean portion of the ice-sheet floating on 
water with an infinite step. The fluid region consists of two regions, one is of finite depth represented by 

 , 0 y h x 0      and the other is a deep water region represented by  , 0 y 0 x       as shown 

in Fig.1. 
 

 
 

Fig.1. Diagram of the wave incidence. 
 
 Assuming linear theory and the motion in water to be irrotational, time harmonic with angular 

velocity ω, independent of the co-ordinate z and using linear theory if     , , , i tx y t Re x y e    denotes 

the velocity potential describing the motion, then φ satisfies the Laplace equation 
 

   φ2 0  , (2.1) 
 
in the fluid region. The condition on the ice-cover is 
 

               on        , 4
x yK D 1 K 0 y 0 x            . (2.2) 
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The condition on the step 
 

   ,          , 0 x 0 h y
x


    


. (2.3) 

 
The bottom conditions are 
 
    as   ,     (for deep water region)0 y 0 x     , (2.4a) 
 

        on     ,             (for finite depth water region)
d

0 y h x 0
dy


     , (2.4b) 

 
the edge condition is 
  

  /   is bounded as 1 3r r   (2.5) 
 

where    /1 222r x y h    is the distance from the edge of the step, and finally the condition as | |x   is 

given by 
 

   
            as        

,  cos ( )
           as        

cos

0 0 0

0

i x i x y
1

i x
1 0

0

e R e e x

x y T h h y e
x

h h

   

 

  
    
  



 (2.6) 

 
where 0  is the unique positive root of the dispersion relation 
 

    4k Dk 1 K K   , (2.7) 

 

with 
2

K
g


 , g  being the acceleration due to gravity and, 

 
,   

3
i

2

d Ed
D

12 1 g


 

   
 is the flexural 

rigidity of the ice-sheet, E is the Young's modulus and ν is the Poisson's ratio of the material of the elastic 
plate, ρ as the density of water, i  as the density of the ice-sheet, d is the very small thickness of ice of 

which a still smaller part is immersed in water so that K  is always less than unity for all practical purposes. 
It may be noted that Eq.(2.7) has a real positive root 0  four complex roots , 1 2   (  1  has positive real 

and imaginary parts with  2 1   ) and a set of countably infinite purely imaginary roots 

 * *, , , ,n ni n 1 2 3 0       where *
n

1 1
n h n

2 2
            
   

 and *  as   nh n n    (c.f. Chung and 

Fox [5]) and 0  is the unique positive root of the dispersion relation 
 

    tan4k Dk 1 K hkh K   , (2.8) 
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and 1R and 1T  denote the reflection and transmission coefficients (unknown) for the case of incidence of 
waves from the deep water region to the finite depth region. 
 For the case of incidence from the finite depth region to the deep water region condition (2.6) is to be 
replaced by 
 

       cos
          as        

cos  ,  

                                       as        

0 0

0 0

i x i x 0
2

0

y i x
2

h h y
e R e x

h hx y

T e x

  

  

  
     

 

 (2.9) 

 
where  2R  and 2T  denote, respectively, the reflection and transmission coefficients (unknown) in this case. 

Our task here is to obtain numerical estimates for jR ,   ,  jT j 1 2 for different values of various ice-cover 

parameters. 
 
3. Reduction to integral equation 
 
 For the case of incidence of waves from the deep water region, use of Havelock's [6] expansion for 
water wave potentials for deep and finite depth water produces 
 

  

 

   

,

,        for   ,   ,

0 0 0 0 1 1 2 2y i x y i x y i x y i x
1 1 2
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x y e R e A e A e
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

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 (3.1) 

and 
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0 1 2

n
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 (3.2) 

with 

     ,  cos sin4M k y k Dk 1 K ky K ky    , (3.3) 

nd 

     cosh
,            , ,

cosh
n

n
n

h y
I y n 0 1 2

h

 
 


, (3.4) 

  

     *
*

*

cos
,            , , , .. 

cos
n

n
n

h y
I y n 1 2 3

h

 
  


. (3.5) 

 

Here *, , ,  and 1 2 1 2 nA A B B B  are unknown constants and ( )A k  is an unknown function. 
Let, 

      ,1
d

f y 0 y
dx


 , (3.6) 

 
then condition (3.6) provides 
  
    ,  1f y 0 h y    , (3.7) 
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while the edge condition (2.5) gives 
 

      /
     as        

1 3
1f y O h y y h 0

    . (3.8) 

 
 Thus, ( )1f y  is unknown for 0 y h  . An integral equation for ( )1f y  ( )0 y h   is now derived 
following a procedure similar to Manam et al. [7] for the deep water region and also for the finite depth 
region. 
 As in Manam et al. [7], the unknown coefficients in Eq.(3.1) are given by 
 

    ,0u
1 1

0 0 0

i
1 R f u e du

a


 

   (3.9) 
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1 1 0

i
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a


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  , (3.10) 

 

    2u
2 1

2 2 0

i
A f u e du

a


 

  , (3.11) 

and 

   
 

   ,122 4 2
0
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A k f y M k y du
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

 
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 
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, (3.12) 

with 

  ,     , ,
4
n

n
5D 1 K

a n 0 1 2
2K

  
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
. (3.13) 

 
Also, the unknown coefficients Eq.(3.2) are given by 
 

     ( ) 
h

1 0 1 0

0

T V f u I u du   , (3.14) 

 

     ( ) 
h

1 1 1 1

0

B V f u I u du   , (3.15) 

  

   ( ) ( )
h

2 2 1 2

0

B V f u I u du    (3.16) 

and 

   * * *( ) ( )
h

n n 1 n

0

B V i f u I u du    , (3.17) 

with 



162                                                                                                                                            S.Ray, S.De and B.N.Mandal 

     
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 
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 
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Now the continuity of pressure above the step ( , )x 0 0 y h    gives 
 

     , , ,       0 y 0 y 0 y h       . (3.19) 
 

This provides the integral equation for  1f y  as given by 
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h
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  ,0 y u h  . 
 

If we write 

     1
1

1

f u
g u

1 R



, (3.22) 

 

then Eq.(3.20) is reduced to 
 

     , ,    0

h
y

1 1

0
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 For the case of incidence from the finite depth water region to the deep water region the integral 

equation for ( )( ( , ),  )  2
d

f y 0 y 0 y h
dx


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If we write 
 

     2
2

2

f u
g u

1 R



, (3.26) 

 

then Eq.(3.24) is reduced to 
 

       , ,    
h

2 2 0

0

g u L y u du I u 0 y h    . (3.27) 

 

It may be noted that both the integral Eqs (3.23) and (3.27) are weakly singular integral equations. 
 
4. Numerical solutions of the integral equations  
 
 Numerical solutions of the integral Eqs (3.23) and (3.27) are now obtained by using the Galerkin 
approximation in terms of simple polynomials multiplied by an appropriate weight function whose form is 
dictated by the edge condition (2.5). Thus we expand    and  1 2g y g y as 
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where N is an integer to be chosen. 
 Substituting the expression of  1f y  in terms of  1g y  given by Eq.(4.1) in Eqs (3.9) and (3.14) 

we obtain  1R  and  1T  as given by 
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Similarly, using Eq.(4.2) we obtain 2R  and 2T  as given by 
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and 
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    0

1
h nN 3 y

2 2 n
0 0 n 0 0
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 To find the unknown constants   ,  ,  , .,nc n 0 1 2 N   we put     ,  ,  , .,  yi iy y i 0 1 2 N 0 h     , in 

relation (3.23) to obtain the linear system 
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and 

  ,    , , ,0 iy
ip e i 0 1 2 N   . (4.9) 

 
The collocation points iy  are to be chosen suitably. Here we have chosen 
 

  ,          , , ,i
ih

y i 0 1 2 N
n

   . (4.10) 

 
 The linear system (4.7) is solved by any standard method to obtain the constants 

  ,  ,  , .,nc n 0 1 2 N   and thus the approximate solution of the integral Eq.(3.23) is obtained. 

 Similarly, to find the unknown constants  ,  ,  , .,nd n 0 1 2 N   we put iy y

  ,  ,  , .,  ii 0 1 2 N 0 y h    , in relation (3.27) to obtain the linear system 
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where 
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h u h
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and 
  ( ),    , , ,i 0 ip I y i 0 1 2 N   . (4.13) 
 
The collocation points iy  are chosen similarly as given by Eq.(4.10). 
 Now, the linear system (4.11) is solved by any standard method to obtain the constants 

  ,  ,  , .,nd n 0 1 2 N   and thus the approximate solution of the integral Eq.(3.27) is obtained. 

 Using Eqs (4.3) and (4.4), numerical estimates for 1R and 1T for different values of D  and   

choosing , , , ..N 0 1 2   against /( )1 2Kh , it is observed that fairly accurate numerical estimates are obtained 

for .N 2  Also, these numerical estimates satisfy the energy identity given by 
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2 2

1 1R T 1    (4.14) 

where 
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 For the case of incidence of wave from the finite depth water region, numerical estimates for  2R and 

 2T  are obtained from Eqs (4.5) and (4.6), respectively, after solving the linear system (4.11). These 
estimates satisfy the energy identity derived 
  

  
2 2

2 2R T 1    (4.16) 

where 

  
 cosh

sinh

2 4
0 0

4
0 0 0

2 h 1 K

2 h 2 h 1 K

     
           

. (4.17) 

 
The energy identities given by Eqs (4.14) and (4.17) can be derived as in Das et al. [8]. 
 
5. Numerical results 
 
 The values of ,1R 1T ,  2R and 2T  are computed numerically for the non-dimensional parameters 

'
4

D
D

h
  and '

h


   against the non-dimensional frequency parameter /( )1 2Kh  in different figures. For the 

purpose of computing the reflection and transmission coefficients, we have chosen N 2 . 
 

          
 

Fig.2. Graph for / vs ( )1 2
1R Kh .                    Fig.3. Graph for / vs ( )1 2

1R Kh . 
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Fig.4. Graph for / vs ( )  1 2
1T Kh .                    Fig.5. Graph for / vs ( )1 2

1T Kh . 

 

 In Fig.2, it is observed that, the computed values of  1R  for small values of 'D  and '
' '(e.g. . ,  .  ) D 0 0001 0 001   and Newman's [4] free surface results (i.e., ' '  ,   D 0 0   ) almost coincide 

providing a check on the correctness of the numerical method employed here. In Fig. 3, the numerical results 

of  1R  are presented for different values of 'D  and ' '(e. g. D , ' , ;  . , . ;  . , . ;  . , . )0 0 0 1 0 001 0 3 0 001 0 5 0 001   

against the wave number / ( )1 2Kh . Again, in Fig.4, it is observed that, the numerical estimates for 1T for 

very small values of 'D  and ' ' '(e.g. . ,  .  ) D 0 0001 0 001    almost coincide with Newman's [4] free surface 

results for ' '   and   D 0 0    in most cases. In Fig.5, the numerical estimates for 1T  are presented for the 

same set of values of 'D  and '  used in Fig.3. In addition, our present numerical values of  1R and 1T also 

satisfy the energy identity given by Eq.(4.15), which demonstrates another check on the correctness of the 
numerical values used here. Figures 3 and 5 demonstrate the effect of the presence of the ice-cover on the 
reflection and transmission coefficients. 
 

       
 

Fig.6. Graph for / vs ( )1 2
2R Kh .                               Fig.7. Graph for / vs ( )1 2

2R Kh . 
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Fig.8. Graph for / vs ( )1 2
2T Kh .                           Fig.9. Graph for / vs ( )1 2

2T Kh . 

 
 In Figs 6 and 7, the numerical estimates for 2R  and in Figs 8 and 9, the numerical estimates for 2T  

are presented, i.e. when incidence is from the deep water region to the finite depth region. It is observed that 
the numerical estimates for 2R  are almost same as 1R , which was previously obtained by Newman [4]. 

Also, for very small values of 'D  and ' ' '(e.g. . ,  .  )D 0 0001 0 001   , both the values of 2R and  2T almost 

coincides with Newman's [4] results for the free surface (as in Figs 6 and 8). In Figs 7 and 9, the values of 

2R  and 2T are depicted against /( )1 2Kh  for the same set of values of 'D  and '  used in 1R  and 1T , 

respectively. The numerical estimates for 2R  and 2T  also satisfy the energy identity (4.17) to ensure the 

correctness of the results obtained here. Figures 6 and 8 also demonstrate a significant effect of the presence 
of ice-cover on the reflection and transmission coefficients. However, the method employed in the 
mathematical analysis is simple compared to the same used by Newman [4]. 
 
6. Conclusion 
 
 The classical two-dimensional problem of water wave scattering by a step of infinite depth beneath a 
free surface is extended here to the same beneath an ice-cover modelled as a thin elastic plate considering 
two cases, i.e. when the waves are incident from the deep water region to the finite depth water region and 
vice versa. For each case a weakly singular integral equation is formed for the horizontal component of 
velocity across the cut above the step and this is solved numerically by the Galerkin technique wherein the 
unknown function is expanded in terms of simple polynomial multiplied by an appropriate weight function 
whose form is dictated by the edge condition at the corner of the infinite step. Very accurate numerical 
estimates for the reflection and transmission coefficients are obtained and are depicted in a number of 
figures. The effect of the presence of ice cover is seen to be insignificant for the small wave number but 
becomes significant for moderately large wave numbers. 
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Nomenclature 
 
 E  Young's modulus 
 g   acceleration due to gravity 

 h  constant depth of water 
 K  wave number 
    Poisson ratio 
     density of water 

     velocity potential 

    surface density of the ice-cover 
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