
 
Int. J. of Applied Mechanics and Engineering, 2019, vol.24, No.4, pp.200-223 
DOI: 10.2478/ijame-2019-0058 
 

APPLICATION OF TWO CONDITIONS OF LOSS OF STABILITY IN 
ANALYSIS OF THE TUBE BENDING PROCESS 

 
Z. ŚLODERBACH 

Opole University of Technology  
Faculty of Managing the Power Industry 

45-036 Opole, ul. Luboszycka 7, POLAND 
E-mail: zdzislaw.Sloderbach@interia.pl 

 
 

In this paper, the derivation of expressions for admissible values of strains and stresses for vertex points of 
layers subjected to tension during tube bending at bending machines is presented. The conditions of the dispersed 
and located loss of stability of the bent tube were assumed as criteria of instability. The original element of this 
paper is the extension of the criterion of strain location in a form of possible initiation of a neck or furrow 
(introduced by Marciniak for thin plates [1]) to bending thin- and thick-walled metal tubes at bending machines. 
The conditions of the dispersed and localized loss of stability together with formation of the plane state of 
deformation (PSD) in the plane stress state (PSS) were assumed as the criteria of instability. The calculation 
results were presented as graphs being useful nomograms. We present also simple examples of calculations of 
permissible and critical strains and values of bending angles including and not including displacement of the 
neutral axis y0, during cold bending metal thin-walled tubes at bending machines for bending angles <0o; 180o>. 

 
 Key words: allowable strains and stresses, bending angles, neutral layer, wall thickness of elbows. 
 
1. Introduction 

 
 Tube bending, see e.g. (Śloderbach [2]; Śloderbach and Strauchold [3]; Beskin [4]; Boyle [5]; 
Dzidowski [6]; Dzidowski and Strauchold [7]; Franz [8]; Gruner [9]; Grunow [10]; Korzemski [11], [12]; 
Pesak [13]; Śloderbach and Rechul [14]; Śloderbach and Pajak [15]; Śloderbach [16], [17], [18]; Tang [19]; 
UDT [20]; Wick et al. [21]; Zhang et al. [22]; Zhiqiang et al. [23]; Zdankiewicz [24], [25]; Dobosiewicz and 
Wojczyk [26]; Śloderbach and Pajak [27]; Śloderbach [28], [29]) as a technological problem appeared in the 
end of the 19th century when production of tubes started on industrial scale. Tubes were delivered mainly to 
industry of steam engines and boilers, gas engineering, power engineering, civil engineering. At present, 
tubes and elbows are purchased by almost all branches of industry and tube bending is a typical activity in 
many technological processes in metal industry. Production of tubes and elbows is increasing  more rapidly 
than production of steel because tubes and elbows are made also of other materials, for example plastics. 
Higher requirements concerning the quality of produced tubes and elbows must be met. The choice of a tube 
bending method is dependent on a kind of material, thickness of the tube, bending radius, the required 
accuracy and quality of bending, work conditions, bend angle, serial production and others.  
 In Śloderbach [18] a generalized model of strain during metal tubes bending on bending machines 
was derived. In the considered case, the tubes were bent with the wrapping method at a rotating template 
with the use of a lubricated steel mandrel. The model contains three strain components in an analytical form, 
including displacement of the neutral axis. The derived strain scheme satisfies initial and boundary kinematic 
conditions of the bending process, conditions of continuity and compatibility of strains. The obtained 
analytical expressions can be classified as kinematically admissible. The present paper is a further 
development of Śloderbach [18].  
 Tube bending on a bender is usually made by the method of wrapping at a rotating template using a 
suitable mandrel, see Fig.1.  
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 Pipelines and tube installations can be operated during a definite time of life and safe work. The 
pipelines and tube installations contain straight parts, elbows, pipe fittings (tees, four-way pieces, reducing 
pipes, nozzles, etc.) and connecting elements, for example welds, screw joints and others. Their lifetimes are 
different. Lifetime of straight parts is the longest, next there are elbows and pipe fittings and lifetime of 
connecting elements such as welds is the shortest (Śloderbach [2]; Śloderbach and Strauchold [3]; Dzidowski 
[6]; Dzidowski and Strauchold [7]; Śloderbach and Rechul [14]; Śloderbach and Pajak [15]; Śloderbach [16], 
[17]; Dobosiewicz and Wojczyk [26]; Śloderbach and Pajak [27]; Życzkowski and Skrzypek [30]). 
 Premature damages of the elbows occurring during operation of the elbows can also be caused by 
applying an unsatisfactory method of strength calculations, see e.g. (Dzidowski [6]; Dzidowski and 
Strauchold [7]; Śloderbach and Rechul [14]; Śloderbach [16]; Tang [19]; UDT [20]; Dobosiewicz and 
Wojczyk [26]; Życzkowski and Skrzypek [30]). Such a situation can be caused by the lack of a precise 
method of determination of permissible distribution of the wall thickness at the points of maximum strains 
during the elbow bending. It concerns especially top parts of the elbow bending zone where this thickness is 
minimal. If the strain components and intensity in the bending zone, especially in the top part are well 
known, better  calculations of strength of elbows and their better manufacturing will render it possible to 
improve reliability of machines and devices. 
 At present, tube bending with bending machines is usually performed applying the method of 
wrapping at a rotating template with the use of a suitable mandrel, see Fig.1.  
 

 
 

Fig.1.  Scheme of a tube bending machine with a rotating template and a mandrel, 1-mandrel, 2-clamp bolt, 
3-rotating template, 4-sliding slat, 5-planisher, 6-bed of sliding slat, 7-bending pipe, 8-mandrels rod. 

 

 Tube bending with the considered method  always causes a reduction of the wall thickness in the 
layers subjected to tension, increase of wrinkling and the wall thickness in the layers subjected to 
compression, and deformation (ovalization) of the cross section. These unfavourable phenomena should be 
included into the tolerance limits given in the European and Polish Standards (UDT [20]; Zdankiewicz [25]; 
EN [31]). The reduction of the wall thickness and negative influence of large strains at the top points of the 
elbow are the most important factors influencing the operation life of the elbow (Dzidowski [6]; Dzidowski 
and Strauchold [7]; Korzemski [11], [12]; Śloderbach and Rechul [14]; Śloderbach [16], [17]; Tang [19]; 
Dobosiewicz and Wojczyk [26]; Śloderbach and Pajak [27]). 
 In this paper, previous ideas and concepts of (Marciniak [1]) are developed. The development consists in 
an extension of the stability loss condition in the localized form (possible initiation of the furrow) derived by 
(Marciniak [1]) for uniaxial and biaxial tension of sheets to the cases of bending thin- and thick-walled metal 
tubes at the bending machines, in particular with the use of the rotational template and the mandrel, Fig.1.  
 In papers (Śloderbach [2]; Śloderbach and Strauchold [3]; Śloderbach and Rechul [14]; Śloderbach 
and Pajak [15]; Śloderbach [16], [17], [18]) it was assumed that the bending of thin-walled metal tubes at the 
bending machines in the layers subjected to tension (tube bending with the method of wrapping at the 
rotational template using the mandrel) is a complex process of heterogeneous curvilinear tension (curvilinear 
wrap forming) under the biaxial stress state. In the case of the layers subjected to compression, it is 
something like a combination of heterogeneous curvilinear tension and bounded upsetting, respectively. In 
this paper, the authors analyse also the influence of parameters of hardening and normal anisotropy on 
admissible values of the bending angle, strains and stresses occurring in the layers subjected to tension 
during cold bending of thin- and thick walled metal tubes at the bending machines in the range of the 
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bending angle ,b 0 180     and for the case when 0y 0 , where y0 is the displacement of the neutral axis 

of plastic bending (Śloderbach [16], [17], [18], [19]; Wick [21]) and Fig.2. Moments of possible occurrence 
of the stability loss in the dispersed form for the case of uniaxial tension and occurrence of the localized 
stability loss (for example in a form of local initiation of the external furrow) under biaxial stress state were 
assumed as the criteria (Marciniak [1]; Śloderbach and Rechul [14]; Śloderbach [16], [17]; El-Sebaie and 
Mellor [32]; Gabryszewski and Gronostajski [33]; Hill [34]; Moore and Wallace [35]; Śloderbach [36]; Erbel 
et al. [37]; Marciniak and Kołodziejski [38]; Olszak et al. [39]; Swift [40]; Szczepiński [41]). For the case of 
thin-walled tubes, the problem of occurrence of the plane state of deformation (PSD) under the plane stress 
state (PSS) was also considered (Marciniak [1]; Śloderbach and Rechul [14]; Śloderbach [16], [17]; El-Sebaie 
and Mellor [32]; Gabryszewski and Gronostajski [33]; Moore and Wallace [35]; Śloderbach [36]; Erbel et al. 
[37]; Marciniak and Kołodziejski [38]; Olszak et al. [39]; Swift [40]; Szczepiński [41]. Analytical calculations 
were made for two extreme cases, i.e. for a generalized scheme of strain and simplification of the 3rd type 
(Śloderbach [2]; Śloderbach and Strauchold [3]; Śloderbach and Rechul [14]; Śloderbach [16], [18], [28]), 
because the calculation results are received from simplifications of the 1st and 2nd types (Śloderbach and 
Strauchold [3]; Śloderbach [16], [18], [28]) will be included in those two extreme cases.  
 The authors concentrate only on the analysis of the top points of the layers subjected to tension 
because from the previous experiments and operating tests it appears that the process of elbow damage in 
most pipelines (especially those used in energy engineering) usually starts and develops at external top points 
of the layers subjected to tension in the bending zone. From the collected statistical data (Dzidowski [6]; 
Dzidowski and Strauchold [7]; Śloderbach [16], [17]; Zdankiewicz [24], [25]; Dobosiewicz and Wojczyk 
[26]; Śloderbach and Pajak [27]) it appears that an average lifetime of elbows of the pipelines loaded by 
internal pressure and operating at elevated temperatures is shorter than that of straight intervals of the 
pipelines by 30% and more. Thus, occurrence of stability loss states (especially those localized) during tube 
bending causes a further drop of the operating life. It is recommended in this paper to prevent such states in 
technology of metal tube bending for pipeline elbows (depending on their application). In the paper you can 
find an expression for displacement and a new position of the neutral axis of plastic bending y0 for the 

considered elements of the stability loss and for the bending angles included in the range  bk 180   . 

 Then computational values of substitute deformations depending on the rate of the hardening 
coefficient n and depending on the rate of the normal anisotropy coefficient r are presented. The calculations 
were performed for the case of the formation of the plane state of the deformation PSD in conditions of the 
plane state of stress PSS. The formation of PSD in PSS conditions results from initiation of located loss of 
the stability state (e.g. in the form of the appearance of the local groove). The material of the pipe is accepted 
as rigid-plastic with the isotropic hardening. 
 The paper presents also exemplary calculations of some selected states of loss of stability during cold 
bending of thin-walled metal tubes at bending machines. The conditions of the dissipated and localized loss 
of stability together with formation of the plane state of deformation PSD in the plane stress state PSS and 
the cracking criterion based on the technological index A5 were assumed as the criteria of unstability. The 
calculations were performed for a generalized model of strain and simplification of type 3 (Śloderbach and 
Strauchold [3]; Śloderbach and Rechul [14]; Śloderbach [16], [18], [28], [29]). It appears that there are two 
extreme cases: the one (generalized model) providing the greatest strains and bending angles and the 
simplification of type 3 providing the lowest strains and bending angles. For simplifications of types 1 and 2 
(Śloderbach and Strauchold [3]; Śloderbach [16], [28], [29]) the values of permissible strains and bending 
angles are included between those extreme cases. The calculations were performed for the top points of the 
elbow where strains are the greatest and the wall thickness is the smallest. The calculation results are 
presented as graphs being useful nomograms.  
 

2. Fundamental assumptions and relationships  
 

 The analytical-geometrical description and analysis of the process concerning tube bending with the 
use of the wrapping method at the rotating template with or without the mandrel, assuming that int constd   
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(admissible ovalization is below 6%, according to (Zdankiewicz [25]; EN [31]), is presented. The analytic 
description of deformation is limited to determination of the plastic strain state because elastic strains are 
very small and they can be neglected. 
 Let us take into account the experimental data presented in paper (Franz [8]) and the data derived in 
(Śloderbach [16], [18]), i.e. the generalized logarithmic components of the strain state (including 
displacement of the neutral axis of plastic bending y0) in the layers subjected to tension and compression; 
then we can write the following expressions 
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where: dj – local ”actual diameter” of the bent elbow, dj = 2 rj (j = 1 and sign (+)for the elongated layers, j =2 
and sign (-) for the compressed layers),  
g0 and gj - initial thickness of the tube and local actual thickness of the elbow wall in the bending and bent 
zone, 
k – technological-material coefficient determined from experimental results, which defines a range of the 

bending zone in the bend zone, so that bk 180  
. From the theoretical point of view ;k 1  . For 

practical purposes we can assume that ;k 1 6 . Based on the known test results we can approximately 

assume that k 1 3   (Śloderbach [2]; Franz [8]; Korzemski [11], [12]; Śloderbach and Rechul [14]; 

Śloderbach [16], [17], [18]). For the elbows bent at the bending angle 0 180   , the coefficient k means the 

ratio of the bending angle 0  to the real bend angle b , i.e. 0 bk    . When 0 =180o, then 

0 bk 180     . When, for example, b =90o, then k = 2; when b =60o, then k = 3 etc. 
R – nominal radius of tube bending,  
Rj and R0 - ”big active actual radius of bending” connected with longitudinal strain and the radius 
determining the actual position of the neutral layer, respectively, 
rj - ”small active actual radius” of the elbow in the bending zone, rj = rint + gj and dj = 2rj, 
rext and dext- external radius and diameter of the tube subjected to bending, respectively, dext = 2 rext, 
rint and dint- internal radius and diameter of the tube, respectively, dint = 2 rint, 
y0 –displacement of the neutral layer of plastic bending,  
index j = 1 and sign (+) in Eqs (2.1) relate to the layers subjected to tension, ;0y 0 1 ,  

index j = 2 and sign (-) in Eqs (2.1) relate to the layers subjected to compression. 
 

Greek symbols  

b g    - bending angle measured in the bending zone. In the bending zone, the angles of bending and bend 

are equal, so b 0   , where 0  – bend angle (angle of rotation of the template of the bending machine),  

,   - angles of the point position in the bending zone,  

  - angle of circulation of the layers subjected to tension and compression of the elbow, ;j 00 90     

and sin 0 0 exty r  , where 0   – angular range of displacement of the neutral axis of bending,  

i  - correction coefficient (technological-material) of strain distribution in the layers subjected to tension 
(i=1) and compression (i = 2) of the bending and bend zone, defined from experimental results so that 1 1   
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and ;2 0 1   . In the case of most known tests we can approximately assume that .2 0 5   (Śloderbach 
[2]; Franz [8]; Śloderbach and Rechul [14]; Śloderbach [16]). 
 In the strain model (1) we can introduce three simplifications of physical sense. Simplification 1 is 
obtained by introduction of (dj = dext) into Eq.(2.1)1. In simplification 2, we introduce (dj = dext) into Eq.(2.1)2 

(then ,, )2 = 0  and in the case of simplification 3 we introduce (dj = dext) into Eq.(2.1)1 and Eq.(2.1)2 (then 
,,, )2 = 0 , see (Śloderbach [16], [28], [29]). The simplifications are denoted adequately by one, two or three 

signs: (’), (’’) or (’’’) respectively (Śloderbach and Strauchold [3], Śloderbach [16], [28], [29]). The 
expression for strain intensity and plastic incompressibility of the material takes the following form 
(Marciniak [1], Śloderbach [2], [16]; Erbel et al. [37]; Marciniak and Kołodziejski [38]) 
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 Expressions (2.1) and (2.2) are used for description of the strain state of the tube subjected to 
bending in the top, cos  k 1  , and external, cos 1   points of the layers subjected to tension or 

compression where , ,1 2 3    - logarithmic components of plastic strains,   ii    – intensity of 

logarithmic plastic strains. For simplifications of the 1, 2 or 3 order we have that 
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Fig.2. Geometrical quantities pertaining to pipe-bending processes. 
 
 Permissible values of the bending angle and the substitute strain are determined for suitable moments 
of stability loss occurrence (Śloderbach and Rechul [14]; Śloderbach [16]; El-Sebaie and Mellor [32]; 
Gabryszewski and Gronostajski [33]; Hill [34]; Moore and Wallace [35]; Śloderbach [36]; Swift [40]; 
Szczepiński [41]). It is obvious that the range of plastic strains seen from the point of view of application in 
plastic work processes is limited because of the possibility of material stability loss or coherence loss, i.e. 
cracking. Stability loss usually occurs as the first one, however, we are able to select suitable material 
properties, strain conditions and production technology where the fracture does not occur before stability loss 
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(Marciniak [1]; Dzidowski and Strauchold [7]; Śloderbach [16], [17]; Marciniak and Kołodziejski [38]). In 
this paper, the author concentrated only on the analysis of moments of possible occurrence of stability loss in 
the dispersed form (Śloderbach [16], [17]; Gabryszewski and Gronostajski [33]; Śloderbach [36]) and in the 
localized form at a top point of elbow (e.g. a beginning of local initiation of the neck or furrow (Marciniak 
[1]; Śloderbach and Rechul [14]; Śloderbach [16], [17]; El-Sebaie and Mellor [32]; Gabryszewski and 
Gronostajski [33]; Hill [34]; Moore and Wallace [35]; Olszak et al. [39]; Swift [40]; Szczepiński [41]) under 
biaxial stress state. 
 The case of initiation of the plane state of deformation (PSD) in the plane stress state (PSS) was also 
considered. Let as assume that the tube is made of a rigid-plastic material with isothropic hardening which 
satisfies the condition of the Huber-Mises-Hencky (H-M-H) condition of plasticity  and the plastic flow laws 
formulated by Levy-Mises. Let us also assume that displacement of the neutral axis 0y 0 , and that cold 
tube bending is performed at the bending machine at ambient temperature. It is a quasi-static and quasi-
isothermic process. Thus, dynamic and thermal effects accompanying small and great plastic deformations 
are not taken into account (Raniecki and Sawczuk [42], [43]; Marciniak [44]; Nowacki [45]).  
 In the present considerations the following form of the hardening curve was assumed (Marciniak [1]; 
Swift [40])  
 

    np 0 iD      (2.3) 

 
where p  – yield stress in [MPa], n – coefficient of hardening,  

D – material constant in [MPa], 0  - logarithmic initial strain, 

  ii    - logarithmic substitute strain (strain intensity). 

 For most metals and alloys applied in engineering practice the value of the coefficient n is in the 
range . .0 0 0 6 . 

 
3. The cases of stability loss under consideration 

 
 Let us consider three special cases of stability loss in the tube bending process. 
 
a. Uniaxial tension  
 
Loss of stability in the dispersed form (maximum drawing force) (Gabryszewski and Gronostajski 
[33]) 
 
 From above mentioned papers, it follows that 
  

    0i a n    (3.1) 
    
where   iai a    – substitute strain corresponding to this stability loss.  

 
b. Biaxial stress state (Marciniak [1]; Śloderbach and Rechul [14]) 
 

Stability loss in the form of localized deformation when locally  p 1d g 0  , see (Marciniak [1]) 

 
 Following (Marciniak [1]; Śloderbach [16], [17]; El-Sebaie and Mellor [32]; Moore and Wallace 
[35]; Swift [40]) and taking into account expressions for principal components of the strain state during tube 
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bending (1), expressions for equivalent strain (2)1 and plastic incompressibility (2)2 and assuming that  
dint = const. (dint – internal diameter of the bent tube) and  3 1 1d dg g  , after transformations we obtain  
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 Assuming some simplifying expressions, such as  1 1 0 extg d g d s  , we get the influence of the 

pipe geometry parameter s* on values of appropriate (admissible) strains and stresses and we obtain  
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where  i b1  – values of the substitute strain corresponding to the generalized model of strain during metal 

tubes bending at bending machines (Śloderbach [16], [17], [18]) for this form of stability loss, 

 
,,,
i b2

  for simplification 3 during the considered stability loss (Śloderbach and Strauchold [3]; Śloderbach 

[16], [17]), 
g1 and d1- real thickness and diameter of the elbow in the layers subjected to tension,  
s* - thin-walled parameter of the bent tube defined as (s* = g0 /dext), see (Korzemski [12]; Śloderbach [16], 
[17]).  

ws  - thin-walled parameter of the bent tube defined as  intw 0s g d  , see (Dzidowski [6]; Śloderbach 

[18]; UDT, [20]), then  ws = s 1 2s   , g0 and dext – initial thickness and external diameter of the bent 

tube. 
 The parameter r is the coefficient of Lankford normal anisotropy, see (Marciniak [1]; Gabryszewski 
and Gronostajski [33]) which can be written as  
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where: b0 and b – specimen width before and after deformation,   
dext and d – external diameter of the tube before and after deformation,  
g0 and g – specimen thickness before and after deformation.  
 From the above relationship it appears that when the coefficient r increases, then the reduction of the 
specimen thickness is lower, i.e. resistance to reduction of thickness of the tube wall increases. The 
coefficient r is in the range ( . .1 0 2 5 ) for most steels used for tube manufacturing. 
 The cases of stability loss (a and b) are applied here for estimation of the instability state of tubes of 

thin-walled parameter ( . .w0 00 s 0 15  ). In (Śloderbach [16], [17]) thin-walled parameter ( . .0 0 s 0 1  ) 
was assumed as a more suitable from a technological point of view and admissible one, determined as a 

certain geometric mean of the thin-walled parameter ( . .0 0 s 0 2  ) according to (Korzemski [12]) and 
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( . .w0 00 s 0 05  ) according to papers (Dzidowski [6]; UDT [20]). The case of bending of thin-walled tubes 

( .s 0 101  ) is considered in (Franz [8]). In most cases (or even in all the cases) technologically thick-walled 

tubes ( .ws 0 15  ) of big diameters (dext >160 mm) are subjected to hot or semi-hot bending (Marciniak [44]). 

During thick-walled tube bending, there is the triaxial stress state in the tubes, so  1 2 3     , 

   3 ext 3 1r r 0    . Let us note that during hot bending the coefficient of normal anisotropy ( r 1 ), and 
there is also no material hardening (Szczepiński [41]; Marciniak [44]). 
 The Huber-Mises-Hencky (H-M-H) condition of plasticity and Levy-Mises equations of plastic flow 
(Marciniak [1]) for an isotropic body expressed in principal stresses take the following forms 
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where:  m 1 2 3
1

=
3

       - mean stress, ,1 2   and 3  – principal stresses,   

and ,1 2   and 3  - logarithmic principal plastic strains. 

 When the deformation process is proportional, then suitable strain increments can be replaced by 
overall strains (Marciniak [1]; Gabryszewski and Gronostajski [33]; Hill [34]; Olszak et al. [39]; Szczepiński 
[41]). 
 The stress state components corresponding to state (b1) and expressions (3.2)1 or (3.3)1 (assuming 

for simplification that, 1 1 0 extg d g d s   and for thick-walled tube bending by hot or semi-hot method 
[44], then r 1 ) are obtained from the equations of plastic flow (3.6), taking into account the H-M-H 
condition of plasticity (3.5) with no effect of hardening ( constp  ). Taking then into account the low value 

of radial stress     3 ext 3 1r r 0     on the external surfaces of the layers subjected to tension, after 

transformations we obtain  
 

  
 

   
   , , .1 p 2 p 3 ext 3 1

2 2

2 1 s 1 2s
r r 0

3 4 s 2s 1 3 4 s 2s 1

 
         

      
   

 (3.7) 

 
 The stress state components corresponding to state (b2), expressed by Eqs (3.2)2 or (3.3)2, for thick-
walled tube bending (made also of the isotropic material, then r 1 ), can be obtained in a similar way, 

including an additional condition resulting from determination of almost zero stress value ,,,
3  on the 

external (unloaded) surfaces of the layers subjected to tension. Thus 
 

  
,,,

p1
2

3
   ,     

,,, p
2

3


  ,         ,,,

ext 3 13 r r 0    . (3.8) 

 

 As it can be seen, the cases (b1) determined for the generalized scheme of strain and simplifications 
of the 1st type, see expressions (3.2)1, (3.3)1) and (3.7), depend not only on material parameters (n, r, 0 ), 
but also on the geometric parameters (g1 and d1) of the bent tube (they approximately depend on a value of 
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the parameter s*, 1 1s g d  ). It appears that when thin-walled parameter s* of the tube increases, then are 

right expressions (3.2)1, (3.3)1) on  i b1 . Other cases (b2), see expressions (3.2)2, (3.3)2 and (3.8) derived 

for the scheme of simplifications 2 and 3 respectively (Śloderbach and  Strauchold [3]; Śloderbach and 
Rechul [14]; Śloderbach [16], [17], [28]), do not depend on the geometric parameters of the bent tube (g1 and 
d1) or s*. In the case when s*= 0.5 (full rod), from the Eqs (3.6) and (3.7) it appears that 

,1 p 2 3 0        and ( .2 3 10 5      ), also that    0i b1 p 2n    . 

 General distribution of principal stresses at all the points of the bending zone can be obtained from 
expressions (2.3), (3.5) and (3.6), suitable equations of equilibrium including friction forces for a case of 
asymmetric (of variable thickness) thin- and thick-walled closed shell (or asymmetric interval of toroidal 
closed shell) (Szczepiński [41]). 
 The H-M-H condition of plasticity for PSS and a material with hardening and properties of normal 
anisotropy has the following form (Marciniak [1])   
 

       2 2 2
p 1 1 2 21 r 1 r 2r 1 r           . (3.9) 

 
 As for thin-walled tubes (where there is the biaxial stress state in the layers subjected to tension 
during the bending process), the Levy-Mises equations of plastic flow expressed in logarithmic measures of 
strain have the following form (Marciniak [1])  
 

       
 

 
i31 2

1 2 2 1 1 2 p

ddd d

1 r r 1 r r 1 r

 
  

              , (3.10) 

 

where   
  2 2 2

1 2 3

i

1+ r d + d + d
d =

1+ 2 r

  
 . 

 

 The stress state components corresponding to states b1 and b2, (obtained from the equations of 
plastic flow (3.10), including the hardening curve (2.3) and the condition of plasticity (3.9) and respectively 
from expressions (3.3)1 and (3.3)2) for a case of the material showing properties of normal anisotropy, have 
the following form  
 

  

  
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2
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  

     
 

      and      
,,, ,,,
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1 r

1 2 r


  
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   (3.11) 
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  

     
 

      and      
,,, ,,,

p2
r

1 2 r
  

 . 

 
 When s*= 0.5 (bent bar) then from Eqs (3.10), (3.11) and (3.3) it appears, as previously, that 

,1 p 2 3 0        and ( .2 3 10 5      ) and    0i b1 p 2n    . 

 Thus, expressions (3.2)1, (3.3)1 and (3.11)1 are formal [for thin (s*< 0.05) and thick 

 . .0 05 s 0 10   walled tubes] extension of the expressions obtained by (Marciniak [1]) for isotropic sheets 

and the stress state when ( 2 10 1 2    ). Assuming that for plane sheets (the diameters (d1 and dext) 

 , then s 0  ), from Eqs (3.2), (3.3) and (3.11)2 we obtain Eqs (3.2)2, (3.3)2 and (3.11)2,  respectively. 
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The obtained expressions (5)2, (6)2 and (14)2 have already been cited in many papers (Marciniak [1]; 
Śloderbach and Rechul [14]; El-Sebaie and Mellor [32]; Moore and Wallace [35]).  

In the case of metal tube bending at bending machines, from the condition  pd g 0    we have obtained 

the effects not recognized so far.  
 in the case of the generalized model of strains and the simplification of the 1st kind, for the external top 

point of the bent elbow where there is PSS we can state that 

-  when s 0  , then the condition  pd g 0    corresponds to the stress states occurring in hyperbolic 

range on the H-M-H ellipse of plasticity, when  and1 2 0    and 2d 0  . At these points of 

stresses a set of static of quasi-linear partial differential equations have a hyperbolic character (Olszak 
et al. [34]; Szczepinski [41]),  

-  when s* = 0 (internal surface of the bent elbow g = 0 in thickness) or the plane specimen when 

extd  . Then, the condition  pd g 0    refers to the parabolic point on the ellipse of plasticity 

where  2d 0   – there is initiation of PSD, 

 in the case of simplifications of the 2nd and 3rd kind (Śloderbach and Strauchold [3]; Śloderbach [16], 

[28], [29]), for the top point of the bent elbow we obtain that the condition  pd g 0    refers to the 

point s on the ellipse of plasticity where  2d 0  , it physically signifies the local initiation of PSD. 

 
c. Formation of (PSD) under (PSS), see (Marciniak [1]; El-Sebaie and Mellor [32]; Moore and Wallace 
[35]; Śloderbach [36])  
 
 In such a case  
 

    0i c nz   . (3.12) 
 

 We can write that     ,,,
i c i c

   , and 

 i c  – value of the substitute strain corresponding to the loss of stability,  

z – subtangent including influence of the stress p  on the moment of stability loss under conditions of the 

plane stress state and in the moment of formation of the plane state of deformation, so 
 

  
1 r

z
1 2 r




 . (3.13) 

 
 This state of stability loss refers to thin-walled tubes because of the assumed conditions resulting 
from the plane stress state. 
 
4. Evaluations of the allowable bending angles and critical strains and stresses   
 
 Let us consider a case of formation of plane stress state under plane state of deformation, see Eqs 
(3.12) and (3.13).  
 Using expressions obtained in papers (Śloderbach and Rechul [14]; Śloderbach [16], [17]) for 
allowable values of bending angels b , depending on admissible values of deformations intensity in the 

stretched layers  i , we obtain 
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 (4.2) 

 

where ball  - allowable values of the bending angle calculated from expressions obtained for the generalized 

model of deformations, cf. (Śloderbach [2], [16], [17]), when the value of intensity of deformation  i  

reaches permissible value  i all , Eqs (3.2)1 or (3.3)1, 

,,,
ball  - allowable values of the bending angle calculated from the model of deformation of 3rd-order 

(Śloderbach and Strauchold [3]; Śloderbach and Rechul [14]; Śloderbach [16], [17], [28], [29]), when 

intensity value of the deformation  
,,,
i

  reaches the allowable value  
,,,
i all

 , obtained from expressions (3.2)2 

or (3.3)2 and (3.12), 

d1 and '''
1d  - current diameters at points of top stretched layers of the knee for the generalized model of 

deformations and simplification of the 3rd order respectively (Śloderbach and Strauchold [3]; Śloderbach 
and Rechul [14]; Śloderbach [16], [17], [28], [29]).  
 The expressions presented in papers describing the generalized scheme of deformations and the 
simplifications of type 3 can be used for the analysis of allowable strain quantity. These relationships allow the 
description of initiation of the plane state of deformation in the plane stress state. It has been shown that the 
method resulting from the simplification of type 3 determines the safest values for admissible strains, stresses, 
bending angles or wall thickness. It means that for a given admissible value of the strain intensity  i all  in the 

bending zone, admissible values of the bending angle are lower than these resulting from the generalized model of 
simplification of type 2 and 3 (Śloderbach [2]; Śloderbach and Strauchold [3]; Śloderbach and Rechul [14]; 
Śloderbach [16], [17], [18], [28], [29]). Thus, a description resulting from simplification of type 3 (Śloderbach and 
Rechul [14]) will be used as the safest and corresponding to the formation of PSD. 
 Analysis of the problem for uniaxial tension of the layers of the bent tube is widely known and here 
it is limited to a solution of one simple example. Substituting (3.13) to (3.12), we obtain  
 

   
,,,

0i cr

1 r
n

1 2 r


    

 . (4.3) 

 
In the case of initiation of PSD during PSS, condition (3.5) is equal to condition (3.3)2. 

 From Eq.(4.3) we can calculate the value of  
,,,
i cr

  and then from Eq.(4.2) we can determine the 

critical value of the bending angle ,,,
bcr , which corresponds to the beginning of stability loss (local initiation 

of PSD in PSS). It is widely known that the top (centre) of the layers subjected to tension is the most 

deformed in the bending zone ( 0     , see Fig.2.), so the beginning of the loss of stability should be 
expected there. Thus, the derived relationships applied to the top point of the layers subjected to tension for 

 1 1   can be applied in the following way: the values of  
,,,
i cr

  are determined from expression (4.3) for 

given material parameters  , , 0r n   and for given parameters of the bending process; the values of angle 
,,,
cr  are determined from Eq.(4.2). 
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 A value of the equivalent (reduced) critical plastic stress p s , corresponding to the strain (4.3), is 

determined from the constitutive Eq.(2.3) after substituting a strain value    
,,,

i i cr
   . Suitable stress 

components can be determined (see Fig.3) for the point s on the ellipse of plasticity. According to the theory 
of associated laws of plastic flow, this point determines initiation of PSD in PSS. The basic set of quasi-
linear partial differential equations of statics for the characteristics under H-M-H yield condition of plasticity 
is parabolic type at that point (Marciniak [1], Śloderbach and Rechul [14]; Śloderbach [16]; Moore and 
Wallace [35]; Śloderbach [36]). Thus 
 

  
,,, ,,, ,,, ,,,,p p1 2

1 r r

1 2 r 1 2 r


     

 s s . (4.4) 

 
 From considerations concerning the stress state during the process of tube bending it appears that at 
the top points of the cross section of the layers subjected to tension (the points of intense contact of the bent 
tube with the mandrel in the bending zone) there is the stress state included between the axis 1 , and the 
point s on the ellipse of plasticity (see Fig.3).  
 

 

 
Fig.3. Stress condition arising at the H-M-H yield ellipsis at the onset of instability. 

 
 For this range of the stress states, the set of differential partial equations of statics is of hyperbolic 
type for the stress field characteristics (Śloderbach and Rechul [14]; Śloderbach [16]; Olszak et al. [39]; 
Szczepiński [41]). Occurrence of stability loss in dispersed and localized forms (especially as localized 
strains in the form of slip lines) during tube bending for pipeline elbows causes high acceleration of 
degradation processes of creep, and next failure during their operation. It results from the fact that at the 
points of the elbow where the localized strain states occur during the manufacturing stage, the strain 
localization processes are intensified during operation. Farther continuation and development of strain 
localization state can cause crack of the elbows and their failure. 
 When the stress states are above the point s (biaxial tension states, see Fig.3), then increments of the 
circumferential strain in the elongated layers will be positive  or2 2d 0 d 0    , see (Marciniak [1]). Such 

stress states and strain states occur during plastic expanding of tubes. 
 The calculations and analysis were performed for a generalized model of strain and for simplification 
of the 3rd order, see (Śloderbach [2]; Śloderbach and Strauchold [3]; Śloderbach and Rechul [14]; 
Śloderbach [16], [17], [18], [28], [29]). There are two extreme cases (the “gentlest” one, where the greatest 
strains and bending angles are admissible, and the “sharpest”, where the lowest strains and bending angles 
are possible, respectively). 
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5. Results and discussion 
 

 Figure 4 presents a change of the wall thickness ,,,
1g  of the elbow of the pipeline at its top (central) 

point of the elongated layers of the bending zones depending on a value of the bending angle bk , for the 

assumed technological-material coefficient of correction of the strain distribution  1 1   (Śloderbach [2]; 

Śloderbach and Rechul [14]; Śloderbach [16], [17]). The graphs were drawn for different bending radii R, 

included in the period   extR 1 5 d    and without taking into account displacement of the neutral axis of 

plastic bending (y0 = 0). For calculations, a standard tube . .44 5 4 5mm  , used for many calculations and 
tests, was applied (Śloderbach [2]; Śloderbach and Strauchold [3]; Franz [8]; Śloderbach and Rechul [14]; 
Śloderbach [16], [17], [18], [28], [36]). It follows from the graphs that wall thickness decreases as the 

bending angle bk  increases and the bending radius R decreases. 

 Figure 5 shows a change of the plastic strain intensity  
,,,
i

  calculated at the central (top) point of 

elongated layers of the bending zone, depending on the bending angle bk . The calculations were done for 

different bending radii R included, as previously, in the interval   extR 1 5 d    for a diameter tube 

. .44 5 4 5mm  , see (Śloderbach [2]; Śloderbach and Strauchold [3]; Franz [8]; Śloderbach and Rechul [14]; 

Śloderbach [16], [17], [18], [28], [36]). From Fig.5 it appears that the value  
,,,
i

  increases together with an 

increase of the bending angle bk  and decreases as the bending radius R increases. Thus, our previous 

expectations seem to be right. When the bending radius R tends to infinity (straight tube), then  
,,,
i

  tends to zero 

and in consequence g1 tends to g0, so there is no bending process. Then bending angle b 0   , because k >0.  

 Figure 6 presents results of calculations of logarithmic strain components , ,1 2 3    and the 

substitute strain   i i   , depending on the bending angle ( bk ) for the top point of the elbow 

 0     . Let us put the experimental strain values of metal samples on the Y axis to determine a value of 

the uniform strain Au (for example, determined under uniaxial tension). Then we are able to determine a 
value of the admissible bending angle after exceeding of which a technological values of permissible strains. 
For example Au or the strains corresponding to the localized form of stability loss are exceeded. From the 
experimental data presented (Franz [8]) we have .uA 0 173  for steel St. 35.8 according to DIN 17175. 

According to the graphs shown in Fig.6, it corresponds to the bending angle ( bk 145   ). It means that after 

exceeding the bending angle 145o, for example for ( bk 180   ) in the external elongated layers limited by 

the angle  0 45     , see Fig.2, and (Śloderbach [16], [17]) there are strains exceeding a value of the 

uniform strain Au. After exceeding of uniform strain for given material Au, a phenomenon of dispersed 
stability loss can occur and next localization of plastic strains can be observed, as in tests of uniaxial and 
biaxial tension (Marciniak [1]; El-Sebaie and Mellor [32]; Moore and Wallace [35], Marciniak et al. [37]; 
Marciniak and Kołodziejski [38]; Swift [40]; Szczepiński [41]).  
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Fig.4.  Wall thickness at the apex point as a function of the bending angle for selected values of the bending radius. 
 

 
 
Fig.5.   The equivalent strain value at the bend apex point as a function of the bending angle for selected 

values of the bending radius. 
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Fig.6. Strain and strain intensity components as functions of the bending angle, where ( g b   ). 

 

 
 

Fig.7.  Variation of the wall thickness value at the bend apex point versus the bending angle according to 
four computing methods. 

 
 Figure 6 shows  i   equal to 0.173; that value was determined for steel St 35.8 (Franz [8]) during a 

test of simple tension (according to the standard DIN 17175). Values of the bending angle g  from the X-
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axis for suitable strain intensities  , ,,,, andi i i    determined for three calculation methods (the exact 

method and two simplified methods) oscillate around the following values of angles ( forbcr 140 k 1   ), 

( for .bcr 57 k 2 5   ) and ( forbcr 47 k 3   ) (Śloderbach and Rechul [14]; Śloderbach [16], [17]). 

 Figure 7 presents the calculation results for changes of the wall thickness  , ,, ,,,, , ,1r 1r 1r1r g gg g  

depending on the value of the bending angle bk . The subscript r means calculations of real strains 

(logarithmic strains). The thickness is calculated at the top point of the elbow ( 0     ) of the elongated 

layers ( 1 1  ) for the bent tube . .44 5 4 5mm   and the radius R = 80 mm such that ( . extR 1 8 d  ). The tube 
was made of steel St 35.8 according to DIN 17175, see (Franz [8]). The wall thickness g1 at the top central 

points of the elbow in the elongated layers, corresponding to the bending angle bk 145    can be graphically 
determined from Fig.7 or analytically defined from Eqs.(2.1), using the condition of plastic incompressibility of 

the material ( 1 2 3 0      ). Wall thickness calculated and read out from Fig.7 is  .1g 3 88mm . 

 

 
 

Fig.8.  Strain components and strain intensity versus the bending angle according to three computing 
methods. 

 
 Figure 8 shows the obtained results of calculations of logarithmic measures of strain components and 

substitute strains       , ,,,, ,i i i
    depending on the bending angle ( bk ) calculated according to the 

expressions for the general model and the simplified models of the 1st and 3rd order, describeded in papers 
(Śloderbach and Strauchold [3]; Śloderbach [16], [17], [28]). The calculations were made for the top point of 

the bent elbow in the bending zone, being also the central point of the elbow ( 0     ) in the elongated 
layers. Only two extreme simplifications (1st and 3rd order) are considered because additional graphs for 
simplification of the 2nd order could make the figures low-readable. Let us put admissible values of the 
experimental substitute strain on the Y-axis, as in Fig.5. Now we are able to determine an approximate value 
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of the admissible critical bending angle bcr  - (at first, the coefficient k should be determined). Exceeding 
that coefficient causes exceeding the permissible strains Au (obtained under uniaxial tension) for tube steels. 
 From Figs 7 and 8 it also results that application of simplified models of the 1st, 2nd and 3rd order, 
respectively, causes a greater decrease of the tube thickness in the bending zone, greater strain components 
and substitute strain values as compared with the results obtained for the generalized model. Thus, the 

descriptions will determine lower (safer) values and safer limitations for the allowable bending angle ball . 
When the angle ball  is exceeded, we can observe effects connected with localization of plastic strains or 
another form of stability loss and next cracking. Calculated values received from the simplified models 
derived in papers (Śloderbach [2]; Śloderbach and Strauchold [3]; Śloderbach [16], [17], [28], [29]) used in 
the analysis of the bending process determine a greater decrease of the wall thickness in the elongated layers, 
greater components of the strains and substitute strain in the bending zone. Because of a simplified form of 
the expressions they can be calculated with a calculator under real conditions (production, repair in situ).  
 
6. Simple examples of calculations of critical states 

 
 Let us assume that the material of the bent tube has the dimensions . .44 5 4 5mm   and is described 

by the following material parameters: . ; . ; , .0n 0 2 0 016 D 550MPa r 1 5     , see expression (2.3), (3.4). 
These values can be related to the boiler steel K10 or St 35.8 according to DIN 17175. All the examples are 
calculated according to the scheme shown in Fig.9.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.9. Flow chart showing the computation stages. 
 

Pipe material and its properties (n, r, 0 , C) are selected 

       
,,, ,,,

2
andi a i b1 i b i cr

, ,     determined as  i all  and ,,,
i all , from Eqs (3.1), (3.3)1, 2  

 ,1 ballg k and  ,,, ,,,,1 b allg k  determined from 

plots in Figs 4, 7 respectively. 

Stress values determined from Eqs 
(2.3), (3.7), (3.8) or (3.11) as 

,,, ,,, ,,,, , , , , .pall 1 2 1 2pall       

Proper coefficient k value is selected from 

experiment and angle ,,,,b all b all   are 

determined from Eqs (4.1) and (4.2). 

Shift value  ,,,,0 0y y  and angle  ''',0 0  , 

value are determined from Eqs (6.1)  
and (6.2)4, 

Required bending radius R and pipe cross-section dimensions (dext x g0) are selected  
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Example 1 
 

 When the strain state expressed by Eq.(3.1) is obtained, then we obtain   .i a 0 184  . 

The allowable value of the bending angle corresponding to the above value, read out from Fig.6 is 

ballk 145   . Thus, ball 145    for (k = 1), .ball 72 5    for (k = 2), ball 58    and for (k = 2.5) and 

.ball 48 3    for (k = 3). The calculated values of wall thickness g1 and g2 for  1 2 1     are .1g 3 88mm , 

see Fig.10, and .2g 5 66mm . During a test of simple tension, (Franz [8]) obtained the strain value equal to  

(Au = 0.180). The value 1all  calculated from Eq.(2.1), equals .1all 0 173   and it is the same as that given in 

(Franz [8]) for a case of uniform strains. From the calculations and Fig.8 it also follows that ,,,
bk 135   . Thus, 

 ,,,
b bk k   . The yield stress calculated according to Eq.(2.3), reaches the value .pall 398 6MPa  . 

 An approximate position of the neutral layer of plastic bending (see Fig.10) corresponding to the 
considered case can be determined from Eq.(6.1), see (Śloderbach [16], [17], [18]). Expression (6.1) is a 
generalization of the expression presented in (Tang [19]) for zones of active bending. Thus 
 

   int
.

cos cos0 b
0 0

g0 42
y r k k

r 2 2

            
    

 (6.1) 

 

where: 0  - technological-material correction coefficient of displacement of the neutral layer of plastic 
bending (Śloderbach and Pajak [15]; Śloderbach [16]-[18], [28], [29]). 
 

 
 

Fig.10. Schematic picture of cross-section of the elbow and its characteristic parameters. 
 

 According to tests, it is possible to assume that ;0 0 1   (Śloderbach and Pajak [15]; Śloderbach 

[16], [17], [18]), r - relative bending radius  extR r d  . Thus 

 

  
ext

R
r =

d
 ,      0

m int
g

r = r +
2

,      R0 = R – y0      and      sin0
0

ext

y

r
  . (6.2) 
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 The maximum displacement of the neutral axis for free bending can be determined by Eq.(6.1) for 

0    and bk 180    and 0 1  . Assuming that in the considered case (bending on the bender machine) 

.0 0 5  , after calculations we obtain max. and .0 0y 1 63mm y 2 33mm  .  
 The radius R0 defines a new (instantaneous for a given bending angle) position of the neutral layer of 

plastic bending for the angle 0   . Thus, .0 0R R y 78 37mm   . When bk 180    and .0 0 5   in the 
considered case bending on the bender, then y0 = y0max. Thus  
 

  . or . %0 0

ext ext

y y
0 037 3 7

d d
  . When (y0 = y0max), then max max

. or . %
0 0

ext ext

y y
0 052 5 2

d d
  . 

 

 Such a low value of y0 does not strongly influence the plastic strain distribution. Moreover, the value of 
y0, assumed in this paper ( .0 0 5  ) for bending on the bender and removed clearances between devices of the 
bending machine and the bent tube, especially in the layers subjected to compression, can be even lower because 
of kinematic permissible displacement of the material particles upward along the perimeter. In the considered case 
of bending, it is displacement downward in the direction of the centre of the template rotation.  
 

.iExample 2 

 

 When the strain state expressed by Eqs (3.3)1, 2 is obtained, then we have 
 

    .i b1 0 257          or        
,,, .
i b1

0 234  . 

 

 When the calculated allowable bending angle corresponding to a defined value of  i b1  is equal to 

ballk 180   , see Figs 6 and 8, it means that for the generalized scheme of strain that form of stability loss 

does not occur. Thus, from Figs 4 and 7 for bk 180    we obtain min .1g 3 68mm  g1min. 

 The numerically calculated g2max for the layers subjected to compression for ( 2 1  ) is 

max .2g 6 0mm , and for  . , .2 20 5 g 5 0mm   . From Fig.7 we obtain ,,,
bk 158   . Thus, it appears that 

 ,,,
b bk k   . It means that for the strain scheme of the 3rd type such stability loss occurs, and this 

estimation is safer in comparison with the generalized scheme of strain. The value ,,, .1all 0 203   calculated 

from Eq.(3.3)2 was obtained. 
 The following values of the plasticizing stress and the principal stress components were obtained 

from Eqs.(2.3) and (3.7), (3.8): ,,,. and and . , ,p ps 1 2424 2MPa 417MPa 524 4MPa 251 8MPa         

and ,,, ,,,,1 2521MPa 313MPa    . 

 When the bending state is reached for the strain value resulting from the generalized scheme of strain 
equal to   max min. , then . and0 0 0 0i b1 0 257 y y 2 33mm R R     . As in Example 1, the following values 

were obtained:    max max min. and . % and .0 ext 0 ext 0y d 0 052 y d 5 2 R 77 67mm   . 
 

7. Final remarks and conclusions  
 

1. The condition of possible localized stability loss for the case of initiation of the plane (biaxial) state of 
deformation in the plane stress state determines higher permissible strain intensities than in the case of 
stability loss in the dispersed form (maximum drawing force) and lower ones for the localized stability loss 

 pd g 0    during biaxial tension. In the case of stability loss in the dispersed form under uniaxial 

uniform tension, see (Marciniak [1], Śloderbach and Rechul [14]; Śloderbach [16], [17]), admissible strain 
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intensity is comparable to a value of the coefficient of plastic strain hardening of a metal. The important 
contribution of the present paper is the formal extension of the criterion of strain localization formulated for 
sheets by (Marciniak [1]) for the case of tube bending. In the case of the generalized strain scheme and 
simplification of the 1st type, such extended criterion (with and without including displacement of the 
neutral axis of plastic bending y0) depends additionally on geometric dimensions of the bent tube 
(approximately on its thin-walled parameter s*). 
2. In the case of metal tube bending at the bending machines and considering the condition that 

 pd g 0   , new effects (unknown in literature) have been obtained: 

a). for the generalized and of the 1st order strain model and for the external top point of the bent elbow 
where plane stress state (PSS) is appearing, we obtain (Fig.3):  

- when s 0  , then the condition  pd g 0    concerns the stress states included in the hyperbolic range 

of a set of quasi-linear partial differential equations of statics on the H-M-H ellipse of plasticity, i.e. for the 
case when  and1 2 0    and 2d 0  , 

- when s 0   (internal surface of the bent elbow g = 0 in thickness) or plane specimen when extd   then the 

condition  pd g 0    refers to the parabolic point on the H-M-H ellipse of plasticity, in which  2d 0   – it 

means of the initiation of plane state of deformation (PSD). At this point of stresses a set of static of quasi-linear 
partial differential equations have a parabolic character (Olszak et al. [39]; Szczepinski [41]),  

- when .s 0 5   (bent bar), where the condition  pd g 0    corresponds to the point 1 0   and 2 0  , 

and  .2 3 1d d 0 5d       on the ellipse of plasticity. Thus, if the coefficient 

   . ; then ; .2 1s 0 5 0 0 0 5     . When at the external points or the point of the layers subjected to tension 

the strain scheme represented by the strain components described by the averaged equations (when the 
reference area is the central layer in the tube wall) is acting, then for 

   . ; we obtain . ; .2 1s 0 5 0 0 2 0 5     . It means that for the bar (when .s 0 5  ) in the central layer the 

stress is  2 0  , so .2 1 0 2   . 

b). for the strain model resulting from the simplification of the 3rd type we can state that for the external top 

point of the bent elbow where PSS occurs, the condition  pd g 0    refers to the parabolic point s on the 

ellipsis of plasticity where  2d 0  , which means local initiation of PSD. 

3. The condition of possible initiation of the localized stability loss for the biaxial (plane) strain state in the 
plane stress state determines greater admissible strain intensities than those for the case of stability loss in the 

dispersed form (maximum of the drawing force) and lower ones for the localized stability loss  pd g 0    

during biaxial tension [Eqs (3.2)1 and (3.3)1 ]. In the case of dispersed stability loss during uniaxial uniform 
tension, see (Marciniak [1]; Śloderbach [16], [17], Gabryszewski and Gronostajski [33]; Marciniak and 
Kołodziejski [38]), a permissible value of strain intensity is comparable with the value of the coefficient of 
metal plastic hardening. A new element of this paper is the extension of the criterion of strain localization 
formulated by (Marciniak [1]) for sheets for the case of tube bending. In the case of the generalized scheme 
of strain and simplification of the 1st order, such extended criterion (with and without including the neutral 
axis displacement of plastic bending y0) depends on geometrical dimensions of the bent tube (approximately 
on its wall thickness parameter s*). 
4. In the case of the strain model resulting from the simplifications of 2nd and 3rd order we can state that at 

the external top point of the bent elbow where there is the plane stress state, the condition  pd g 0    

corresponds to the parabolic point s at the H-M-H ellipse of plasticity, where  2d 0  . Physically it means 

a local initiation of PSD. 
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5. In tube bending processes described by the generalized strain model and by suitable simplified methods 
presented in papers (Śloderbach and Pajak [15]; Śloderbach [16], [17], [18]), the influence of displacement 
of the neutral axis of plastic bending y0 on the plastic strain state is included. The displacement of the neutral 
layer of the plastic bending y0 is moving downward (in the direction of the layers subjected to compression 
and in the direction from of the rotation axis of the template, see Figs 2 and 10) and increases as the bending 
angle increases. In the considered examples, a value of this displacement for the top point of the elongated 
layers (see examples 1, 2) is ~  1 2mm . This value is proportionally comparable to the value of decrease 

of the wall thickness for these points of elongated layers, see Figs 4 and 7. 
6. We can formulate practical recommendations resulting from the calculations. The elbows of the pipelines 
in pressure devices working at elevated or high temperatures should be bent in such a way as not to exceed 
the allowable values (of the bending angles and also admissible strains) obtained in Examples 1, 2. 
Exceeding the allowable values of the bending angles (and also admissible strains) will cause a reduction of 
the time of their operation (lifetime). It particularly applies to elbows working at elevated and high 
temperatures. Occurrence of localized strains during tube bending for elbows of pipelines causes accelerated 
degradation processes of creep (because in such places these processes could concentrate), and leads to 
occurrence of cracks and dangerous failures, see (Dzidowski [6]; Dzidowski and Strauchold [7]; Śloderbach 
and Pajak [14]; Śloderbach [16], [17]; Zdankiewicz [24], [25]; Dobosiewicz and Wojczyk [26]; Śloderbach 
and Pajak [27]). Let us note that the analytical expressions for principal components of the strain state 
derived in (Śloderbach [2], [16], [17], [18]) can help in future analysis and evaluation of tube usability for 
bending by means of the methods of defining the curves of limit strains, as in the case of evaluation of sheet 
drawability (Marciniak [1]; El-Sebaie [32]; Gabryszewski and Gronostajski [33]; Hill [34]; Moore and 
Wallace [35]; Swift [40]). 
7. During hot, semi-hot or with preheating tube bending, it is necessary to consider another form of the 
constitutive equation than (2.3), in which material parameters will be dependent on temperature. For 
example, for the majority of metallic materials the coefficient of metal plastic hardening n decreases as the 
temperature increases (Marciniak [1]; Marciniak and Kołodziejski [38]; Szczepiński [41]; Marciniak [44]). Other 
terms of loss of stability should also be considered. At suitably high temperatures it is assumed that the strength 
limit is almost the same as the yield point (without hardening effect), (Szczepinski [41]; Marciniak [44]). 
 

Nomenclature 
 

 b0 and b  – specimen width before and after deformation 
 D  – material constant in [MPa] 
 dext and d  – external diameter of the tube before and after deformation  

 d1 and 
'''
1d   – current diameters at points of top stretched layers of the knee for the generalized model of 

deformations and simplification of 3rd order, respectively  
 g0 and g  – specimen thickness before and after deformation 
 g1 and d1  – real thickness and diameter of the elbow in the layers subjected to tension 
 n  – coefficient of hardening 
 r  – coefficient of Lankford normal anisotropy 
 r   – relative bending radius  extR r d   

 R  – nominal radius of tube bending  
 Rj and R0  – ”big active actual radius of bending” connected with longitudinal strain, and radius 

determining actual position of the neutral layer, respectively 
 rj    – “small active actual radius” of the elbow in the bending zone, rj = rint + gj and dj = 2rj 
 rext and dext  – external radius and diameter of the tube subjected to bending, respectively and  dext = 2 rext 
 rint and dint  – internal radius and diameter of the tube, respectively, dint = 2 rint 

 rm  – mean radius of bending pipe, 0
m int

g
r = r +

2
 

 s*  – thin-walled parameter of the bent tube defined as (s* = g0 /dext) 

 ws   – thin-walled parameter of the bent tube defined as  intw 0s g d  , then  ws s 1 2s     
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 y0   – displacement of the neutral layer of plastic bending, y00;1, 
index j = 1 and sign (+) in Eqs (2.1) refers to the layers subjected to tension 
index j = 2 and sign (-) in Eqs (2.1) refers to the layers subjected to compression 

 ws   – thin-walled parameter of the bent tube defined as  intw 0s g d   

 z  – subtangent including the influence of the stress p  on the moment of stability loss under 

conditions of the plane stress state and in the moment of formation of the plane state of 
deformation 

 b g     – bending angle measured in the bending zone. In the bending zone, the angles of bending and 

bend are equal, so b 0   , where 0  – bend angle (angle of rotation of the template of the 

bending machine) 
 ball   – allowable values of the bending angle calculated from expressions obtained for the 

generalized model of deformations, when the value of intensity of deformation  i  reaches 

permissible value  i all  

 ,,,
ball   – allowable values of the bending angle calculated with use the model of deformation of 3rd-

order when intensity value of the deformation  
,,,
i

  reaches the allowable value  
,,,
i all

  

 d1 and '''
1d   – current diameters at points of top stretched layers of the knee for the generalized model of 

deformations and simplification of 3rd order appriopriately  
 ,    – angles of the point position in the bending zone  

    – angle of circulation of the layers subjected to tension and compression of the elbow, 

;j 00 90     and sin 0 0 exty r  , where  

 0    – angular range of displacement of the neutral axis of bending  

 i   – technological-material corrective coefficients of strain distribution in the layers subjected to 

tension  i 1  and compression (i = 2) of the bending and bend zone, defined from the 

experimental results so, that 1 1   and ;2 0 1   . In the case of most known experiments 

we can approximately assume that .2 0 5    

 0   – technological-material correction coefficient of displacement of the neutral layer of plastic 

bending for components, intensity and three simplifications 
 , and1 2 3     – logarithmic principal plastic strains  

 0   – logarithmic initial strain 

   ii     – logarithmic substitute strain (strain intensity) 

  i c   – value of the substitute strain corresponding to the loss of stability  

  m 1 2 3
1

3
         – mean stress  

 , and1 2 3     – principal stresses  

 p   – yield stress in [MPa] 
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