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The paper presents the analysis of flow conditions of cohesive and cohesionless bulk materials in a conveyor 
discharge point of a flat conveyor belt. The analysis was carried out for stationary flows at high velocities. It 
presents mathematical methods for the description of the velocity of a material leaving a throwing point of a flat 
conveyor belt as well as final equations which enable the determination of velocity of the material after it has left 
the throwing point (with the accuracy sufficient for practical use). Next, the velocity calculated for the proposed 
mathematical description (for selected material groups) has been compared with the velocity obtained from 
mathematical relations commonly used by engineers. The proposed equations for determining the velocity of the 
material beyond the point have proved useful, since they enable excluding the indirect equations. Finally, the 
difference between the values of the velocity obtained with the proposed and indirect equations have been 
determined and the relative error for the proposed method has been calculated. 
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1. Introduction 

 
 In transport conveyor systems built on the basis of belt conveyors, pouring points are important 
parts. They are crucial elements allowing transporting bulk materials on different levels of this type of 
system. An important issue in a conveyor transport is to ensure a proper flow of the material through 
pouring points. This involves ensuring continuity of the transported material stream and ensuring the 
required transport capacity of the system. Pouring points used in transport systems often exploit gravity to 
transport materials. These types of pouring points include, e.g. chutes described in Antoniak [1] and Żur 
[2]. Another type of pouring points that cooperate with belt conveyors are impact plates described in 
Cyganiuk [3, 4, 5], Cyganiuk and Przystupa [6], Korzeń [7], Przystupa and Cyganiuk [8], Sakowich and 
Kuksa [9]. They are used to slow down the velocity of the material to a value corresponding with the 
velocity of the receiving conveyor in the feed point. 
 A throwing point with a flat conveyor belt, discussed further, uses a driven belt for moving and 
throwing the material. However, the point is not inclined as described in Cyganiuk and Przystupa [10], 
Cyganiuk [11], Cyganiuk et al. [12], Korzeń [13]. This means that the angle of inclination of the conveyor 
belt is 0° (Korzeń [7, 14]). 
 In transport systems, slow belt conveyors are most commonly used. They operate with velocities 
below 3 m/s (described in Antoniak [1] and Żur [2]), and equations determining the velocity of cohesive and 
cohesionless materials beyond the conveyor pulley are described in Korzeń [13]. However, these equations 
should not be used for fast conveyors. Equations for fast conveyors are presented also in Korzeń [13]. They 
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do not take adhesion into consideration, but include the influence of air resistance on the velocity of the 
transported material beyond the head pulley. In Korzeń [14], the influence of adhesion on the velocity of the 
material beyond the point was also omitted. However, the study included material, kinematic and dynamic 
parameters. In Colijn [15], the adhesion phenomenon also was omitted.  
 In the case of discharge belt conveyors (Korzeń [16]), the construction of this type of conveyors and 
the discharge method of the material are different from the ones used for a belt conveyor feeding the next 
pouring point. Thus, equations proposed in Korzeń [16] designed for estimating the velocity of the material 
beyond the pulley, should not be used for fast feeding belt conveyors. 
 In Czuba and Furmanik [17], only kinematic and geometric parameters for the estimation of the 
velocity of the material falling down onto a belt conveyor were taken into consideration, whereas Antoniak 
[18] discusses simple engineering equations describing the velocity of the material flowing from a belt 
conveyor. They take into consideration the coefficient of friction of the material against the belt but do not 
take into consideration forces and adhesion affecting the material stream.  
 Cyganiuk and Przystupa [10], Cyganiuk [11], Cyganiuk et al. [12] take into account kinematic, 
dynamic and material parameters including adhesion, but the equations presented there are designed for 
inclined conveyors with ascending and/or descending belts. 
 Cyganiuk in [3] analyses the trajectory of the material beyond a throwing point depending on the 
velocity of a belt conveyor, but they do not analyse the velocity of the material beyond the point where it 
reaches the next pouring point. In addition, Arnold and Hill [19] and also Hastie and Wypych [20] refers to 
the prediction of the trajectory of the material beyond the throwing point, but in this case, both fast and slow 
conveyors were taken into consideration. 
 Therefore, it was important to propose equations describing the velocity of the material beyond the 
pulley of a not inclined belt conveyor, equipped with the belt without cleats for both cohesive and 
cohesionless materials. 

 
2. Analysis of flow conditions of cohesionless and cohesive materials in the throwing point 

with a flat belt 
 

 In conveyor transport systems, a throwing point refers to a head pulley of the belt conveyor. From 
the pulley, the material is transferred further, as a feed, onto another conveyor, which, most often, is located 
lower and the feed is delivered with the use of a chute (Antoniak [1], Żur [2]) or an impact plate (Antoniak 
[1], Cyganiuk [11, 3, 4, 5], Cyganiuk and Przystupa, [6], Korzeń [7], Żur [2]). The material from the 
throwing point may also be thrown directly onto hillocks. 
  The analysis of flow conditions of cohesive and cohesionless bulk materials in a throwing point with 
a flat belt is shown in Figs 1 and 2. The analysis was carried out both for fast conveyors, where the belt 
transports the material with the velocity above 3 [m/s], and for stationary flow. A belt without cleats was 
analysed and the influence of air resistance was not considered.  
 Figures 1 and 2 illustrate magnitudes taken into consideration in the analysis of the flow conditions 
that affect the process of discharging the material from the conveyor’s pulley. Geometric, kinematic and 
dynamic conditions of the motion of elementary mass dm in a throwing point, which is not inclined, were 
taken into consideration. 
 In a throwing point where cohesionless materials are discharged, the elementary mass dm is subject 
to the following forces describing dynamic conditions of flow (Fig.1): gravitational force dG [N], centrifugal 
force dFc [N], normal force dNxs [N], tangential force dTxs [N]. While determining the relations describing 
the discharge of the material from the pulley, the inertial force dJ [N] formed as a result of action of the 
gravitational force dG, centrifugal force dFc and forces dNxs, dTxs was also considered. 
 In the case of cohesive materials, the dynamic conditions of the flow of the material in the throwing 
point, besides the above mentioned forces, also adhesion force dFa (Fig.2) was considered. The adhesion 
force forms between the belt and the transported material. 
 Kinematic conditions of the flow of material in a throwing point with a flat belt (Figs 1 and 2) 
include: the velocity of the conveyor belt vt [m/s], the velocity of bulk material stream flowing into the head 
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pulley vp [m/s], which is equal to the velocity of the belt, and the velocity of material leaving the head pulley 
vw [m/s]. 
 

 
 

Fig.1.  Geometric, kinematic and dynamic conditions of the flow of a stream of a cohesionless bulk material 
on a head pulley of a conveyor with a flat belt [own elaboration]. 

 

 
Fig.2.  Geometric, kinematic and dynamic conditions of the flow of a stream of cohesive bulk material on a 

head pulley of a conveyor with a flat belt (Cyganiuk [3]). 
 
 Geometric conditions of the material flowing out from the throwing point include the following 
parameters (Cyganiuk et al. [12]): the angle of conveyor descent α [o] (in this case α=0°), angle of the 
material stream flowing out of the head pulley βt [°] (in this case βt is the angle of material flowing into 
another point, e.g. impact point), angle coordinate which describes the position of infinitesimal mass of the 
material on the head pulley φ [o] (Cyganiuk et al.[12]), radius of the head pulley rb [m], the average radius of 
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curvature of the material stream Rśr [m], thickness of the layer of the material stream at the moment it flows 
onto the head pulley hm [m] (Cyganiuk et al. [12]), thickness of the layer of the material stream leaving the 
head pulley hw [m] (Cyganiuk et al. [12]). 
 Kinematic and geometric conditions of the material flowing out of a head pulley with a flat belt for 
cohesive and cohesionless materials are the same, whereas in the case of dynamic conditions – the difference 
is the adhesion force that appears in the case of cohesive materials. 

 
3. Mathematical model of the flow of a stream of a cohesionless and cohesive bulk material in 

a throwing point with a flat belt 
 

 In the analysis of the discharge of the material from a throwing point with a flat belt, it was assumed 
that the material is separated from the pulley at point A (Figs 1 and 2). This is the point in which the belt 
overlaps the head pulley. Regardless of the type of transported material, Eq.(3.1) must be satisfied to let the 
material leave the belt (Antoniak [1]) 
 

  cos
2v

g
R

    (3.1) 

 
where: v – belt velocity [m/s], R - radius of the pulley [m], g – gravitational acceleration [m/s2], α - the angle 
of the conveyor descend [o], (Antoniak [1],Cyganiuk et al.[12]). 
 For cohesive materials, also Eq.(3.2), taking into consideration adhesion and high velocities of the 
conveyor, must be satisfied (Korzeń [13]) 
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where: v – belt velocity [m/s], γ - specific gravity of bulk material [N/m3], σa – adhesion [N/m2], hm - 
thickness of the material stream [m], g – gravitational acceleration [m/s2], R - radius of the pulley [m] 
(Cyganiuk et al. [12]). 
 To obtain mathematical relations allowing determination of velocity v(φ) [m/s] of a cohesive and 
cohesionless bulk material beyond the throwing points with a flat belt, a system of equations was used. The 
system differs depending on the type of material, and for a cohesionless material it includes: 
- equation of continuity (Cyganiuk et al. [12]) 
 
     m v A      (3.5) 

 
- equation of equilibrium (Cyganiuk et al. [12]) 
 
   m d m d d d dc xs xs     v v v G F N T   (3.6) 
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- equation describing the contact friction condition on surfaces of walls restricting the path of the flow of a 
bulk material stream for static conditions and cohesionless materials (according to Korzeń [13]) 

 
  ws n xs     (3.7) 

 
 For cohesive materials, the system of equations includes: 
equation of continuity (Cyganiuk et al. [12]) 
 
     m v A      (3.8) 

 
- equation of equilibrium (Cyganiuk et al. [12]) 
 
   m d m d d d d dc a xs xs      v v v G F F N T   (3.9) 

 
- equation describing the contact friction condition on the surfaces of walls restricting the path of the flow 

of a bulk material stream for static conditions and cohesive materials (according to Korzeń [13]) 
 

   ws n a xs     . (3.10) 

 
 In Eqs (3.7) and (3.9), μxs is a contact friction coefficient for static conditions. The general form of 
the system of equations for a cohesionless material takes the form Eq.(3.11) (Cyganiuk et al. [12]) 
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whereas for cohesive materials, the form of the system of equations is as follows (Cyganiuk et al. [12]) 
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 A detailed description of parameters included in the systems of Eqs (3.11) and (3.12) is the same as 
presented in Cyganiuk et al. [12], where A(φ) – cross-section of the stream [m2], ρ - bulk material density 
[kg/m3], m  - mass flow [kg/s]. 
 Projection of Eq.(3.6) onto directions of the assumed coordinate system <n, t> (Fig.1) will generate a 
system of equations as a function of the angular parameter φ, which after simplification, for cohesionless 
materials, takes the form 
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 For cohesive materials projection of Eq.(3.9) onto directions of the assumed coordinate system <n, 
t> (Fig.2) will also generate a system of equations as a function of the angular parameter φ, a simplified form 
of which is as follows 
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 The solutions to Eqs (3.13) and (3.14) are respectively differential equations, where for cohesionless 
materials the solution takes the following form Eq.(3.15) 
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and for cohesive materials – the solution is presented by Eq.(3.16) 
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 Equations (3.15) and (3.16) are a special case of the Bernoulli equation, which can be written in the 
form (according to Korzeń [7]) 
 
     y P y Q      (3.17) 

 
 By integrating Eq.(3.17), equations that allow determining the velocity of the material beyond the 
throwing point for cohesive and cohesionless materials were obtained. For cohesionless materials the 
velocity is described by Eq.(3.18) 
 

      2 xsv C e g Rw w
   , (3.18) 

 
and for cohesive materials by Eq.(3.19) 
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 The description of parameters included in Eqs (3.11) and (3.12) is the same as presented in Cyganiuk 
et al. [12], where Cw - integration constant, R(φ) - an average radius of curvature of the stream [m], h φ) - 
thickness of the material stream (according to Fig.2, it is the height of the material stream lying on the 
conveyor belt). 
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 Equations (3.18) and (3.19) contain integration constants, which describe Eq.(3.20) for cohesionless 
materials, and Eq.(3.21) for cohesive materials 
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 Equations (3.18) and (3.19) as well as 3.20 and 3.21 differ from one another by an element 
including adhesion.  
 To obtain a solution, boundary conditions, which are the same for both cohesive and cohesionless 
materials, were taken. Thus, the following boundary conditions, allowing the determination of the integration 
constant, were assumed (Cyganiuk and Przystupa [10], Cyganiuk [11]) 
 
   , (3.22) 
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 Velocity vw allows assuming the following boundary condition (Cyganiuk and Przystupa [10], 
Cyganiuk [11]) 
 
  w t  . (3.27) 

 
 The value of the velocity of the material beyond the throwing point is obtained by applying a simple 
iteration method, assuming initial conditions determined from Eqs (3.22) - (3.27). 
 To obtain the exact approximation of velocity vw of the material leaving the point, the following 
relation should be satisfied 
 

  
 v vwn w n 1

vwvwn

 
  [%] (3.28) 

 
where δvw is an acceptable relative deviation of the estimated velocity vw. It is assumed that velocity vw was 
correctly determined if the value of the deviation ranges 1%÷2%. 
 Parameter α is constant because the conveyor is not inclined, unlike in solutions presented in 
Cyganiuk and Przystupa [10], Cyganiuk [11], and Cyganiuk et al. [12]. 



30  J.A.Cyganiuk and P.Kuryło 

 Equations (3.18) and (3.19) were tested to verify if they comply with the assumption that the velocity 
of the material directly leaving the head pulley of the conveyor is equal to the velocity of the belt. Both 
equations proved to be compliant with the assumption. 
 Equations (3.18) and (3.19) can also be used to determine the velocity of the material beyond the 
throwing point, depending on the assumed angle of material inflow to the next point, e.g. an impact plate 
(Fig.3). In this case, it may be assumed in the proposed equations that angle βt is equal to the angle at which 
the material falls onto a surface (e.g. impact plate). Such an approach is a simplification, but yields results 
sufficient for practical use. 

 
4. Indirect equations 

 
 Indirect equations allow determining the velocity of the material leaving the throwing point which 
cooperates with an impact point presented in Korzeń [7], where they were applied for a conveyor with an 
ascending and descending belt. These equations can also be used for a flat conveyor. They are particularly 
suitable for a conveyor cooperating with an impact plate and for this application they yield the best results.   
 Figure 3 presents the flow conditions of the material on a conveyor with a flat belt (the conveyor is 
not inclined), whereas Eqs (3.29) - (3.32) allow determining the numerical values of parameters that can be 
seen in Fig.3. These equations are usable regardless the material. 
 

 
 

Fig.3.  Cooperation of a throwing point with a flat belt and an impact point with a not inclined plate 
[elaborated based on Korzeń [7]]. 

  
 Indirect equations (Fig.3) include (Korzeń [7]): 
- equation describing an angle of the material flowing onto an impact point ξ0 
 

  arctg
cos

g x0tg t0 2 22 v tw1

 
 
 
 


   

  
 (4.1) 

 
- equation describing the velocity of the material flowing onto an impact point v0 
 

  cos 2v v tg 1t0 w1 0       (4.2) 
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- equations describing distance parameters, according to Fig.3 
 
   . sinx s r 0 5 h t0 0 0b      , (4.3) 

 

  tg
cos

2g x0y xt0 0 22 vw t1


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where βt is an inclination angle of the material stream leaving the conveyor. In this case, βt is equal to 0 
because the conveyor is not inclined. 

 
5. Comparison of the calculation methods  

 
 Table 1 was presents an example demonstrating the usefulness of the proposed equations. It also 
includes a comparison between the results obtained with the use of the proposed equations and the results 
obtained with the currently used indirect equations. In the proposed equations, the indirect equations are 
omitted, assuming that the angle of the outflow of the material from a head pulley is equal to the angle of the 
inflow of the material to the impact plate (βt=ξ0). This is a considerable simplification in relation to the 
currently used indirect equations, where not only the velocity of the material flowing into the impact plate, 
but also the angle at which it flows into the plate are determined.  
 Table 1 presents the comparison of the results obtained with indirect equations and with the proposed 
equations for both cohesive and cohesionless materials. Table 1 also contains estimation of the percentage 
error for results yielded by the proposed equations in relation to the results obtained with the use of indirect 
equations. It also presents the difference between the obtained velocities of the material at the moment when 
it falls onto the plate. Initial conditions of the material outflow are the same for both calculation cases. 
Some of the values describing the parameters of the outflow of the material from the throwing point were 
taken from Żur [2] and Cyganiuk et al. [12] .  
 
Table 1.  Determination of the velocity of the material beyond the discharge point in relation to the analyzed 

angle at which the material flows into the impact point [own elaboration]. 
 
Cohesionless material Cohesive material 
- required mass flow m = 350 [kg/s], 
- belt velocity vp = 3.15 [m/s], 
- belt width Bt = 0.8 [m], 
- pulley radius rb = 0.25 [m], 
- angle of inclination of the conveyor belt α=0[o], 
- gravitational acceleration g = 9.81 [m/s2], 
- material bulk density ρ = 850 [kg/m3], 
- specific gravity γ = 8340 [N/m3], 
- friction coefficient for static conditions µxs = 0.50, 
- angle at which bulk material flows into subsequent 
point βt= ξ0 = 41 [o], 
- distance between the head pulley and the point at 
which material is discharged s0= 0.9 [m], 

- required mass flow m = 350 [kg/s], 
- belt velocity vp = 3.15 [m/s], 
- belt width Bt = 0.8 [m], 
- pulley radius rb = 0.25 [m], 
- angle of inclination of the conveyor belt α=0[o], 
- gravitational acceleration g = 9.81 [m/s2], 
- material bulk density ρ = 1380 [kg/m3], 
- specific gravity γ = 13540 [N/m3], 
- friction coefficient for static conditions µxs = 0.51, 
- angle at which bulk material flows into subsequent 
point βt= ξ0 = 41 [o], 
- distance between the head pulley and the point at which 
material is discharged s0= 0.9, 
- adhesion σa = 350 [N/m2], 
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CALCULATIONS 
- proposed equations 
the first step of approximation 
boundary conditions determining the integration constant 
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CALCULATIONS 
- proposed equations 
the first step of approximation 
boundary conditions determining the integration constant 
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 The relative error vr  for results achieved with the proposed equations and with the indirect 
equations amounts to 2% for cohesionless materials and 5% for cohesive materials, respectively, which is 
acceptable for practical use. But the value of the error increases with the growing distance between the 
impact plate and head pulley. The difference between the velocity determined with the use of the indirect 
equations and the proposed equations for cohesionless materials amounts to 0.08 [m/s], and for cohesive 
materials to 0.21 [m/s]. The minimal permissible distance between the throwing point and the impact plate 
was taken into consideration.  
 Differences obtained in calculations for values of velocity indicate that the proposed equations can 
be used for estimating the velocity of the material beyond the throwing point. The indirect equations take 
into consideration kinematic and geometric conditions, whereas the proposed equations take also into 
consideration dynamic parameters, adhesion, the coefficient of friction of a given material against the belt 
surface, as well as material parameters such as material bulk density and specific gravity. 

 
6. Conclusions 

 
 The analysis of the conditions of flow of cohesionless and cohesive materials in a throwing point 
with a flat belt (non inclined conveyor) as well as the proposed equations obtained from the analysis are 
suitable for engineering calculations and for estimating the velocity of the material beyond the head pulley 
with the accuracy sufficient for practical use. It is especially important in cases when the value of the 
velocity beyond the point must be known. The knowledge of this value enables the correct selection of 
parameters of pouring points that cooperate with conveyors. It is also of importance for maintaining constant 
capacity of the transport system. The proposed equations consider not only kinematics and dynamics 
parameters of the flow but also material parameters.  
 The proposed equations, comparing to the indirect equations, give good compliance of 2% for 
cohesionless materials and 5% for cohesive materials. Such value of the relative error was obtained for an 
impact plate operating in angular pouring points, whereas for parallel pouring points, where the distance 
between the head pulley and impact plate increases to 1.2 m (Żur [2]), the relative error can reach the value 
of almost 10%. 
 The proposed equations provide a tool for engineers allowing estimating the value of velocity of the 
material beyond the throwing point, which assures the correct capacity of the transport system consisting of 
belt conveyors. The proposed equations prove to be useful in cases where a throwing point follows or 
precedes an impact point, especially at a properly selected distance between cooperating points, but they do 
not consider air resistance.  
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 The proposed equations assume that the angle at which the material falls onto the subsequent point is 
known. However, the equations may turn out to be useless for the assumed angle at which the material flows 
out of the head pulley if the distance is larger than 2 m. 
 
Nomenclature 
 
 0A  – cross-section of the stream flowing into the head pulley [m2] 
 wA  – cross-section of the stream leaving the head pulley [m2]  

  A  – cross-section of the stream [m2] 
 Bt – belt width [m] 
 wC  – integration constant 

 dFa – adhesion force [N] 
 cdF  – centrifugal force [N] 

 dG – gravitational force [N] 
 dNxs – normal force [N] 
 dTxs – friction resistance [N] 
 g  – gravitational acceleration [m/s2] 
 hm – thickness of the layer of the material stream flowing into the head pulley [m] 
 wh  – thickness of the layer of the material stream leaving the head pulley [m] 

 m   – mass flow [kg/s] 
 0R  – average radius of curvature of the material stream flowing into the pulley [m] 

Rśr ,  R   – average radius of curvature of the material stream [m] 

 wR  – average radius of curvature of the material stream leaving the pulley [m] 

 rb – radius of the head pulley [m] 
 s0 – distance between the head pulley and the point at which the material is discharged [m] 
 x0, y0 – distance parameters [m] 
 α – angle of conveyor descent [o] 
 βt –  angle of the material stream flowing out of the head pulley [o] 
 γ  – specific gravity [N/m3] 
 0  – angle at which the bulk material flows into subsequent point [o] 

 µxs – friction coefficient for static conditions 
 vp – velocity of the bulk material stream flowing into the head pulley [m/s] 
 vt –velocity of the conveyor belt [m/s] 
 wv  – velocity of  the material leaving the head pulley [m/s] 

  v   – velocity of cohesive and cohesionless bulk materials beyond the throwing points [m/s] 

 v0 – velocity of  the material flowing onto impact point [m/s] 
   – bulk density of the material [kg/m3] 
 σa – adhesion [Pa] 
 σn – normal stress [Pa] 
 τws – shear stress [Pa] 
    – angle coordinate describes the position of infinitesimal mass of  the material on the head pulley [o] 
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