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The aim of this work is to propose an empirical model for predicting shapes of a Taylor bubble, which is a 
part of slug flows, under different values of the surface tension in stagnant liquids by employing numerical 
simulations. The k    turbulence model was used in the framework of finite volume method for simulating flow 
fields in a unit of slug flow and also the pressure distribution on a Taylor bubble surface. Assuming that an air 
pressure distribution inside the Taylor bubble must be uniform, a grid search method was exploited to find an 
appropriate shape of a Taylor bubble for six values of surface tension. It was found that the shape of a Taylor 
bubble would be blunter if the surface tension was increased. This was because the surface tension affected the 
Froude number, controlling the flow around a Taylor bubble. The simulation results were also compared with the 
Taylor bubble shape, created by the Dumitrescu-and-Taylor model and former studies in order to ensure that they 
were consistent. Finally, the empirical model was presented from the simulation results.  
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1. Introduction 

  
 A slug flow is a kind of the two-phase gas-liquid flow, e.g. bubble flow, slug flow, churn flow, 
annular flow and dispersed flow which appear in different conditions, depending on the gas-to-liquid ratio of 
the mixture. The slug flow is often found in engineering application, for example in a petroleum pipeline. 
When a gas-liquid petroleum mixture is sucked from a deep well, the static pressure of the mixture in the 
pipeline will be reduced due to the altitude change, resulting in the expansion of the gas part of the mixture. 
The mixture then forms a pattern of the slug flow.  
 As illustrated in Fig.1a, a slug flow consists of three main components, namely: liquid slugs, falling 
films and elongation bubbles (so-called Taylor bubbles). In many former studies, slug flows were usually 
considered as a unit for the sake of simplicity. A unit of a slug flow is comprised of a liquid slug, a falling 
film and a Taylor bubble as shown in Fig.1b. The velocity of a Taylor bubble ( bw ), in Fig.1b, can be 
estimated with 
 
  b t l l g gw w C w C w   ,

 
 (1.1) 

 
where lC  and gC  are between 1.0 and 2.2, depending on the magnitudes of lw  and gw  [1-2]. In case of a 

stagnant fluid, i.e., both lw  and gw  are equal to zero, the velocity of the Taylor bubble yields 

 

  b t D pw w Fr gD  .
 

 (1.2) 

 
 According to [3], the Froude number in Eq.(1.2) is a function of both DRe  and DEo , namely 
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 Results, calculated with Eq.(1.3), agree very well with the data obtained from [4] and overcome  
inaccuracies at intermediate Morton numbers (M). Herein 
 
  D l t p lRe w D   ,

 
 (1.4) 

 

    2
D l g pEo gD   

 
 (1.5) 

 
and 
 

     4 2 3
l g l lM g      .

 
 (1.6) 

 
 Although the Taylor bubble drifts upward with respect to an observer who stands on the earth 
surface, the flow field around the Taylor bubble is usually considered with respect to the nose of the Taylor 
bubble as depicted in Fig.1c by the reason of simplicity.  
 

 
 

Fig.1. Schematic diagrams (a) a typical slug flow, (b) a unit of a slug flow relative to the pipe wall and (c) a 
unit of a slug flow relative to the nose of the Taylor bubble. 

 
 The shape of the Taylor bubble which apparently looks similar to a bullet was found that it likely 
affected the pressure drop in the flow by generating vertices behind itself [5-8]. The consequence of these 
vertices was the interaction between two successive Taylor bubbles. Since the shape of the Taylor bubble 
dominates the strength of the vertices, many studies have been done to predict the shape of the Taylor bubble 
under different conditions. Nogueira et al. [9] performed experiments for a wide range of liquid viscosity 

pi
pe

 w
al

l 

Taylor 
bubble 

liquid 
slug 

fa
lli

ng
 f

il
m

 

(a) 

Taylor 
bubble

wb liquid 
slug 

fa
lli

ng
 f

il
m

 

(b)

Taylor 
bubble’s nose

(u=0) 

w
w

al
l=

w
b 

wb

(c)



Shapes of an air Taylor bubble in stagnant liquids…  81 

(from 0.001 to 1.5 Pa-s) in order to find out the different shapes of the Taylor bubble. Bugg et al. [10] 

showed the different shapes of the Taylor bubble under the conditions that 1210 M 10    and 
10 Eo 100   by using the Volume-of-Fluid (VOF) method which was an interface-capturing method. In 
1990, Mao and Dukler [11] revealed the influence of the co-currant liquid speed ( lw ) on the shape of the 
Taylor bubble with an interface-tracking method which considered the tension effect on the gas-liquid 
interfacial surface but neglected the effect of the normal stress. While in 1991, they showed the effect of both 
viscosity and surface tension on the shape of the Taylor bubble by using the same program code, upgraded 
with the k    turbulence model [12]. Kawaji et al. [13] used the VOF method to study the speed of the 
Taylor bubble and confirmed that the Taylor bubble moved faster when it moved off the tube axis since the 
shape of the Taylor bubble became asymmetric, leading to a lower drag force. Smith et al. [14] stated that 
the diameter of the tube, where the Taylor bubble existed, would not affect the shape of the Taylor bubbles if 
the tube diameter was smaller than 3 mm. The simulation results in [15] showed that increasing the Capillary 
number (Ca) resulted in an increment of the liquid film thickness (a slenderer shape of the Taylor bubble) 
and the sharpness of the bubble nose. These previous studies were done to show how the shape of the Taylor 
bubble changed with various conditions but no predicting model of the Taylor bubble shape was presented. 
The objective of this work is, thus, to propose an empirical model for predicting the shape of the Taylor 
bubble under different values of the surface tension on the gas-liquid interface in stagnant liquids.  
 
2. Theory 

 
 As a matter of fact, the shape of a Taylor bubble has long been modeled. It was simply modeled as a 
capsule, consisted of two hemispherical caps and a cylinder body in [16]. A more complicated model was 
presented in [17], consisting of 2 equations, i.e.  
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 (2.2) 

 
 Herein, Eq. (2.1) is Dumitrescu’s model which is derived from the potential flow theory [18] and 
used for predicting the shape of a Taylor bubble within the region of the bubble nose. And Eq.(2.2) is 
Taylor’s model which is used for predicting the rest of the bubble shape. The joint between Eq.(2.1) and 
Eq.(2.2) is set at . Pz 0 5R  , suggested by Nogueira et al. [9]. Although, shapes of a Taylor bubble created 
by the Dumitrescu-and-Taylor model look more natural, they are still different from reality. This is because 
the model omits the influence of viscosity and the joint between these two equations makes a discontinuity 
on the shape of a Taylor bubble.  
 Lertnuwat [19] has proposed a model to erase the discontinuity in the Dumitrescu-and-Taylor model, 
that is 
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where 
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   2 pz D
1 1 e

     .
 

 (2.4) 

 
 Shapes of a Taylor bubble, created from Eq.(2.3), can be adjusted to be slenderer or blunter by 
varying the values of 1  and 2  in Eq.(2.4). The appropriate values of 1  and 2  may be determined by a 
numerical method, explained in the next session.  
 
3. Computational setup 

 
 Owing to the assumption that a flow is symmetric around the pipe centerline, the computation 
domain is just half a unit of the slug flow as shown in Fig.2a. It was found that the slug length ( sL ) was 

between 10 pD  and 20 pD , independent of the flow condition [20-22], whereas the Taylor bubble length 

( bL ) was strongly dependent on pD  and bw  [20-21, 23]. However, the Taylor bubble length was found 

between 2 pD  and 11 pD  [12]. According to the data from the aforementioned references, the slug length 

( sL ) was set to be 15 pD  and the Taylor bubble length ( bL ) was set to be 5 pD . 

 Taylor bubbles were usually observed in pipes, ranging from very-small-size pipes as capillary tubes 
[14-15, 24] to middle-size pipes ( pD  < 0.1 m) [25-26]. This was because, in a 10 cm pipe, bubbly flows 

underwent a regime transition to churn-turbulence (not to slug flows as typically observed in smaller 
diameter pipes) [27]. Hence the pipe diameter ( pD ) was set to be 0.05 m in this study. 

 The upper horizontal boundary of the computational domain was controlled by a velocity inlet 
boundary condition with a velocity ( bw ) whose direction is - z . A pressure outlet boundary condition was 
posed on the lower horizontal boundary of the computational domain with a fixed pressure, equal to 100 kPa. 
The pipe wall on the right hand side was posed with a no-slip condition and the velocity of the pipe wall is 
equal to bw  with respect to the given z  axis. A symmetry boundary condition was posed along the upper 
left side of the computational domain which was the pipe centerline. While the lower left side of the 
computational domain, which was the interface between the falling film and the Taylor bubble, was assumed 
to be a free surface boundary.  
 Figure 2b shows the gridline employed in this study. The two horizontal boundaries (upper and 
lower ones) were placed with 16 gridlines along the r axis, whereas there were totally 161 gridlines placed 
on the vertical boundaries. This set of gridlines was separated into two groups, i.e., 86 gridlines, which were 
drawn from the pipe centerline, were in the first group and the other group consisted of the remaining 75 
gridlines, drawn from the Taylor bubble surface.  

 Since most of fluid mixtures, exploited in former studies, were air and water at 25 o C  and 100 kPa. 
The fluid properties, used in this study, were set to be that g = 1.18 kg/m3, l = 998 kg/m3 and l = 

. 30 891 10  Pa-s. While the surface tension on the Taylor bubble surface had to be varied between 0.001 
and 0.200 N/m to investigate its influence on the Taylor bubble shape and to assure that Reynolds number in 
the falling film, i.e.  
 
   film l film film l l t p lRe w w D 4       ,

 
 (3.1) 

 
must be greater than 400. This made all the entire liquid flow in the falling film turbulent for every 
investigating conditions [28].  
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Fig.2. Computational domain and employed gridlines. 
 
 Since all flows in the falling film, studied in this work, were turbulent, the k    model was 
employed. The simulation code, used in this study, was developed from a program code, given in [29]. The 
implicit pressure-correction method on the finite volume framework with second order spatial accuracy was 
utilized for developing the simulation code.  
 
4. Solution procedure 

 
 Static pressure of any inviscid gas inside a bubble ideally will be constant if the average static 

pressure of the gas is much greater than the hydrostatic pressure difference  g g z   of the gas. This means 

that along the appropriate shape of a Taylor bubble which is created by Eq.(2.3) and Eq.(2.4) with the 
appropriate values of 1  and 2 , the distribution of the air pressure inside a Taylor bubble which is related 
to the liquid pressure of the flow outside the Taylor bubble as 
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must be uniform. Herein, the radius of curvature ( bsR ) of the Taylor bubble shape can be calculated as 
follows 
 

z r

L s
=

15
D

p 
L b

=
5D

p 

Rp=Dp/2

wb 

wb

wb

wb

pl =100 kPa 

(a) 

i=1

i=75

86
 g

ri
dl

in
es

 

75
 g

ri
dl

in
es

 

16 gridlines

(b)



84  B.Lertnuwat 

  
bs bs1 bs2

1 1 1

R R R
  ,

 
 (4.2) 

 
in which  
 

     .1 52 2 2
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 
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 (4.4) 

 
 The root-mean-square deviation of the air pressure along the Taylor bubble surface, i.e. 
 

     
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, , max

i 2

p g i g 1bs bs
i 1

RMSD p p i 1


 
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  
 ,

 
 (4.5) 

 
was employed to indicate whether or not the pressure distribution of the air was uniform. Herein, the symbol 
i  refers to the number of the gridline vertex on the Taylor bubble surface, shown in Fig.2b. The location i = 
1 is the location of the Taylor bubble nose and the maximum value of i  is 75 for this study. It is clear that 

pRMSD  will equal zero if the pressure distribution of the air is uniform. However, the uniform distribution 

of the air pressure inside the Taylor bubble is practically difficult to be obtained, the minimum value of 

pRMSD  was alternatively exploited.    

 The grid search method was selected in order to determine the appropriate values of 1  and 2 . At 

first, a searching domain was initially set to be a range, bounded within min, max,1 1 1 1 1      and 

min, max,2 1 2 2 1     . These minima and maxima must be properly guessed to ensure that the first 

searching domain covered the appropriate values of 1  and 2 . The first searching domain was next 

discretized to be a coarse searching grid with selected values of ,1 1  and ,2 1 . Next, a pair of 1  and 2  

was selected from this coarse searching grid to create the Taylor bubble shape for a computational domain 
with Eq.(2.3) and Eq.(2.4). Next, a flow simulation was launched until it converged to a steady state and 
therefore a distribution of liquid pressure on the Taylor bubble surface was obtained for being substituted to 
Eq.(4.1) in order to calculate a distribution of the gas pressure inside the Taylor bubble. Next, Eq.(4.5) was 
exploited to calculate an pRMSD . Then, another pair of 1  and 2  was selected from the coarse searching 

grid and the procedure was repeated until all the pairs of 1  and 2  from the coarse searching grid were 

selected. Finally, the minimum value of pRMSD  would indicate the appropriate Taylor bubble shape and the 

appropriate values of 1  and 2 , too. In the event that the accuracy of this solution was not sufficient, a 

finer searching grid, bounded in min, max,1 2 1 1 2      and min, max,2 2 2 2 2     , might be created with 

, , .1 2 1 10 5    and , , .2 2 2 10 5   . The new minima and maxima were set as follows: 

min, , ,1 2 1app 1 1 1     , max, , ,1 2 1app 1 1 1     , min, , ,2 2 2app 1 2 1      and max, , ,2 2 2app 1 2 1     . 

Then the searching process, mentioned above, might be repeated. The process was repeated until the 
significant figures of the appropriate 1  and 2  were equal to three. The procedure can be depicted as a 
flow chart in Fig.3. 
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Fig.3. Flow chart for the procedure of finding appropriate 1  and 2 . 

  
5. Result 

 
 After simulating, all the appropriate 1  and 2  from 6 different   were obtained as  
presented in Tab.1.  

 
Assign: 
1min,j1max,j1,j

2min,j2max,j2,j

 j = 1 

Start

 
y=y+1

2,y2,y+2,j 

 
x=x+1

1,x1,x+1,j 

 
1min,j=1app,j-1 -1,j-1

1max,j=1app,j-1 +1,j-1

1,j1,j-1/2 
2min,j=2app,j-1 -2,j-1

2max,j=2app,j-1 +2,j-1

2,j2,j-1/2 

Record 1app,j and 2app,j

Stop 

significant fig. of 
1,j and 2,j  3

yes

no

 
x=1

1,x1min,j

 
y=1

2,y2min,j

 
- Create a shape of a Taylor bubble 
- Create a domain 
- Simulate a flow

 
- Find pl,i and pg,i 
- Find RMSDp,x,y 

1,x1max,j

yes

no

2,y2max,j

yes

no

 
- Find a minimum RMSDp,x,y 
- x_app=x of the min. RMSDp,x,y

- y_app =y of the min. RMSDp,x,y

- Assign: 1app,j1,x_app 
2app,j2, y_app        



86  B.Lertnuwat 

Table 1. Appropriate alphas and corresponding parameters in each investigating case. 
 

  
(N/m) 

1  
 

2  DFr  DEo  bw  
(m/s) 

0.001 1.43 -15.3 0.351 24500 0.246 
0.030 1.43 -14.9 0.351   818 0.246 
0.120 1.43 -14.5 0.350   204 0.245 
0.600 1.52 -13.6 0.329    40.8 0.230 
1.200 1.71 -18.6 0.275    20.4 0.193 
2.000 2.29 -27.5 0.191    12.3 0.134 

 
 In order to investigate the influence of the surface tension, shapes of a Taylor bubble were created 
with the appropriate 1  and 2  in Tab.1 for comparing in Fig.4a. Only the shape of a Taylor bubble in the 

case that = 2.000 N/m was apparently the thickest but it was quite difficult to see the difference among the 
shapes of a Taylor bubble in other cases. Therefore the area, confined in the dashed rectangle of Fig.4a, was 
enlarged to make the difference among all shapes of a Taylor bubble to be clearer as shown in Fig.4b. 
 There was no significant change of the Taylor bubble’s shapes when = 0.001 N/m, = 0.030 N/m 
and = 0.120 N/m in accordance with Fig.4b, the surface tensions are 120 times different though. But after 
this point, the shape of a Taylor bubble would be blunter if   was increased. This was consistent with [10] 
which stated that a Taylor bubble would be slenderer if Eo  decreased. Besides, the shape of a Taylor bubble, 
created by the Dumitrescu-and-Taylor model, was also presented as a reference in Fig.4. It was found that 
the shape of a Taylor bubble created by the Dumitrescu-and-Taylor model was surrounded by the simulated 
results and close to the one of the case when   = 1.200 N/m.    
 

 
 

Fig.4. Influence of surface tension on the shapes of a Taylor bubble. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a)                                                       (b) 
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6. Discussion 
 

 The influence of   was likely to be obvious when   exceeded the value (between 0.120 and 0.600 
in this study) in accordance with Fig.4 and Tab.1. The reason of this issue may be explained by considering 
the conservation of mass in the control volume, confining a unit of a slug flow as shown in Fig.5. 
 Assuming that the considered condition is steady, the continuity equation, governing the control 
volume can be reduced to be 
 

  
p

b
p

R2
l b p l lR z 5D

w R w 2 rdr
 

        . (6.1) 

 
 Since the flow in the falling film region was turbulent, the velocity profile was similar to a uniform 
distribution along the r -axis. This simplifies the right-hand-side term of Eq.(6.1) as follows.  
 

  
p p

2 2 2
l b p l l p bz 5D z 5D
w R w R R   

 
      

 
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   (6.2) 

   pp

2 2
b b l pz 5Dz 5D

R 1 w w R  
  .

 
 

 

Substituting Eq.(1.2) into Eq.(6.2) yields 
 

   pp

2 2
b D p l pz 5Dz 5D

R 1 Fr gD w R  
  .

 
 (6.3) 

 

 Considering Eq.(6.3), it is clear that if DFr  is reduced, bR  will trend to be greater. This leads a 

smaller cross sectional area of the mass efflux in Fig.5 and, then, 
p

l z 5D
w    must be greater to maintain the 

balance of the mass influx and the mass efflux of the control volume. In other words, it can be stated that 
reducing DFr  will eventually result in a greater 

p
l z 5D

w    and these two factors (less DFr  and greater 

p
l z 5D

w   ) promote bR  to be greater (a blunter Taylor bubble). Since DFr  is a function of   as shown with 

Eq.(1.3) and Eq.(1.5), namely DFr  will be reduced if   is increased as tabulated in Tab.1. This means that 

increasing   will result in a blunter shape of a Taylor bubble. It agrees quite well with [4] which concluded 
that   would play an important role if DEo  was greater than 70 (between 40.8 and 409 in this study). 

 

 
 

Fig.5. A diagram of a control volume, confining a slug flow unit. 
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7. Conclusions 

 
 Under turbulent conditions, shapes of a Taylor bubble, in stagnant liquids of which surface tension is 
varied from 0.001 to 2.000 N/m, could be predicted by using Eq.(2.3) and Eq.(2.4) and the appropriate values 
of 1  and 2  in Tab.1.  
 Additionally, it was found that the influence of the surface tension began clear when the surface 
tension was greater than a value between 0.120 and 0.600 N/m, in which DFr  began to be reduced. A 

supporting reason could be discussed with the continuity equation, which showed that reducing DFr  would 

result in a greater velocity magnitude in the falling film region and eventually larger bR , in other words, a 
blunter shape of a Taylor bubble.  
 
Nomenclature 
 
 Ca   capillary number; l bCa w    

 D   diameter 
 Eo  Eötvös number 
 Fr  Froude number 
 g  gravity acceleration 
 k  turbulent kinetic energy 
 L  length 
 M  Morton number 
 n  unit normal vector  
 p  static pressure 
 R  radius or Radius of curvature 
 Re  Reynolds number 
 RMSD   Root-mean-square deviation 
 r  location on r-axis  
 u  velocity component on r-axis 
 V  total velocity 
 w  velocity component on z-axis 
 w   area-average w    
 z   location on z-axis 
 z   distance from a bubble nose  nosez z  

    a small constant  
    dissipation 
    viscosity 

    density 

    surface tension 
 
Superscripts and Subscripts 
 
 app   appropriate 

 b   Taylor bubble 
 bs  Taylor bubble surface 
 D   diameter 
 film   falling film 

 g  gas 
 l  liquid 
 nose    Taylor bubble nose 
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 p  pipe 
 s  slug 
 t  terminal 
 wall   pipe wall 
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