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Thermal Instability (Benard’s Convection) in the presence of uniform rotation and uniform magnetic field 
(separately) is studied. Using the linearized stability theory and normal mode analyses the dispersion relation 
is obtained in each case. In the case of rotatory Benard’s stationary convection compressibility and rotation 
postpone the onset of convection whereas the couple-stress have duel character onset of convection depending 
on rotation parameter. While in the absence of rotation couple-stress always postpones the onset of 
convection. On the other hand, magnetic field on thermal instability problem on couple-stress fluid for 
stationary convection couple-stress parameter and magnetic field postpones the onset of convection. The effect 
of compressibility also postpones the onset of convection in both cases as rotation and magnetic field. Graphs 
have been plotted by giving numerical values to the parameters to depict the stationary characteristics. Further, 
the magnetic field and rotation are found to introduce oscillatory modes which were non-existent in their 
absence and then the principle of exchange of stability is valid. The sufficient conditions for non-existence of 
overstability are also obtained.      
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1. Introduction  
 
 Thermal instability of a fluid layer heated from below plays an important role in geophysics, 
oceanography, atmospheric physics etc., and has been investigated by many authors, e.g. Bénard [1], 
Rayleigh [2], Jeffreys [3]. A detailed account of the theoretical and experimental studies of so called Bénard 
convection in Newtonian fluids has been given by Chandrasekhar [4]. The Boussinesq approximation, which 
states that the density can be treated as a constant in all terms of the equations of motion except the external 
force term has been used throughout.  
 With the growing importance of non-Newtonian fluids in modern technology and industry, the 
investigations of such fluids are desirable. The presence of small amounts of additives in a lubricant can 
improve bearing performance by increasing the lubricant viscosity and thus producing an increase in the load 
capacity. These additives in a lubricant also reduce the coefficient of friction and increase the temperature 
range in which the bearing can operate. A number of theories of the microcontinuum have been postulated 
and applied (Lai et al. [5]; Walicka [6]).  
 

                                                            
* To whom correspondence should be addressed 



92  C.B.Mehta and M.Singh 

 
 The theory of couple-stress fluid has been formulated by Stokes [7]. According to the theory of 
Stokes [7], couple-stresses are found to appear in noticeable magnitudes in fluids with very large 
molecules. One of the applications of couple-stress fluid is, therefore, its use to the study of the 
mechanisms of lubrication of synovial joints, which has become the object of scientific research. A human 
joint is a dynamically loaded bearing, which has articular cartilage as the bearing and synovial fluid as the 
lubricant. The shoulder, hip, knee and ankle joints are the loaded-bearing synovial joints of the human 
body and these joints have a low friction coefficient and negligible wear. Nason et al. [8] found that any 
instability, which is deleterious to certain biochemical separations, can be suppressed by rotation in the 
ultracentrifuge.  
 When the fluids are compressible, the equations governing the system become quite complicated. 
Spiegel and Veronis [9], have simplified the set of equations governing the flow of compressible fluids under 
the assumption that the depth of the fluid layer is much smaller than the scale height as defined by them, if 
only motions of infinitesimal amplitude are considered.  
 Walicki and Walicka [10] modeled synovial fluid as couple-stress fluid in human joints. The 
synovial fluid is the natural lubricant of joints of the vertebrates. The detailed description of the joint 
lubrication has very important practical lubrications. Practically all diseases of joints are caused by or 
connected with a malfunction of the lubrication. The efficiency of the physiological joint lubrication is 
caused by several mechanisms. The synovial fluid is, due to its content of the hyaluronic acid, a fluid of 
high viscosity, similar to a gel. Goel et al. [11] studied the hydromagnetic stability of an unbounded 
couple-stress binary fluid mixture under rotation with vertical temperature and concentration gradients. 
Kumar et al. [12] considered the thermal instability of a layer of couple-stress fluid acted on by uniform 
rotation and found that, for stationary convection, the rotation has a stabilizing effect, whereas the couple-
stress has both stabilizing and destabilizing effects. The use of magnetic field is being made for the 
clinical purposes in detection and cure of certain diseases with the help of magnetic field devices/ 
instruments. Singh and Kumar [14], have studied magneto and rotatory thermosolutal convection 
incompressible couple-stress fluid in porous medium, found that stable solute gradient, magnetic field and 
couple-stress parameter have stabilizing effects, where in rotation permeability and couple-stress 
parameter have both stabilizing as well as destabilizing effects on the system. In one another study Singh 
et al. [15] found that stable solute gradient, magnetic filed, couple-stress parameter have postpones the 
onset of convection where as rotation hastens the onset of convection. Also Singh and Kumar [16], in one 
another study found that stable solute gradient, magnetic filed and couple-stress parameter have stabilizing 
effect on the system. 
 Keeping in mind the importance of non-Newtonian fluids and convection in fluid heated from below, 
the present paper is devoted to study the compressible couple-stress fluid heated from below in presence of 
rotation and magnetic field. 
 
2. Effect of rotation      
                                                                                                                
2.1. Formulation of the problems and perturbation equations 
 
 Consider an infinite horizontal layer of a couple-stress fluid of depth d which is acted on by uniform 
rotation ( , , )0 0   and a gravity force ( , , )0 0 g g . This layer is heated from below so that a steady 

 /dT dz   is maintained. Let , , , , , , andij ij ij ij i ie v x      respectively, denote the stress tensor, shear 

stress tensor, rate-of-strain tensor, Kronecker delta, viscosity, couple-stress viscosity, viscosity vector and 
position vector. The constitutive relations for the couple-stress fluids are  
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 The conditions on a free surface are the vanishing of tangential stresses xz and yz, which yield  
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z x
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 Since w vanishes for all x and y on the bounding surface, it follows from Eqs (2.2) and (2.3) that  
 

     * *, .2 2u v
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z z
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We shall suppose the stars (*) in distances for convenience hereafter. 
  Let v (u, v, w), , , p and  denote respectively the perturbations in velocity (0, 0, 0), temperature 
T, solute concentration C, pressure p and density . Since the non-linear theories attempt to allow for the 
finite amplitudes of the perturbations, we suppose that the various physical variables describing the flow 
suffer small (infinitesimal) increments and as a consequence, we neglect all product and powers (higher than 
the first) of the increments and retain only terms that are linear and the linear stabilizing theory, for 
mathematical simplicity, is applied. Then the linearized perturbation equations, relevant to the problem 
(Stokes, [7]; Sharma, [13]), are  
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  . v = 0,                                                                                               (2.6) 
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 Here , cp and  stand for the kinematic viscosity, specific heat at constant pressure and thermal 
diffusivity respectively. From the equation of continuity (2.6) differentiated with respect to z, we conclude 
that  
 

  *
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.      (2.8) 

 
 The equation of state is  
 



94  C.B.Mehta and M.Singh 

 
   = m [1-  (T-T0) ]                 (2.9) 
 
where , andm 0T   are respectively, the coefficient of thermal expansion, the reference density and 

reference temperature at the lower boundary, therefore the change in density  caused by the perturbation  
in temperature is given by 
 
   = - m .               (2.10) 
 
 Within the framework of the Boussinesq approximation, Eqs (2.5)- (2.7) and (2.10) yield  
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 We now analyze the disturbances into normal modes, assuming that the perturbation quantities are of 
the form 
 

  [w, , ] = [W(z), (z), Z(z)]exp  x yik x ik y nt              (2.14)                     

 

where kx, ky are wave numbers along the x-and y-directions respectively, k  2 2
x yk k   is the resultant wave 

number and n is the growth rate, which is, in general, a complex constant. 
 Using expression (2.14), Eqs (2.11) – (2.13) in a non-dimensional form become 
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where we have put a = kd,  = 
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 is the Taylor number.  

 Eliminating Z,  between Eqs (2.15)-(2.17), we obtain 
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 We now assume that the fluid layer is confined between two free boundaries. The case is of artificial 
nature, but due to mathematical simplicity it enables us to show the effect of rotation on the couple-stress 
fluid analytically. The appropriate boundary conditions, with respect to which Eqs (2.15)-(2.17) must be 
solved, are  
 
  W = D2W = 0,        = 0,       DZ = 0     at     z = 0       and       z =1.    (2.19)  
 
 Equations (2.8), (2.14) and (2.19) imply that  
 
  D4W = 0      at       z = 0       and        1.              (2.20) 
 
 Dropping the caps for convenience and using the above boundary conditions, it can be shown that all 
the even order derivatives of W must vanish on the boundaries and hence the proper solution of Eq.(2.18) 
characterizing the lowest mode is  
 
    W = W0 sin z              (2.21) 
 
where W0 is a constant  
 Substituting the proper solution (2.21) in Eq.(2.18), we obtain the dispersion relation                     
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3. Stationary convection 
 
 When the instability sets in as stationary convection, the marginal state will be characterized by  = 
0 Eq.(2.22) reduces to  
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 Equation (3.1) expresses the modified Rayleigh number R1 as a function of the dimensionless wave 
number x and the parameters G, F1 and T1. For fixed F1 and T1, let G (accounting for the compressibility 
effects) also be kept fixed. Then we find that  
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where cR  and Rc denote, respectively, the critical Rayleigh numbers in the presence and absence of 
compressibility. G >1 is relevant here. 
 The effect of compressibility is thus to postpone the onset of thermal instability.  
Equation (3.1) yields 
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which implies that rotation has postponed the onset of convection. Equation (3.1) also yields 
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 In the absence of rotation (T1= 0), dR1/dF1 is positive which means that the couple-stress has 
postponed the onset of convection. For a rotating system, the couple-stress still postpones the onset of 
convection if T1 < (1+x)3 {1 + F1 (1+x)}2 as well as  hastens the onset of convection if T1 >(1+x)3 {1 + F1 
(1+x)}2.  
 
4. Stability of the system and oscillatory modes 
 
 Here we examine the possibility of oscillatory modes, if any, as a stability problem due to the 
presence of rotation. Multiplying Eq.(2.15) by W*, the complex conjugate of W, integrating over the range of 
z and making use of Eqs (2.16) and (2.17) together with the boundary conditions (2.19), and (2.20), we 
obtain 
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which are all positive definite. Putting  = r + ii in Eq.(4.1) and equating real and imaginary parts, we 
obtain  
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 Equation (4.4) yields that i = 0 or i  0, which means that the modes may be non-oscillatory or 
oscillatory. In the absence of rotation, Eq.(4.4) reduces to  
 

  
2
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g a G

I p I 0
G 1

           
 (4.5) 

 
and the terms in bracket are positive definite. Thus i = 0, which means that oscillatory modes are not 
allowed and the principle of exchange of stabilities is satisfied in the absence of rotation. This result is true 
for compressible, couple-stress fluids as well as for incompressible Newtonian fluids [Chandrasekhar [4]], in 
the absence of rotation. The presence of rotation brings oscillatory modes (as i may not be zero) which were 
non-existent in its absence. Equation (4.3) simply shows that there may be stability or instability in the 
presence of rotation in compressible, couple-stress fluids which is also true in the absence of rotation as well 
as in incompressible, Newtonian fluids [Chandrasekhar [4]]. 
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5. The overstable case  
 
 Here we discuss the possibility of whether instability may occur as overstability. Since for 
overstability we wish to determine the critical Rayleigh number for the onset of instability via a state of pure 
oscillations, it suffices to find conditions for which (2.22) will admit solutions with 1 real. Equating the real 
and imaginary parts of Eq.(2.22) and eliminating R1 between them, we obtain 
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where we have put 1 + x = . 

 As 1 is real for overstability, 2
1  is positive. It is evident from Eq.(5.1) that this is clearly 

impossible if  
 
  p1 > 1, 
 
i.e.,   if  < .     (5.2) 
 
 <  is, therefore, a sufficient condition for the non-existence of overstability, the violation of which does 
not necessarily imply the occurrence of overstability. The sufficient condition  <  for the non-existence of 
overstability is found to be the same for compressible, couple-stress fluids as well as for incompressible, 
Newtonian fluids (Chandrasekhar, [4]), in presence of rotation and heated from below. 
 
6. Effect of magnetic field 
 
6.1. Formulation of the problem and perturbation equations  
 
 Here we consider an infinite, horizontal, compressible, electrically conducting couple-stress fluid 
layer of thickness d, heated from below. This layer is acted on by a uniform vertical magnetic field 

( , , )0 0 HH and gravity field ( , , )0 0 gg . Let ( , , ), , andu v w p  q  denote, respectively, the perturbations in 

velocity (0, 0, 0), temperature T, pressure p, and density .  Then the linearized perturbation equations 
relevant to the problem [Stokes [7], Sharma [13]] are 
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  . ,0 q                                                                                                  (6.2) 
 
  . ,0 h                                                                                               (6.3) 
 

  . ,2H
t

 
      

h
q h                                                                                (6.4) 

 
together with Eq.(2.7). Equations (2.7), (6.1)-(6.4) give
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z
w

h H
t z

         
                                                                  (6.6) 

 
together with Eq.(2.13).  
 
7. The dispersion relation 
 
 Using expression (2.14), Eqs (6.5)-(6.6) and (2.13), in a non-dimensional form, we have 
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2
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D a p K DW    


                                                                      (7.2) 

 
together with Eq.(2.16).

 
 

 Using the boundary conditions Eqs (2.19) – (2.21), eliminating , K between Eqs (7.1) – (7.2) and 
(2.16), we get 
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 (7.3) 

 

where R= 
4g d

v


  

is the Rayleigh number and Q=
2 2

e

m

H d

4


 

is the Chandrasekhar number. 

 Using Eq.(2.21), Eq.(7.3) yields 
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                (7.4) 

 

where   , , ,2 2
1 1 14 2 2

R Q
R Q a x i


     
        

and      F1 = 2 F. 

 
8. Stationary convection 
 
 When the instability sets in as stationary convection, the marginal state will be characterized by =0 
and Eq.(7.4) reduces to 
 



100  C.B.Mehta and M.Singh 

  [( ) ( ) ]2 3
1 1 1

G 1 x
R 1 x F 1 x Q

G 1 x

       
 (8.1) 

 
Equation (8.1) yields 
 

  
( )

,
4

1

1

dR G 1 x

dF G 1 x


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                                                                        (8.2) 

  

  ,1

1

dR G 1 x

dQ G 1 x





                                                                                                 (8.3) 

 
which are always positive. The couple-stress and magnetic field, thus, postpones the onset of convection. 
 For fixed Q1 and F1, let G (accounting for the compressibility effects) be also kept fixed in Eq.(8.1). 
Then we find that the result is similar as in Eq.(3.2). 
 The results have been also shown graphically . In Fig.1, the variation of the Rayleigh number R1 with 
the wave number x, for Q1 = 100 and G = 10 is considered when the couple-stress parameter F1 is varied. It 
is clear from the graph that the Rayleigh number R1 increases with the increase in the value of F1 thus 
implying a stabilizing effect of the couple-stress parameter. Figure 2 shows that the variation of Rayleigh 
number R1 with the wave number x for F1 = 2 and G = 10, indicating that Q1 is varied. It is clear from the 
graph that with the increase in the value of Q1, there is an increase in the value of the Rayleigh number R1 
which suggests that the presence of magnetic field causes the stabilizing effect for G > 1. 
 

 
 

Fig.1. Variation of the Rayleigh number R1 with the wave number x for and .1Q 100 G 10   
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Fig.2. Variation of the Rayleigh number R1 with the wave number x for and .1F 2 G 10   

 
9. Some important theorems 
 
Theorem 1: The system is stable for G < 1. 
 
Proof: Multiplying Eq.(6.5) by W*, the complex conjugate of W and using Eqs (6.6), (2.13) and boundary 
conditions (2.19) - (2.21), we obtain 
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 (9.1) 

 
where 1 7I I  are similar as in Eq.(4.2), and *  is the complex conjugate of . The integrals I1 – I7 are all 

positive definite. Putting  = r + ii in Eq.(9.1) and equating real and imaginary parts, we obtain 
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and 
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.                                              (9.3) 

 
 It is evident from Eq.(9.2) that if G < 1, r is negative meaning thereby the stability of the system. 
 
Theorem 2: The modes may be oscillatory or non-oscillatory in contrast to the case of no magnetic field 
where modes are non-oscillatory, for G > 1. 
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Proof: Equation (9.3) yields that i = 0 or i   0 which means that modes may be non-oscillatory or 
oscillatory. In the absence of the magnetic field, Eq.(9.3) gives 
 

  ,
2

i 1 1 3
g a G

I p I 0
G 1

  
   

   
                                                                     (9.4) 

 
and the terms in brackets are positive definite when G > 1. Thus i = 0, which means that oscillatory modes 
are not allowed and the principle of exchange of stabilities is satisfied in the absence of the magnetic field. 
This result is true for compressible, couple-stress fluids as well as for incompressible Newtonian fluids 
[Chandrasekhar [4]] in the absence of the magnetic field. The presence of the magnetic field brings 
oscillatory modes (as i may not be zero) which were non-existent in its absence. Equation (9.2) simply 
shows that there may be stability or instability in the presence of the magnetic field in compressible couple-
stress fluids, which is also true in the absence of the magnetic field, as well as in incompressible, Newtonian 
fluids [Chandrasekhar [4]]. 
 
Theorem 3:  < is the sufficient condition for the non-existence of overstability. 

Proof: For overstability, we put 12
i


 


 where 1 is real and Eq.(7.4) can be written as 
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(9.5) 

 
 Since for overstability we wish to determine the critical Rayleigh number for the onset of instability 
via a state of pure oscillations, it suffices to find conditions for which (9.5) will admit solutions with 1 real. 
Equating real and imaginary parts of Eq.(9.5) and eliminating R1 between them, we obtain the equation 
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which may be presented in the following form 
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and   1 + x =    
 
 Equation (9.6) is quadratic in 1, as 1 is real for overstability, 2

1 is positive. It is evident from 
Eq.(9.6) that p1 > p2, thus implying 
 

  
 


 
 

 
i.e.,  <  is, therefore, a sufficient condition for the non-existence of overstability, the violation of which 
does not necessarily imply the occurrence of overstability. The sufficient condition for the non-existence of 
overstability is found to be the same for compressible, couple-stress fluids as well as for incompressible 
Newtonian fluids [Chandrasekhar, [4]], in the presence of the magnetic field, which is heated from below. 
 
Conclusion 
 
 The effect of a uniform vertical rotation and uniform magnetic filed on thermal convection in a layer 
of a couple-stress fluid heated from below is considered (separately) in the present paper. The synovial fluid 
is the natural lubricant of joints of the vertebrates. The detailed description of the joint lubrication has very 
important practical implications. Practically, all diseases of joints are caused by or connected with a 
malfunction of lubrication . The main conclusions from the analysis (i.e., the effect of uniform vertical 
rotation and the effect of uniform magnetic field), are as follows: 
 
Effect of Rotation 
 
(1)  For the case of stationary convection, uniform vertical rotation postpones the onset of convection 

whereas the couple-stress parameter postpones as well as hastens the onset of convection, while in the 
absence of rotation the couple-stress parameter always postpones the onset of convection. 

(2)   It is observed that vertical uniform rotation introduces oscillatory modes in the system, which were non-
existent in its absence. In the absence of rotation oscillatory modes are not allowed and the principle of 
exchange of stabilities is valid.  

(3)  The condition 
      i.e.1p 1     is, therefore the sufficient condition for the non-existence of overstability, the violation 

of which does not necessarily involve an occurrence of overstability. 
 
Effect of Magnetic Field 
 
(1)  For the case of stationary convection, the couple-stress parameter and uniform magnetic field postpone 

the onset of convection. 
(2)   It is observed from Figs 1-2 that the couple-stress parameter and uniform magnetic field have a 

stabilizing effect on the system. 
(3)   It is also observed that the uniform magnetic field introduces oscillatory modes in the system, which 

were non-existent in its absence and in the absence of the magnetic field, oscillatory modes are not 
allowed and the principle of exchange of stabilities is valid.  

(4)   The condition 

   i.e
 
   

 
 is, therefore, a sufficient condition for the non-existence of overstability. 

(5)   The effect of compressibility postpones the onset of convection, when G>1 in both cases (i.e., uniform 
vertical rotation as well as uniform magnetic field). 
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Nomenclature 
 
 pC   specific heat of the fluid at constant pressure, 1 1Jkg K  

   

 d  depth of the fluid layer,  m  

  , ,0 0 gg   acceleration due to gravity, 2ms 
   

 H   magnetic field intensity vector having components (0, 0, H), [G] 

 K 6     Stoke’s drag coefficient, 1kgs 
    

 2 2
x yk k k    wave number of the distance, 1m 

   

 ,x yk k   wave numbers in the x- and y- directions, respectively, 1m 
   

 n  growth rate of the disturbance, 1s 
   

 p  fluid pressure, [Pa] 

 q  effective thermal conductivity of the pure fluid, 1 1Wm K  
   

 0T   temperature of the fluid at the lower boundary, [K] 

 t  time, [s] 

 ( , , )u v wv   fluid velocity vector, 1ms 
   

    thermal coefficient of expansion 

 
dT

dz

 
  
 

  temperature gradient, 1Km 
   

    perturbation in temperature, [K] 

    viscosity of the fluid, 1 1kgm s  
   

 e   magnetic permeability, 1Hm 
   

    viscoelasticity of the fluid, 1 1kgm s  
   

    density of the fluid, 3kgm 
   

    kinematic viscosity, 2 1m s 
   
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