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The aim of this paper is to study the effects of chemical reaction and heat source/sink on a steady MHD 
(magnetohydrodynamic) two-dimensional  mixed convective  boundary layer flow of a Maxwell nanofluid over a 
porous exponentially stretching sheet in the presence of suction/blowing. Convective boundary conditions of 
temperature and nanoparticle concentration are employed in the formulation. Similarity transformations are used 
to convert the governing partial differential equations into non-linear ordinary differential equations. The 
resulting non-linear system has been solved analytically using an efficient technique, namely: the homotopy 
analysis method (HAM). Expressions for velocity, temperature and nanoparticle concentration fields are 
developed in series form. Convergence of the constructed solution is verified. A comparison is made with the 
available results in the literature and our results are in very good agreement with the known results.  The obtained 
results are presented through graphs for several sets of values of the parameters and salient features of the 
solutions are analyzed. Numerical values of the local skin-friction, Nusselt number and nanoparticle Sherwood 
number are computed and analyzed. 
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1. Introduction 
 
 The boundary layer flows of non-Newtonian fluids driven by stretching surfaces have attracted much 
research interest [1–4] during the last few years due to several important engineering and industrial 
applications such as electronic chips, glass-fiber and paper production, food processing, etc. Single 
constitutive equation exhibiting all the properties of non-Newtonian fluids is not available due to the 
diversity of these fluids in their constitutive behavior, simultaneous viscous and elastic properties. Thus, 
several models of non-Newtonian fluids have been proposed to fit well with the experimental observations 
[5]. The non-Newtonian fluids can be classified into the following three types, i.e., (i) differential type (ii) 
rate type and (iii) integral type. The Maxwell fluid model, a simplest subclass of rate type fluids, describes 
the characteristics of the relaxation time. Thermoplastic polymers in the vicinity of their melting 
temperature, fresh concrete (neglecting its aging), numerous metals at a temperature close to their melting 
point, geomaterials, etc. behave typically as Maxwell fluids. The exact solutions of a fractional Maxwell 
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model for a flow between two-sided wall perpendicular to a plate were presented by Vieru et al. [6], using 
Fourier and Laplace transforms. The unsteady flow in Maxwell fluids with the flow being induced by 
oscillating/accelerated nature of the rigid body was studied by Fetecau et al. [7-8]. Hayat et al. [9] studied 
the MHD unsteady flow of a Maxwell fluid in a rotating frame of reference and porous medium. 
 Suction or injection of a fluid through the bounding surface can significantly change the flow field. 
Injection of a fluid through a porous bounding wall is of general interest in practical problems involving 
boundary layer control applications such as film cooling, polymer fiber coating, and coating of wires. The 
process of suction and injection has also its importance in many engineering activities such as in the design 
of thrust bearings and radial diffusers, and thermal oil recovery. In chemical processes, suction is applied to 
remove reactants whereas injection is used to add reactants and reduce the drag. 
 The study of heat source/sink effects on heat transfer is very important because their effects are 
crucial in controlling the heat transfer. Bataller [10] studied the effects of heat source/sink, radiation and 
work done by deformation on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Abel and 
Nandeppanavar [11] examined the effects of a non-uniform heat source in a viscoelastic boundary layer flow 
over a stretching sheet. Mukhopadhyay [12] made heat transfer analysis for an unsteady flow of a Maxwell 
fluid over a stretching surface in the presence of heat source/sink by using the shooting method.  
 The mass transfer phenomenon has applications in various scientific disciplines for different systems 
and mechanisms that involve molecular and convective transport of atoms and molecules. The transport of 
mass and momentum with chemical reactive species in the flow caused by a linear stretching sheet is 
discussed by Andersson et al. [13]. Cortell [14] investigated mass transfer with chemically reactive species 
for two classes of viscoelastic fluids over a porous stretching sheet. The effect of mass transfer on the 
stagnation point flow of an upper-convected Maxwell fluid is investigated by Hayat et al. [15]. 
Mukhopadhyay and Bhattacharyya [16] discussed the mass transfer effects on a Maxwell fluid flow past an 
unsteady stretching sheet. 
 The thermal conductivity rate of ordinary base fluids including water, ethylene glycol and oil is very 
low. But, nowadays the cooling of electronic devices is the major industrial requirement. To achieve this, the 
nanoscale solid particles are uniformly mixed with host fluids which change the thermophysical 
characteristics of these fluids and enhance the heat transfer rate dramatically. These fluids are said to be 
nanofluids. Choi [17]was the first who identified this colloidal suspension. The nanofluids have applications 
in cooling of electronics, heat exchangers, nuclear reactor safety, hyperthermia, biomedicine, engine cooling, 
vehicle thermal management and many others. Further, magneto nanofluids are useful in the manufacturing 
processes of gastric medications, biomaterials for wound treatment, sterilized devices, etc. Ethylene glycol-
Al2o3, ethylene glycol-Cuo and ethylene glycol-Zno are the examples of visco-elastic nanofluids. A bulk of 
research articles on nanofluids is available in the literature in which a few can be seen in the Refs. [18-24]. 
 For many of the above mentioned problems, numerical techniques have been developed for years to 
obtain the accurate solution . But, due to some restrictions [25], scientists have considered analytical 
approaches as an alternative. The Homotopy Analysis Method (HAM) proposed by Liao [26], is a general 
analytical approach to obtain series solutions of strongly nonlinear equations which can provide us a simple 
way to ensure the convergence of solution series. Unlike numerical methods, it can be implemented with the 
boundary conditions at infinity. In numerical methods, the far field boundary conditions denoted by max  
must be chosen approximately for all computations as the computational domain has to be finite whereas the 
physical domain is unbounded. 
 No attempt has been made so far to analyze the MHD flow of a Maxwell nanofluid past an 
exponentially stretching surface with heat source/sink, chemical reaction effects under suction/blowing and 
convective boundary conditions. The present work aims to fill the gap in the existing literature. Hence, 
motivated by the above mentioned applications, an attempt is made to study the boundary layer MHD heat 
and mass transfer flow of a Maxwell nanofluid past an exponentially stretching sheet with heat source/sink, 
chemical reaction effects under suction/blowing and convective boundary conditions analytically via the 
Homotopy Analysis Method (HAM). The present problem (in the absence of the above mentioned effects) 
has recently been investigated numerically by Mustafa et. al. [27] only for a limited range of physical 
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parameters by assuming max 2  . It is not surprising that their results are limited to only special parameters 

that are consistent with max 2  . However, current results are independent to the value of   and cover a 
wide range of physical parameters. In addition, the effects of non-dimensional parameters such as the 
magnetic parameter, heat source/sink parameter, chemical reaction parameter, skin friction, Nusselt number 
and nanoparticle Sherwood numbers have been discussed in detail.  
 
2. Formulation of the problem 
 
 A steady two-dimensional incompressible boundary layer flow of a Maxwell nanofluid past a porous 
exponentially stretching sheet subject to a transverse magnetic field of strength 0B  in the presence of 
chemical reaction and heat source/sink effects is considered. The flow is assumed to be generated by 
stretching of the elastic boundary sheet from a slit with a large force such that the velocity of the boundary 
sheet is of an exponential order of the flow direction coordinate x. The x-axis is directed along the 
continuous stretching surface and points in the direction of the fluid motion while the y-axis is perpendicular 
to the surface. The flow is confined to y 0  (See Fig.1) [27, 31]. Here, the effect of the induced magnetic 
field is neglected . The Hall and electric field effects are neglected. Thermophorosis and Brownian motion 
effects are taken into account. We assume that the surface of the sheet is heated by convection from a hot 
fluid placed at the bottom of the sheet at temperature fT  and concentration fC  with heat and mass transfer 

coefficients 1h  and 2h . The equations governing such type of flow are written as [16, 27, 28, 32]  
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 The boundary conditions for the present problem are [27, 33, 34] 
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  , ,          as        u 0 T T C C y      (2.5) 
 

 Here, 
x

L
wu Ue   is the stretching velocity,  wV x 0  is the velocity of suction and  wV x 0  is the 

velocity of blowing, ( )
x

2L
w 0V x V e  [35] is a special type of velocity at the wall, 

x

2L
1 fh h e  is the heat 
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transfer coefficient, 
x

2L
2 mh h e  is the mass transfer coefficient, 

x

L
0

1
Q Q e

2
  is the variable volumetric rate 

of heat generation (i.e., heat source) or heat absorption (i.e., heat sink), where 0Q  is a constant having the 

same dimension as Q , 
x

L
r 0

1
k k e

2
  [35] is the variable rate of chemical conversion of the first order 

irreversible reaction, where 0k  is a constant having the same dimension as k , the diffusivity of the species 
can either be destroyed or generated in the reaction. 
 

 
 

Fig.1. Physical model and coordinate system of the problem. 
 
2.1. Method of solution 
 
 Introducing the similarity variables [27] as  
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 Using Eqs (2.6), Eqs (2.2)-(2.4) reduce to  
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 The local skin-friction, Nusselt number and nanoparticle Sherwood number can be defined [27, 32] 
as 
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 Here, w  is the surface shear stress and wq , mq  are the heat flux and nanoparticle mass flux at the 
surface, respectively, and are defined as follows  
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 It is worth mentioning that using dimensionless variables, the skin friction and Nusselt number and 
nanoparticle mass transfer can be written as 
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 In the present context, RefC , 
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 are referred to as the reduced skin friction 

coefficient, reduced Nusselt number and  reduced nanoparticle Sherwood number which are represented by 

 '' ', ( )f 0 0  and ' ( )0 . Our task is to investigate how the values of '' ( )f 0 , θ '( )   and '( )   vary with 

the pertinent parameters of the present problem. 
 
3. Series solution by HAM 
 
 The first step in the HAM is to find a set of base functions to express the solution of the problem 
under investigation. Here, due to boundary layer flows which are decaying exponentially at infinity, we 
assume that   , ( )f     and ( )   can be expressed by a set of base functions  
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where , ,, k n k na b  and ,k nc  are coefficients. Thus, all the approximations of   , ( )f     and ( )   must obey 

the above expressions. This is called the rule of solution expression for   , ( )f     and ( )  . According to 

the boundary conditions (2.10) and the rule of solution expression defined by Eq.(3.2), we choose  
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as the initial approximations of   , ( )f     and ( )  . Besides, we select the auxiliary linear operators 

   ,fL f L   and  L  , which are the linear parts of the respective equations, as  
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satisfying the following properties 
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Zeroth-order deformation problem 
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       ' ,   m 1 m m0 0 0       , (3.10) 

 

       ' ,   m 2 m m0 0 0          
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and  
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1 m 1


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      (2.13) 

 
For p 0  and p 1 , we can write  
 
  ( , )f 0 =  0f  ,         , ( )f 1 f   , 

 
  ( , )0  =  0  ,        , ( )1     , (3.14) 

   

  ( , )0  =  0  ,        , ( )1     ,  

 
and with variation of p  from 0 to 1,  ,f p ,  , p   and  , p   vary from initial solutions    ,0 0f     

and  0   to final solutions   , ( )f     and ( )   respectively. By Taylor’s series we have 
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 The value of the auxiliary parameter is chosen in such a way that these three series (3.15)-(3.17) are 
convergent at p 1 . 
 Eqs (3.9) represents the system of non-homogeneous linear differential equations whose general 
solutions are the sum of complementary and particular solutions which can be expressed as  
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     * m m m
m m 1 2 3f f C C e C e       , 

 

     * m m
m m 4 5C e C e        , (3.18) 

 

     * m m
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where the constants  ( , ,.. )m
iC i 1 2 7 , considering the boundary conditions Eqs (3.10) are 
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Convergence analysis 
 
 In the HAM method, it is essential to ensure the convergence of our series solution. As pointed by 
Liao [30] , the convergence rate of approximation for the HAM solution strongly depends on the value of the 
auxiliary parameter .  This auxiliary parameter provides us great freedom to adjust and control the 
convergence region of the series solution. Hence, in order to seek the permissible values of ,f    and   

the functions of  '' ', ( )f 0 0  and ' ( )0  are plotted at 20th-order of approximations. The values of ,f    and 

  are selected in such a way that curves are parallel to the horizontal axis i.e.,   axis [30]. Figures 2-4, 

clearly depict the acceptable range for values of ( . . )f f0 6 0 1     , ( . . )0 6 0 1       and 

( . . )0 8 0 1      . The current calculations are based on the value of .f 0 4       . In order to 

ensure the convergence of solutions, Tab.1 is given. This table clearly shows that the convergence is 
obtained at 35th order of approximations. 
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Fig.2.   curve for f at 20th order of approximation. 
 

 
 

Fig.3.   curve for at 20th order of approximation. 
 

 
 

Fig.4.   curve for   at 20th order of approximation. 
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Table 1. Convergence of HAM solution for  '' ', ( )f 0 0  and ' ( )0  when . ,M . ,Pr ,0 2 0 2 10     

Nb Nt . ,0 5  QH . ,  Sc , . , , . , .1 2 f0 2 20 0 5 S 0 0 2 0 4                . 

 
Order of  
approximation

  f 0 ( )0 ( )0

1 1.2414 0.1652 0.1587 
5 1.4554 0.1599 0.1447 

10 1.4742 0.1543 0.1420 
15 1.4754 0.1501 0.1430 
20 1.4754 0.1467 0.1445 
25 1.4754 0.1442 0.1458 
30 1.4754 0.1410 0.1469 
34 1.4754 0.1408 0.1478 
35 1.4754 0.1408 0.1478 

 
4. Results and discussion 
 
 To clearly provide a physical insight to the heat and mass transfer of a Maxwell nanofluid in the 
presence of heat source/sink and chemical reaction effects, computations have been carried out using the 
method described in the previous section for variations in the governing parameters and the results are 
illustrated graphically in Figs 5-20. In the present study, the following default parameter values are adopted 
for computations: , . , Pr , . , . , . , Sc ,H1 M 0 1 10 Nb 0 5 Nt 0 5 Q 0 5 20         . , ,0 5 S 0    . , 1 0 5 

.2 0 5  . All graphs and tables as therefore correspond to these values unless otherwise stated. 
 For the verification of accuracy of the applied HAM, a comparison of the present results 

corresponding to the values of  0    with the available published results of Magyari and Keller [36], 

Mustafa et al. [27] in the case of a regular fluid is made numerically and presented in Tab.2. The results are 
in excellent agreement. Therefore, we are confident that the present results are accurate.  
 

Table 2.  Comparison of numerical values of  0    with previous studies in the case of regular fluid when 

0  . 
 

Pr Magyari and Keller [36] Mustafa et al.[27] Present 
3 -1.1222 -1.1221 -1.1210 
5 -1.5212 -1.5212 -1.5200 
8 -1.9918 -1.9918 -1.9910 
10 -2.2574 -2.2574 -2.2570 

 
 Figures 5-7 shows the profiles of velocity, temperature and nanoparticle volume fraction for different 
values of the local magnetic parameter M. It is clear from Fig.5 that an increase in M decreases velocity, 
throughout the boundary layer flow field. It is because the application of a transverse magnetic field will 
result in a resistive type force (Lorentz force which opposes the flow) and thus reduces the velocity. It is 
evident from Fig.6 and Fig.7 that an increase in the local magnetic parameter M increases the temperature as 
well as nanoparticle volume fraction. This is due to the fact that Lorentz force tends to resist the flow and 
this resistance offered to the flow is responsible for broadening the thermal and concentration boundary layer 
thicknesses. 
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Fig.5. Effect of M on velocity. 

 

 
 

Fig.6. Effect of M on temperature. 
 

 
 

Fig.7. Effect of M on nanoparticle volume fraction. 
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 Figures 8-10 display the effect of the suction/blowing parameter S on velocity, temperature and 
volume fraction of the nanofluid, respectively, in the presence of convection at the boundary for an 
exponentially stretching sheet. It is observed that velocity decreases significantly with increasing suction 
( )S 0  but increases with increasing blowing ( )S 0  (Fig.8). When the wall suction ( )S 0  is considered, 

this causes a decrease in the boundary layer thickness and the velocity field is reduced. S 0  represents the 
case of a non-porous stretching sheet. It is known that imposition of wall suction ( )S 0  has the tendency to 
reduce the momentum boundary layer thickness, which causes reduction in the velocity. The opposite is 
noted for blowing ( )S 0 . This is due to the fact that when stronger blowing is provided, the fluid is pushed 
farther from the wall where due to a smaller influence of viscosity, the flow is accelerated. This effect 
increases the maximum velocity within the boundary layer. The same principle operates but in the reverse 
direction in the case of suction. Figures 9 and 10 represent the profiles of temperature and nanoparticle 
volume fraction, respectively, for the variable suction/blowing parameter S. It is evident that the fluid 
velocity, temperature and volume fractions are larger in the case of blowing compared to suction. It is also 
noted that the velocity, temperature and the volume fractions of the nanofluid in the absence of 
suction/blowing are greater compared to the case of a nanofluid with suction but smaller compared to the 
case of a nanofluid with injection. 
 

 
 

Fig.8. Effect of S on velocity. 
 

 
 

Fig.9. Effect of S on temperature. 
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 Figure 11 illustrates the influence of the heat generation (source) ( )HQ 0 /absorption (sink) 

 HQ 0  parameter HQ  on the temperature. It is seen from the figure that the temperature decreases with 

increasing heat absorption ( )HQ 0  but increases with increasing heat generation  ( )HQ 0 . This is due to 
the fact that the thermal boundary layer generates energy, which causes the temperature profiles to increase 
with increasing values of HQ 0 . However, in the case of HQ 0 , the boundary layer energy is absorbed, 

resulting in a considerable temperature fall with the decreasing values of HQ . 
 

 
 

Fig.10. Effect of S on nanoparticle volume fraction. 
 

 
 

Fig.11. Effect of QH on temperature. 
 
 The effect of Brownian motion parameter Nb on temperature is plotted in Fig.12. As the Brownian 
motion parameter Nb increases, the random motion of the fluid particles increases which results in more 
heat. Hence the temperature increases.The chracteristics of the thermophoresis parameter Nt on the 
temperature is presented in Fig.13 .Thermophoresis is a mechanism in which small particles are pulled away 
from a hot surface to a cold one. As a result it raises the temperature.The behavior of the Brownian motion 
parameter Nb on the nanoparticle volume fraction is displayed in Fig.14. The increasse in Nb the random 
motion and also collision of the macroscopic particles of the fluid increase which reduces the concentration 
of the fluid. Figure 15 describes the variation of the thermophoresis parameter Nt on the nanoparticle volume 
fraction. The bigger value of Nt coincides with the stronger thermophoretic diffusion which blows the 
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nanoparticles away from the hot surface towards the cold ambient fluid. As a result, the nanoparticle volume 
fraction is thicker for larger values of Nt.  
 

 
 

Fig.12. Effect of Nb on temperature. 
 

 
 

Fig.13. Effect of Nt on temperature. 
 

 
 

Fig.14. Effect of Nb on nanoparticle volume fraction. 
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Fig.15. Effect of Nt on nanoparticle volume fraction. 
 

 Figure 16 depicts the nanoparticle volume fraction profiles for the variable chemical reaction 
parameter   .It can be seen that the nanoparticle volume fraction decreases when the chemical reaction 

parameter   increases. The destructive chemical reaction ( )0   causes a decrease of the nanoparticle 

volume fraction and the constructive chemical reaction ( )0   results in an increase of the nanoparticle 
volume fraction. This is because the conversion of the species takes place as a result of a chemical reaction 
and thereby reduces the concentration in the boundary layer.  
 

 
 

Fig.16. Effect of on nanoparticle volume fraction. 
 
 Figure 17 shows the influence of the heat transfer Biot number 1  on the temperature distribution. 
The heat transfer Biot number is defined as a ratio of convection heat transfer to the conduction heat transfer 
at the surface. It generally depends on the characteristic length of the surface, thermal conductivity of the 
surface and convective heat transfer coefficient of the hot fluid below the surface. A higher heat transfer Biot 
number indicates a less conductive substance such as plastic, paper, polymer, etc. on the other hand, the Biot 
number is small for a higher conductive materials which include aluminum, ion and steel, etc. For increasing 
values of the heat transfer Biot number 1 , the heat transfer coefficient 1h  increases which yields heat which 

leads to an incease of temperature. Figure 18 depects the effect of the heat transfer Biot number 1  on the 
nanoparticle volume fraction. The higher surface temperature corresponding to a larger heat transfer Biot 
number energizes nanoparticles in the vicinity of the sheet. In order to release that additional energy, the 
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nanoparticles travel away from the stretching wall. This results in a larger penetration depth of nanoparticle 
concentration. 
 

 
 

Fig.17. Effect of 1  on temperature. 
 

 
 

Fig.18. Effect of 1  on nanoparticle volume fraction. 
 
 The influence of the mass transfer Biot number 2  on the temperature is examined in Fig.19. Here 

the temperature is inceased by increasing the mass transfer the Biot number 2 . Biot number 2  depends on 

the mass transfer coefficient 2h . The mass transfer coefficient 2h is increased when we increase the values of 

the Biot number 2  due to which the temperature and thermal boundary layer thickness are enhanced. Figure 
20 shows elucidate that the nanoparticle volume fraction is increasing when the values of the mass transfer 
Biot number 2  are increased. 
 



Effects of heat source/sink and chemical reaction ... 155 

 
 

Fig.19. Effect of 2  on temperature. 
 

 
 

Fig.20. Effect of 2  on nanoparticle volume fraction. 
 
 Table 3 exhibits the nature of the reduced skin friction, Nusselt number and nanoparticle Sherwood 
number with the local magnetic parameter M . It is found that the reduced skin-friction increases whereas the 
reduced Nusselt number and nanoparticle Sherwood number decrease with increasing the local magnetic 
parameter M. Table 4 presents the effect of heat source/sink QH on the reduced Nusselt number. It is clear 
that the Nusselt number increases with increasing the heat absorption (sink) ( )HQ 0  but decreases with 

increasing the heat generation (source)  ( )HQ 0 . The effect of the chemical reaction parameter   on the 
reduced nanoparticle Sherwood number is presented in Tab.5. It can be observed that the nanoparticle 
Sherwood number decreases with increasing the constructive chemical reaction ( )0   and increases with 

increasing the destructive chemical reaction ( )0  .  
 
Table 3. Effect of the local magnetic parameter M on the reduced skin-friction, Nusselt number and 

nanoparticle Sherwoodnumber. 
 

M   ''f 0    '– 0   ' ( )0  

0.1  .1 43837   .0 15039   .0 14307  
0.2  .1 47535   .0 15009   .0 14295  
0.3  .1 51133   .0 14981   .0 14285  
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Table 4. Effect of the heat source/sink parameter QH on the reduced Nusselt number. 
 

HQ    '– 0  

-0.2  .0 16746  
-0.1  .0 16449  
0.0  .0 16079  
0.1  .0 15616  
0.2  .0 15029  

 
Table 5. Effect of the chemical reaction parameter   on the reduced nanoparticle Sherwood number. 

  
   ' ( )0  

-0.2  .0 08986  
-0.1  .0 10273  
0.0  .0 11312  
0.1  .0 12158  
0.2  .0 12852  

 
5. Conclusions 
 
 The governing equations for the steady MHD mixed convective heat and mass transfer flow over a 
porous exponentially stretching sheet with heat source/sink and chemical reaction effect under 
suction/blowing and convective boundary conditions were formulated. The resulting partial differential 
equations were transformed into a set of ordinary differential equations using the similarity transformations. 
These non-linear coupled ordinary differential equations were solved by employing the homotopy analysis 
method. The conclusions of the study are as follows: 
1. The velocity, skin-friction, Nusselt number and nanoparticle Sherwood number decrease, whereas the 

temperature and nanoparticle volume fraction increase with an increase in the magnetic parameter M. 
2. An increase in suction  S 0  reduces the velocity, temperature and nanoparticle volume fraction, 

whereas an increase in blowing  S 0  increases the velocity, temperature and nanoparticle volume 

fraction. 
3. Both the temperature and nanoparticle volume fraction increase with an increase in either the heat transfer 

Biot number 1  or mass transfer Biot number 2 . 

4. An increase in heat source ( )HQ 0  increases the temperature and decreases the Nusselt number, 

whereas an increase in heat sink ( )HQ 0  increases the Nusselt number and decreases the temperature.  
5. Both the nanoparticle volume fraction and nanoparticle Sherwood number decrease with an increase in 

the constructive chemical rection ( )0   and increase with an increase of the destructive chemical 

reaction ( )0  . 

 
Nomenclature 
 
 C  nanoparticle concentration [Kg m-3] 
 C   nanoparticles concentration far away from the surface [Kg m-3] 

 BD   Brownian diffusion coefficient [m2s-1]   

 TD   thermophoretic diffusion coefficient [m2s-1]   
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 k   thermal conductivity [Wm-1K-1] 
 rk     chemical reaction parameter 

 Q  dimensional heat generation/absorption coefficient 
 rq   radiative heat flux [Wm-2] 

 T  fluid temperature [K] 
 T   temperature far away from the surface [K] 

 U    reference velocity [ms-1]   
 u , v  components of velocity in the x and y directions [ms-1]   
 0V     initial strength of suction 

 1   relaxation time of the Maxwell fluid [s-1] 

    dynamic viscosity 

 f   density of the base fluid [Kg m-3] 

    electrical conductivity of the fluid [s m-1] 
   p f

c c      ratio of the effective heat capacity of the nanoparticle material to the effective heat capacity of the 

fluid 

   / f     kinematic viscosity 

 
superscript  
 
 '  primes denote differentiation with respect to   

 
subscripts  
 
 f  base fluid 
 p  nano particle 
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