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In this paper, a porous medium is modelled by a network of converging-diverging capillaries which may be 
considered as fissures or tubes. This model makes it necessary to consider flows through capillary fissures or tubes. 
Therefore an analytical method for deriving the relationships between pressure drops, volumetric flow rates and 
velocities for the following fluids: Newtonian, polar, power-law, pseudoplastic (DeHaven and Sisko types) and 
Shulmanian, was developed.  Next, considerations on the models of pore network for Newtonian and non-Newtonian 
fluids were presented. The models, similar to the schemes of central finite differences may provide a good basis for 
transforming the governing equations of a flow through the porous medium into a set of linear or quasi-linear algebraic 
equations. It was shown that the some coefficients in these algebraic equations depend on the kind of the capillary 
convergence. 
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1. Introduction 
 
 Flows in porous media can be found in a number technological, medical and industrial applications 
(Bird et al. [1-3]). Fundamental and applied research on flow, heat and mass transfer in porous media has 
received increased attention during the past several decades due to the importance of these research areas in 
many engineering and biological applications. They can be modelled or approximated as transport phenomena 
through porous media and can be used in drying technology, thermal insulation, tissue replacement production, 
packed bed heat exchangers, geothermal systems, catalytic and biological reactors, gas and oil industries, etc 
 Fluid flows and transport phenomena through the classical “ground” or “soil” (Darcy, [4]) are 
encountered literally everywhere in everyday life, in nature (ground water), industries (composite materials, 
building materials, etc.) as well as in biosystems (aquifer ecosystems, human organs, etc.) and other domains 
such as e.g., membranes used in biofuel cell applications. 
 The reason is that except metals, some plastics and dense rocks, almost all solid and semisolid 
materials can be considered as “porous” in varying degrees. Hence, there exist many types of different 
technologies that depend on theories used to describe transport phenomena in porous media. 
 For example, it has been long discovered that sintering of granular materials (Chen et al. [5]) is not 
only a very large tonnage technology, where porous structures are significant, but it also finds applications in 
manufacturing ceramic products, papers and textiles. 
 There are many practical applications that can be modelled or approximated as transport through 
porous media. These applications have been discussed by Bear [6], Greenkorn [7], Nield and Bejan [8], 
Vafai [9-12], Hadim and Vafai [13], Vafai and Hadim [14]. 
 In the works cited above the porous medium is viewed as a continuum with solid and fluid phases in 
thermal equilibrium, isotropic, homogeneous and saturated with an incompressible Newtonian fluid. Vafai and 
Tien [15] presented a comprehensive analysis of the generalized transport through porous media and developed 
a set of governing equations utilizing the local VAT (volume averaging theory/technique) or/and the REV 
(representative elementary volume) technique. The final forms of these equations can be found in the works by 
Amiri and Vafai [16], Alazmi and Vafai [17], Khanafer et al. [18]. Peng and Wu [19] describe a series of 
different experimental observations and associated theoretical investigations conducted to understand the 
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transport phenomena with or without phase change and chemical reaction and concerning a wide range of 
practical applications. Fault and fracture zones are often highly-complex heterogeneities that can have a 
significant effect on the fluid flow within petroleum reservoirs on length scales of less than 1 μm to more than 
10 km. It is therefore important to incorporate their properties in production simulation models. Harris et al. 
[20] describe some of the numerical techniques being used to model the effects of faults and fractures on fluid 
flow. Other theoretical models are groundwater models (Karamouz et al. [21], Yeh [22]) which have been used 
extensively for groundwater flow analysis, pollution transport and groundwater management. 
 Another way to study the flows in porous media is to use conceptual models; a great example of such 
models are PNMs (pore network models). These models have gained a lot of popularity among researchers since 
they are much more systematic than the real pore space of a soil and have been used in a variety of fields such as 
petroleum engineering, hydrology and soil physics. In these models,  the soil pore space is modelled by a discrete 
network of pores that are connected by throats (Jivkov et al. [23]). Throats in PNMs may be prismatic or non-
prismatic, mainly converging-diverging types (Xiong et al. [24]). The studies of the Newtonian flow in circular 
prismatic tubes (otherwise speaking: circular tubes of constant cross-sections) were performed by Mazaheri et al. 
[25], Joekar-Niaser et al. [26] and Nsir and Schafer [27]. The flow in non-prismatic tubes, namely in conical tubes 
was studied by Held and Celia [28], Hilpert et al. [29] and by Acharya et al. [30]. 
 It has been found that at the bottom of rivers, lakes, seas and oceans an enhanced transport of solutes 
and particulate matter can be encountered in a thin layer, which comprises a tiny portion of the seawater 
layer from top and a tiny portion of the porewater layer from below, called a benthic layer. In this layer there 
may exist an interaction between the fluid flow and living media as in bioreactors (Chen [31]). The 
physicochemical and biological processes ongoing in the benthic layer cause that the fluid flowing through 
this layer behaves as a non-Newtonian fluid. 
 Flows of non-Newtonian fluids through porous media are frequently encountered in the petroleum 
industry (Vossoughi [32], Pearson and Tardy [33], Perrin et al. [34]). In exploitation of oil beds, an injection of 
polymer solutions into oil reservoirs is frequently applied to enhance oil recovery. Sometimes to achieve this 
aim, suspensions (frequently called slurries) of oil, coal and water are used (Vossoughi and Al-Husaini [35]). 
 The aim of this paper is to present the flows of the following fluids: Newtonian, polar, power-law, 
pseudoplastic and Shulmanian in convergent-divergent capillary fissures and tubes. As a result one obtains 
the formulae for the pressure drops, volumetric flow rates and inlet velocities for the flows through 
corrugated capillaries and the formulae for the velocities in the flows through a thin porous layer. Some 
remarks on pore network models are also presented. 
 

2. Capillary description 
 

 Let us consider the fluid flow through convergent-divergent capillary fissures or tubes shown in Fig.1. 
 

 
 

Fig.1. Schemes of the capillary fissures or tubes. 
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A cross dimension variation along the axis of the capillary is assumed to follow a simple power function in 
the local coordinate system, which may be written as (Acharya et al. [30]) 
 

  

 

 
for

c

c

n

c o

n

c o

y hf y D 1 0 y
h 2

hy y hr y D 2h

       
      

 

  (2.1) 

 
where 
 

  o
o

o

f
D

r


 


     for     
capillary fissure

capillary tube
. (2.2) 

 
The shapes of the capillaries for different values of cn  are presented in Fig.2. 
 

 
 

Fig.2. Capillary shapes for different values of cn ; oD 2D  . 
 
3. Flow of Newtonian fluids 
 
 Let us consider the flow of Newtonian fluids through capillaries of constant cross-sections. The 
velocities are given by the following expressions [36]: 

 for the capillary fissure 
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 for the capillary tube 
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The volumetric flow rate Q  is equal, respectively, to: 

 for the capillary fissure 
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here fQ  is counted on the unit of a fissure width; 

 for the capillary tube 
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To find the pressure distribution in the capillary with a variable cross-section, we have the following 
expressions: 
for the capillary fissure 
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and for the capillary tube 
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Introducing expressions (2.1) and (2.2) into Eqs (3.5) and(3.6), we have 
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and after integration 
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hence 
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hence 
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In the case of a thin porous layer, the inlet flow velocities through this layer are defined as follows 
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Note that if cn 0 , these formulae become the same as formulae (3.1) and (3.2). 

 
4. Flows of polar fluids 
 
 Some flows of slurries can be modelled by the flows of polar fluids. This modelling is correct for the 
slurries being homogeneous suspensions. Two polar fluids are frequently used, namely: a micropolar fluid 
and couple-stress fluid. 
 
4.1. Flow of micropolar fluids 
 
 For the flow of a micropolar fluid in capillaries there are the following expressions for the velocities [36]: 
for the capillary fissure 
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and for the capillary tube 
 

  
2

c
t

r dp

8 k dy

 
       

 (4.2) 

 
where k  is the vortex (coupling) viscosity; if k 0  , then the flow becomes Newtonian and Eqs (3.1) and 
(3.2) are important. It results from the fact that multiplying, respectively, all formulae (3.7)-(3.10) by the 

coefficient 
k


 

 , we will obtain the formulae adequate to the flow of a micropolar fluid in capillaries. 

 
4.2. Flow of couple-stress fluids 
 
 Let us consider the flow of a couple-stress fluid in capillaries of constant cross-sections. The flow 
velocities are given by the following expressions [36]: 

- for the capillary fissure 
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and  

- for the capillary tube 
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
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 and   is a material coefficient associated with couple-stresses. 

The flow rates are equal to, respectively 
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To determine the flow in the capillaries of variable cross-sections let us assume the following principle of 
superposition that the total flow rate cQ  is equal to 
 
  c N AQ Q Q    (4.7) 
 
where cQ  is either fQ  or tQ , NQ  is a respective Newtonian flow rate and AQ  is a respective additional 

flow rate. 
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Thus, we have, respectively 
 
  f fN fAQ Q Q    (4.8) 

where 
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Proceeding similarly as for Newtonian fluids and taking into account an assumption that the flow rate 
through capillaries of variable cross-sections must be always the same,  we have subsequent results: 

 for the capillary fissure 
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 for the capillary tube 
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Note that for the couple-stress fluid being in a maceration state the Darcy law is frequently expressed as 
follows [37] 
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where v  is the velocity vector, p  is the pressure gradient,   is the shear viscosity, n  is the permeability 
of the porous medium, and 
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here   is an already known material constant. 
The permeability of the porous medium can be expressed as 
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for capillary fissures and 
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for capillary tubes coefficient p  is the porosity of the porous medium; for a single capillary p 1  . 

Taking into account these considerations we can record that the formulae (4.3) and (4.4) express the Darcy 
law  for a couple-stress fluid in a one-dimensional form. 
 
5. Flows of power-law fluids 
 
 Let us consider the flow of power-law fluids (Ostwald-de Waele fluids [38, 39]) through capillaries 
of constant cross-sections. The velocities are given by the following formulae [36]: 

 in the capillary fissure 
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 in the capillary tube 
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The volumetric flow rates ,f tQ Q  are equal to, respectively 
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To find the pressure distribution in capillaries with variable cross-sections we have the following 
expressions: 

 for the capillary fissure 
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 for the capillary tube 
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Introducing here the expressions (2.1) and (2.2) we will obtain after integration: 
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 for the capillary tube 
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Note that these formulae for m 1  reduce to the formulae adequate to the Newtonian fluids. 
 
6. Flow of DeHaven type fluids 
 
 DeHaven fluids are pseudoplastic fluids which are characterized by a non-linear relationship 
between the shear stress and the shear strain rate; to be more precise it can be stated that the shear strain rate 
is a non-linear function of the shear stress [40, 41]. The flow velocities in capillaries are given by the 
following expressions [36]: 
in the capillary fissure 
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 (6.2) 
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where ik  and in  are material coefficients characteristic for a given model of the DeHaven fluid.  
Note that the following – well known – models of fluids may be reduced to the DeHaven model, namely: 
Meter, Ellis, Rotem-Shinnar, Ree-Eyring, Rabinowitsch, Reiner-Philipoff, Peek-McLean and Seely [36]. 
The flow rates are equal to, respectively 
 

  
 

ii
nn3

c i c
f

i

2 f 3k f dp dp
Q 1

3 n 3 dy dy

                 
, (6.3) 

 

  
 

ii

i

nn4
c i c

t n
i

r 4k r dp dp
Q 1

8 dy dy2 n 4

                   
. (6.4) 

 
Assuming the principle of superposition (as in Section 4), we may write 
 
  c N PQ Q Q    (6.5) 
 
where cQ  is either fQ  or tQ , NQ  is a Newtonian flow rate, PQ  denotes a power-law flow rate. 

Thus, we have, respectively 
 
  f fN fPQ Q Q    (6.6) 

 
where 
 

  
3

c
fN

2 f dp
Q

3 dy

 
    

, (6.7) 

 

  
 

ii
n 1n 3

i c
fP

i

2k f dp
Q

n 3 dy

  
     

  (6.8) 

 
and 
 
  t tN tPQ Q Q    (6.9) 
 

  
4
c

tN
r dp

Q
8 dy

 
    

, (6.10) 

 

  
 

ii

i

n 1n 4
i c

tP n 1
i

k r dp
Q

dy2 n 4




 

  
   

. (6.11) 

 
Taking into account the results presented in Sections 3 and 5 we may write: 

 for the capillary fissure 
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c

3
fo c

fN 3n 1

pf 3n 1
Q

3 h2 1

        
, (6.12) 

 

  
 

i ii

i f

n 1 n 1n 3
f fi o

fP n 1
i

1 pk f
Q

h2 n 3 2 1

 

 

     
   

     
, (6.13) 

 

  
 

i ii

c i f

n 1 nn3
f f fo c i o

f 3n 1 n 1
i

1 p pf 3n 1 3k f
Q

3 h h2 1 2 n 3 2 1



  

                              
, (6.14) 

 

  
 

i ii

c i f

n 1 nn2
fo c i o

f 3n 1 n 1
i

1f 3n 1 3k f dp dp

6 dy dy2 1 2 n 3 2 1



  

                             
 (6.15) 

 

where 
 

  i
f c

i

n 3
n

n 1

 
    

; (6.16) 

 
 for the capillary tube 

 

  
c

4
o c t

tN 4n 1

r 4n 1 p
Q

16 h2 1
            

, (6.17) 

 

  
 

i ii

i t

n 1 n 1n 4
i o t t

tP n 1 1
i

k r 1 p
Q

h4 n 4 2 1

 

  
              

, (6.18) 

 

  
 

i ii

c i t

n 1 nn4
o c i o t t t

t 4n 1 n 1
i

r 4n 1 4k r 1 p p
Q

16 h h2 1 4 n 4 2 1



  

                            
, (6.19) 

 

  
 

iii

c i t

nn 1n2
o c i o t

t 4n 1 n 1
i

r 4n 1 4k r 11 dp dp

8 2 dy dy2 1 2 n 4 2 1



  

                                
 (6.20) 

 
where 
 

  i
t c

i

n 4
n

n 1

 
    

. (6.21) 

 
Note that these formulae for cn  reduce to the formulae adequate to the flow in capillaries of constant cross-
sections. 
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7. Flow of Sisko type fluids 
 
 In this section, we will consider another group of pseudoplastic fluids which are also characterized 
by a nonlinear relationship between the shear stress and the shear strain rate; the shear stress is here a 
nonlinear function of the shear strain rate. One of more general models of this kind is a Sisko model [42, 43]. 
The flow velocities in capillaries are given by the  following expressions [36]: 
in the capillary fissure 
 

  
 

ii

i

nn2
c i c

f n 1
i

f 3 f dp dp
1

3 dy dyn 3

                    
, (7.1) 

 
in the capillary tube 
 

  
 

ii

i i

nn2
c i c

t n n 1
i

r 4 r dp dp
1

8 dy dy2 n 4

                    
 (7.2) 

 
where i  and in  are material coefficients characteristic for a given model of the Sisko fluid.  
Note that the following – well known – models of fluids may be reduced to the Sisko model, namely: 
Carreau-Yasuda, Elsharkawy-Hamrock, Prandtl, Eyring-Sutterby, Gecim-Winer and Bair-Winer [36]. 
The flow rates are given by, respectively 
 

  
 

ii

i

nn3
c i c

f n 1
i

2 f 3 f dp dp
Q 1

3 dy dyn 3

                   
, (7.3) 

 

  
 
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i i

nn4
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t n n 1
i

r 4 r dp dp
Q 1

8 dy dy2 n 4

                    
. (7.4) 

 
Assuming the principle of superposition – as in the  previous section – we may write 
 
  c N PQ Q Q    (7.5) 
 
where cQ  is either fQ  or tQ , NQ  is a Newtonian flow rate, PQ  denotes a power-law flow rate. 

Thus , we have, respectively 
 
  f fN fPQ Q Q    (7.6) 

 
where 
 

  
3

c
fN

2 f dp
Q

3 dy

 
    

, (7.7) 
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 

ii

i

n 1n 3
i c

fP n 2
i

2 f dp
Q

dyn 3




 

  
   

  (7.8) 

 
and 
 
  t tN tPQ Q Q    (7.9) 
 
where 
 

  
4
c

tN
r dp

Q
8 dy

 
    

, (7.10) 
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r dp
Q
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

 
 

  
   

. (7.11) 

 
Taking into account the results presented in Sections 3 and 5, we may write: 

 for the capillary fissure 
 

  
c

3
fo c

fN 3n 1

pf 3n 1
Q

3 h2 1

        
, (7.12) 
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Q
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 
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     
   

     
, (7.13) 
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, (7.14) 
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1f 3n 1 3 f dp dp
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
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; (7.15) 

 
where f  is given by formula (6.16); 

 for the capillary tube 
 

  
c

4
o c t

tN 4n 1

r 4n 1 p
Q

16 h2 1
            

, (7.16) 
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, (7.17) 
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16 dy dy2 1 4 n 4 2 1



    

                            
. (7.19) 

 
where t  is given by formula (6.21). 

 
8. Flow of Shulman type fluids 
 
 Many fluids of engineering interest appear to exhibit yield behaviour, where flow occurs only when 
the imposed stress exceeds a critical yield stress. To describe the rheological behaviour of such a viscoplastic 
fluid the non-linear model of Shulman [44, 45] may be used.  
 The flow velocities of the Shulman type fluids in capillaries of constant cross-sections are given by 
the expressions presented in Tabs 1 and 2 [36] 
 
Table 1. Formulae for the velocity flow of the Shulman type fluids through capillary fissures. 
 

Model of fluid Velocity flow f  through capillary fissures 

(8.1) 
Shulman  

m n m
m 2n m 2n im n ni in n

f m
i 0

n b dp
1 C 1

m 2n i dy


  





                 
  

(8.2) 
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 
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i3 i n
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i 0

n b dp
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




                
  

(8.3) 
Casson “simple” 

2nm   

1 3 2
2

f
12 3 b dp

1
5 2 10 3 dy

                 
 

(8.4) 
Vočadlo 1m    

1 2 1
1 1 2n n n
n n

f
1 2n 1 nb dp

1
2n 2n 1 2n dy


                 

 

(8.5) 
Herschel-Bulkley 

1n   
   

mm 1
m 1

f
b dp

1 1
m 1 m 2 dy


               

 

(8.6) 
Bingham 1nm   

2
3

f
3 1 b dp

1
2 2 3 dy

              
 

(8.7) 
Ostwald-de Waele 

01n 0  ,   

mm 1

f
b dp

m 2 dy

  
      
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Table 2. Formulae for the velocity flow of the Shulman type fluids through capillary tubes. 
 

Model of fluid Velocity flow t  through capillary tubes 

(8.8) 
Shulman 

 

m n m
m 3n m 3n im n ni i cn n
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  

(8.10) 
Casson “simple” 
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1 24
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1
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(8.12) 
Herschel-Bulkley 
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      
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r2 2 dp
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(8.13) 
Bingham 
m n 1   

2
4 c

t
r4 1 dp

1
3 3 8 dy

              
 

(8.14) 
Ostwald-de Waele 
n 1 , 0 0    

mm 1
c

t m

r dp

dy2 m 3

  
   

   
 

 
Here   and   denote; respectively 
 

  ,0 0 0 0

w c w c

f r

f r

 
     

 
  (8.15) 

whereas 

  
 

!

! !
i
m

m
C

i m i



; 

 

and: 0  is the yield shear stress, w  is the wall shear stress, 0f  is a half thickness of the core flow in the 

capillary fissure of thickness equals to c2 f , 0r  is the radius of the core flow in the capillary tube of radius cr . 

Assuming the affinity of the velocity field it can be accepted that the values of   and   will be constant in 
the flows through capillaries of variable cross-sections. 
The volumetric flow rates are equal, respectively 
 

  f c fQ 2 f        or     2
f c tQ r   , (8.16) 

 

then we may write that the velocity flow for an arbitrary fluid model is equal to 
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   
 
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, (8.17) 
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and 
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where  
 m
n

F  and  
 m
n

T  are constant quantities, which are, e.g., for the Shulman fluid and for the Ostwald-de 

Waele fluid, equal to, respectively 
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Note that for flows with a large core when 1   or 1   and for flows with a small core, when 1   or 

1  , one can use the following approximations: 
– for a large core 
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- for a small core 
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Thus, we may write for the pressure distribution in capillaries of variable cross-sections: 
 in the capillary fissure 
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 in the capillary tube 
 

  

 
 

n
m h 2

t
m 3nm

0n m
c

Q dy
p 4

T
r



 
      

 . (8.24) 

 
Introducing here the expressions (2.1) and (2.2) and taking into account the considerations of Section 5, we 
can write that: 

 for the capillary fissure 
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 for the capillary tube 
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where 
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Note that these formulae for n 1  reduce to the formulae adequate to the power-law fluids. 
 
9. Some remarks on pore network models (PNMs) 
 
 In these models, the soil pore space is modelled by a discrete network of pores that are connected by 
throats, which may be prismatic or non-prismatic. Pore bodies are considered to be either identical cylinders 
or identical spheres which are spaced equally space h  in all body domain (Fig.3). By writing a mass-balance 
equation (being a counterpart of the first Kirchhoff law) for a junction, an algebraic equation relating a 
considered node to its surrounding nodes is obtained (Fig.4). 
 

 
 

Fig.3. A two-dimensional (2D) pore network. 
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 Applying this scheme to all nodes, a system of linear algebraic equations is obtained. To solve this 
system one of the well known methods from the theory of finite differences can be used. To illustrate the 
procedure let us consider at first the flow of a Newtonian fluid. 
The mass balance equation for an arbitrary interior node “i” has a form (see Fig.4)  
 

  
4

ij
j 1

Q 0
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where 
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Fig.4. An arbitrary interior node “i”. 
 
We have (see formulae (3.8) or (3.10)), respectively 
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      for capillary tubes. 

 
In the case of a homogenous and isotropic porous medium, ijC s  would all be the same, and (Eq.9.1) reduces to 
 

  i 1 2 3 44p p p p p 0     . (9.4) 
 
This equation presents the discretized form of a steady flow equation through a saturated porous medium and 
it is the same as the discretized form obtained by central finite differences. The same procedure may be 
followed (for capillary tubes only) for a typical node in a 3D  domain. 
 Let us consider now the flow of a power-law fluid. The mass balance equation leads to the 
expression 
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where (see formulae (5.8) and (5.11)) 
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If j ip p , then 
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and applying Eq.(9.5) we find that 
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If j ip p , then 
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Applying Eq.(9.5) we have 
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Similar equations may be obtained for the flow of Shulman fluids. 
 Applying the procedures presented above it may obtain the computational stencils for more complex 
models of fluids can be obtained. Let us consider the flow of DeHaven fluids. Writing the mass balance 
equation, we have (see formulae (6.14) and (6.19)) 
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where 
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Assuming, e.g., that j ip p , we may write 
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where 
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One may obtain similarly the mass balance equation for the case when j ip p . 

Note that in each case of fluid models under consideration the final mass balance equation is linear or quasi-
linear. To solve these equations it is convenient to use an iterative procedure well known in the theory of 
finite differences. 
 
Conclusions 
 
 In this paper, an approximate mathematical method for obtaining the analytical relations between 
pressure drops and volumetric flow rates in symmetrically corrugated fissures and tubes is presented and 
applied to the flows of Newtonian, polar, power-law, DeHaven, Sisko and Shulmanian fluids. 
 Taking into account the considerations on the flows through rectilinear capillaries of constant cross-
sections , a general method to describe the flows through convergent-divergent (in general) capillaries with 
exponential variability of cross-sections was presented. 
 Formulae for pressure drops, volumetric flow rates and flow velocities through thin porous layers for 
all cited above fluids were obtained. Finally, some remarks on the pore network models (PNMs) for 
Newtonian and selected non-Newtonian fluids were made. These models may be used to transform the 
differential equations governing the flow through porous media into a set of algebraic equations similar to 
these ones known from finite differences. 
 
Nomenclature 
 
 oD  – outside half thickness or outside radius of a capillary 

  
 m
n

F  – functions of a relative core flow thickness in Shulmanian fluids 

 cf  – half thickness of a constant cross-section capillary fissure or current half thickness of a variable cross- 

                     section capillary fissure 
 of  – outside half thickness of a variable cross-section capillary fissure 
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 0f  – half thickness of a core flow through the capillary fissure in Shulmanian fluids 

 h  – thickness of a porous layer 
 k  – vortex (coupling) viscosity of a micropolar fluid  
 ik  – material coefficients for DeHaven fluids 

 ,m n  – flow behaviour indices for Shulmanian fluids 

 in  – flow behaviour indices for DeHaven and Sisko fluids 

 cn  – exponent of a capillary convergence 

 p  – pressure 

 fp  – pressure drop in a capillary fissure 

 tp  – pressure drop in a capillary tube 

 Q  – volumetric flow rate 
 fQ  – volumetric flow rate through the unity width of a capillary fissure  

 tQ  – volumetric flow rate through a capillary tube 

 cr  – radius of a constant cross-section capillary tube or current radius of a variable cross-section capillary tube  

 or  – outside radius of a variable cross-section capillary tube  

 0r  – radius of a core flow through the capillary tube in Shulmanian fluids  

   – permeability of a porous medium  
   – material coefficient associated with couple-stresses 
   – shear or plastic viscosity  
 i  – material coefficients for Sisko fluids 

 0  – yield shear stress  

 w  – wall shear stress  

 ,    – relative thickness/radius of a core flow through the capillary fissure or tube in Shulmanian fluids 
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