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In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric
flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary
fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be
used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration
when analytical expressions are hard to obtain due to mathematical complexities.

Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic,
hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge
and cone geometry the present results for the power-law fluid were compared with the results obtained by another
method; this comparison indicates a good compatibility between both the results.
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1. Introduction

Modelling the flow in tapered or corrugated channels and tubes is required for a number of scientific
technological, medical and industrial applications [1]. In the literature on fluid dynamics, there are numerous
studies on the flow through channels or tubes of tapered-expanded or corrugated nature. Many of these
studies use numerical techniques; cf. the papers by Lahbabi and Chang [2], Burdette et al. [3], James et al.
[4], Momemi- Masuleh and Phillips [5], Wang et al. [6], Hayat et al. [7, 8], Mekheimer and Kot [9], Nadeem
et al. [10]. Some others adopt analytical approaches based on simplified assumptions and normally deal with
very special cases (Williams and Javadpour [11], Walicki et al. [12], Walicki and Walicka [13+15], Walicka
and Walicki [16], Sochi [17+20]. Note that most of these studies concern the flows in conical (or similar)
geometry, namely in the converging-diverging tubes.

This paper presents an analytical method for deriving mathematical relations between the volumetric
flow rate and pressure drop or pressure gradient in tapered-expanded or corrugated capillary fissures or
tubes, such as those shown schematically in Fig.1.

Fig.1. Profiles of converging-diverging capillary fissures or tubes.
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Developing some results obtained by Sochi [17], concerning the flows in capillary tubes, we also
present five examples of flows both in capillary fissures and tubes for Newtonian and power-law fluids. Both
these flows may be used to model the flows through porous media [21].

2. Flows through rectilinear converging-diverging capillary fissures or tubes

Frequently, to model the flow through porous media, rectilinear fissures or tubes of constant cross-
sections are used (Fig.2).
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Fig.2. Geometry of a rectilinear capillary fissure (a) and a capillary tube (b) of a constant cross-section.

The velocity of the power-law fluid is, respectively [21]:
— for a capillary fissure

N/ (_d_ij @.1)
4 (m+2)u dx )’
— for a capillary tube
m+1 m
o,=’6—(—d—p} , (2.2)
2" (m+3)u\ dx

whereas the volumetric flow rate Q is equal:

— for a capillary fissure

2 m+2 d m
Qf=2fc‘)f=fc—(__pj , (23)

(m+2)u dx

here O is counted on the unit of a fissure width;

— for a capillary tube
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m+3 m
0, =mrlv, = WC—[—‘Z—IJJ . (2.4)
2" (m+3)p

For capillaries of variable cross-sections we have, respectively (see Fig.3):

— for a capillary fissure

(m+2)e, T ¢
puim+ m dx
Ap=| T IEL j . 2.5)
2 -1 fm7
— while for a capillary tube
L7
n(im+3)Q, |m 2 dx
Ap = 2{%} I — (2.6)
_% r,m
A A A
84l yir yir
J’*‘-a-(;/x/ Y=q-p,
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Fig.3. Scheme of half of converging-diverging and diverging-converging capillaries with rectilinear
generatrices.

The current thickness of the capillary fissure or the radius of the capillary tube are given, respectively, by

fc(x)}z{yza+b|x| / /

. (x) where -3 <x<+— 2.7)

y=a- b|x| 2
and there are, respectively
a= {fa > b= ! . (28)

Introducing formulae (2.7) and (2.8) into Eq.(2.5) or Eq.(2.6) we will obtain — after integration — the
following expressions (see formulae (A.3)+(A.4) in the Appendix):
— for the capillary fissure



190

A.Walicka
2 2
ml £l fom—f;™
(m+2)pr :Im
= : 2.9
! { 2 =5 1,)] =
and
2m+1 i(fz _fo)m m
oo U] o o0
m™ (m+2)u i[fom—fi_”’J
— for the capillary tube
33
1 2ml i[ro”’ —r ’”J
3 (m+3)th m
Ap—{ - 3|:i(l”l- —1’0)] (2.11)
and
3"n i(rl —ro)m m
0, - [ } . (Al_p) (2.12)

The flow velocities through a thin porous layer, composed of convergent-divergent capillaries, will be given,
respectively, as

o, =&: 2 (fz _fo) ?p (_d_pjm’ (2.13)
T 2f; 2 2\ dx
m’"(M+2)M[fom - fi ’”} fi
_ Qz 3m(ri_ro) (pp (_d_pjm
; TU?Z— i (2.14)

where @, is the porosity of the porous layer. Note that it will be similar for a thin porous layer composed of
divergent-convergent capillaries.

Let us refer to the papers [12-16]. The formulae for the pressure losses in a divergent wedge flow
and in a divergent conical flow presented there are as follows:

— for the wedge flow
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L 2 2

m| (m+2)uQ; |m| = - 1
Ap=—| ——F—F— m_ £ m |l cotp+—tanq |, 2.15
P == { P Jo™ =i ¢+ Stang (2.15)
— for the conical flow

el 3 3

+3 -
Apzz_m{w}m {ram -7 ’”J[cot(pvtétan(pj. (2.16)

Taking into account that

/
1 2(fi_fo)
cotp= =
tan @ /
2(’”1‘ _FO)

for the wedge

for the cone

and that cot >>tan@ for small values of ¢ , then the second terms in braces of Eqgs (2.15) and (2.16) can

be neglected. Assuming that the pressure loss in a double wedge or double cone should been taken doubly, it
is easy to see that the present results are consistent with the results obtained in the earlier papers [12-16] by
another method. Note that the first terms in braces of Eqs (2.15) and (2.16) are connected with the pressure
drop due to simple shear deformation of the fluid while the second terms are connected with the pressure

drop due to simple tension of the fluid in the wedge or conical die.

It easy to see that in the case when m =1, all the above formulae describe the flows of Newtonian

fluids.
Let us introduce the following notation

B:L or B:r—o
fi 4
then it can be assumed that
1 i
fi==(f +f0)=1(1+[3)
2 2
or
1 7
=—(r,+r,)==(1+B).
c 2(”‘1 ro) 2( B)
Note that
fi=e——f or n=—
1+ 1+B

Introducing these expressions into Eqs (2.13) and (2.14) we have

2.17)

(2.18)

(2.19)
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~ f;:m+1(Pp dp m
Uf —MFCO}, (—Ej 5 (220)
where
2p? 4(1-B) "’
F._ = 2.21
Y IeB m(1+B)(1-B7") 22D
and
m+1 m
O =P, (—d—p] (222)
2" (m+3)p dx
where
5 ~ m
_2B 6(1-B) 2.23)

TCW_]-FB m(1+B)(1_B3/m)

here F,,. and T,, are the correction factors which fulfill the condition: F,,,, T, . < 1. This result indicates

that the flow velocity in porous media with corrugated capillaries is always less than the flow velocity in
porous media with rectilinear capillaries of constant cross-sections.

3. Flows through parabolic capillaries

Parabolic capillaries, depicted in Fig.4, are described by the formulae

fc(x)}zaibxz where  —L<xeil (3.1)
e 277
and
2
. (2] (i-1)
az{o, p={ N (62)
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Fig.4. Schematic representation of half of converging-diverging and diverging-converging capillaries with

parabolic profiles.

Introducing formulae (3.1) and (3.2) into Eqs (2.5) or (2.6) we will obtain — after integration — the following

expressions (see formula (A.8) in the Appendix):
— for the capillary fissure

1

(m+2)pr mo ]
5"
or
m+2 m
0, = 2f, 1 (Apj
S e
m+2 m\
( )”(Fﬁa)
where
o i m+2'§' _i
ﬁ; 2, m 52> JFO )
— for the capillary tube
s
(m+3)th m 2]
r, ™M
or
0 = " 1 (Apjm
1™ Sm m| 7
2 (m+3);,l(}7;p) )
where

g i’m+3;i;1_r~ ‘
4 2> m 2

L
Ty

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)

The minimal flow velocities through the thin porous layer will be, respectively,
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m+2 m

e S
m .
Wi (Fp)
m+3 m

o = 's ?p L_d_l’j (3.10)

dx

The functions F [] are so called “hypergeometric functions” and they are defined in the Appendix.

For the flows of Newtonian fluids (m =1) we will have, respectively (see formulae (A.9)-(A.13) in the

Appendix):
— for the capillary fissure
3
Ap=7“QfZF : (.11)
O = 2! (A_pj (3.12)
3uF, 1
where
F,= 12 + 32+ 32J(J_rl) (3.13)
17t S81ifs 81,
and
1/2
J(-1)= 2 warctanh(f"f_ﬁJ ,
L (f-1)] 0
(3.14)
12
J(+1)= 2 I/Zarctan[ﬁ_foj ;
L (- 1)] 0
— for the capillary tube
Ap = MG IT,, (3.15)
T
T (Ap
= — 3.16
057 616
where
1 5 5 5
T, = + + + J(£l 3.17)
r 613-31”0 241;-21’02 ]61”1-1’03 ]6r03 ()
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and
p 12
J(—l):—l/zarctanh£r" r’} ,
|:ro (}"0 - 72) o
(3.18)
5 12
J(+l)=—1/2arctan[r" r”] :
|:I"0 (’2 - ro) o
The flow velocities of the Newtonian fluid through a thin porous layer will be given, respectively
L, =(P_p(_d_pj’ (3.19)
TO3WLF,\ dx
v, = (pé, (_d_pj (3.20)
Sur; Tp dx

4. Flows through hyperbolic capillaries

For capillaries of hyperbolic profiles, similar to the profiles shown in Fig.4, the geometric
description is as follows

ﬁ(x)}:(aibxz)l/z where —ééxS+—, 4.1

r. (%)

and

, b= : (4.2)

Introducing formulae (4.1) and (4.2) into Egs (2.5) or (2.6) we will obtain — the expressions (see formula
(A.15) in the Appendix):
— for the capillary fissure

1

Ap:{(m—"zz)“gf}m ;Fﬂu (4.3)
5"
or
B 2f0m+2 1 g m
Q"'_(m+2)u(p )’"( l) ’ @4
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where
2
Fyp=F i,m”;i;l—f# ; (4.5)
2 2m fo2
— for the capillary tube
1
m+3)uQ, |m 2]
Ap = |:( T[) ! i| i3 F;‘h’ (46)
r, M
or
3 1 Ap\"
0=, e 4.7)
2" (m+3)p (Fy) )
where
gl dm¥3 3 (4.8)
th 29 Zm ’2, rOZ .
The flow velocities through the thin porous layer will be as follows
m+2 d m
T ) )
m u; (Fﬂ) x
m+3 m
S S (_d_Pj ' (4.10)
2 (m+3)url- (Fth) dx

For the Newtonian flows (m =] ) we will have, respectively (see formulae (A.16)-(A.19) in the Appendix):
— for the capillary fissure

3uQ,l
ApzuTQ‘f, (4.11)
21 s
2f~2f2(ApJ
—ZJiJo | 28| 4.12
Oy S (4.12)
ﬁfoz(p dp
Lf :—p(——j, (4.13)
3u dx
— for the capillary tube
ap=tlr (4.14)

T
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T [Ap
— = 4.15
0 Wp( 2) (415)
Ut=—(p§’ (—d—pJ (4.16)
8“1"1. Tp dx
where
1 1
=—+—J(/ 4.17)
P 21321’02 21;,2 ( )
where now
1)2
2 }”0—7‘1-2
J(-1)= R arctanh( 5 ] ,
|:l’0 (1’0 - ):| o

(4.18)

~

2 oy
J(+I)= )}1/2 arctan[’ ZOJ .

5. Flows through hyperbolic cosine capillaries

For capillaries of hyperbolic cosine profiles, similar to the profiles shown in Fig.4, the geometric
description is given as follows

’ch((;)} = [a cosh(bx)]i] where —é <x< +é (.1
and
B +1
" [7) arccosh (%}
a= {fil b= 0 (5.2)

ot ’ 5 +]
¢ (—j arccosh (i]
[ r,

Note that the exponent value equal +/ is adequate to the lower profile curve on Fig.4, whereas the exponent
value —1 is adequate to the upper profile curve.
Hence, Eqs (2.5) or (2.6) become, respectively (see formulae (A.20) and (A.21) in the Appendix) for the
exponent value equal +/:

— for the capillary fissure

1

I:(m+2)|.th}m ml
2 2/m [f;

2f f; h| =&

fofi"" arccos I

o

]Im(th), (5.3)
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or
ol g2 {arccosh(j}ﬂ ”
0 1 A
0, = T m(ij (5.4)
m" (m+2)u [1m(Fy )]
where
1 1, 1 f
Im(Fg )=Im F| —,——;1——;= |} 5.5
() HZm mff}} >
— for the capillary tube
z
3 m
Ap{("ﬁ )MQZ} 2ml Im(F,), (5.6)
T 3/m éi
3,1 arccosh(j
rO
or
3"y {arccosh{r"ﬂ "
v
0 = — : ! m(g) (5.7)
2"m"™ (m+3)p I:Im(Fth):I [
where
Im(F,)=Im{F ! —i-z—i-i (5.8)
th 2" 2m’ 2m’r02 ' ‘

Here, Im(F ) is the imaginary part of the hypergeometric function.
The flow velocities through the thin porous layer will be

27m fomfl. {arccosh(ﬁﬂ
el

Uf = . o (59)
m (m+2)p [Im(Fﬁ,)] dx
3" {arccosh [F’H "
v, = ‘o P (—d—pj . (5.10)
2"m"™ (m+3)p [Im(Eh )]’” dx

For the flows of Newtonian fluids (m =1 ) we have (see formulae (A.22)+(A.25) in the Appendix):
— for the capillary fissure
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3uQ 1
Ap = hOy F,, (5.11)
4 f; arccosh (f’]
fo
4f03 arccosh[j}}
0 1(Ap
_ L [ 2P 5.12
os 3u F, ( ! ) 512
2 f03 arccosh[?]
Spp— 0 —(p—P(—d—pj (5.13)
‘ 3, F,\ dx
where
£ sinh {arccosh [;’H
F, = 5 °ZJ t arctan sinh{arccosh (iﬂ ; (5.14)
/i 0
— for the capillary tube
Ap = 8n0/! T, (5.15)
! {arccosh (l/’ﬂ
rO
! {arccosh[riﬂ
)| 1(A
O = (—pj, (5.16)
r {arccosh(r"ﬂ
T 1
v, = — —(—d—p) (5.17)
Sur; T\ dx
where
2
1 r r
T, =41——| tanh| arccosh| - tanh| arccosh| =+ ||. (5.18)
P 3 r, r,

Equations (2.5) and (2.6), for the exponent value equal —/ will become (see formulae (A.26) and (A.27) in

the Appendix):
— for the capillary fissure
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L
(m + 2) nQy |m ml
4 :|: 2 2m+2 Ly (th) ’ (5.19)
2(m+1)f0_1f[ m arccosh(j:”]
or
2" (m )" f 7 {arc cosh [foﬂ o,
O = — i (gj (5.20)
mm(m+2)|,t[lm(Fﬂ,)J !
where now
I m+1 2m+l (Y
Im(th)—Im{F{E,er ST [70] ] : (5.21)
' m m ;
— for the capillary tube
1
Ap:{(eri)“Qt}m 22,,’:113 n(F,). 5.22)
(2m+3)r0_lri m arccosh(ri
rO
or
(2m+3)" "2 {arccosh (}"’H
Ti
o = — (5.23)
m" (m+3)u[Im(Fy,) ]
where now
2
III](F} )—Im{ [i’2m+3’4m+3’(r_0J ]} (524)
2 2m 2m r;
The flow velocity through the thin porous layer will be:
om (m + I)m fi2m+1 |:arcCOSh(§,o}:| ?p m
Ly = i p (—d—pj , (5.25)
m" (m+ 2" [Im(th )] dx
(2m+ 3)1;-2’"” {arccosh (rgﬂ ?,
i dp
v, = ” (——J (5.26)
m"™ (m+3)ur)" [Im(F,h )] dx
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For the flow of Newtonian fluids (m =1) we have (se formulae (A.28)+(A.31) in the Appendix:
— for the capillary fissure

90,1
Ap= MOy F, (5.27)

f
8 h| =2
f arccos [fj

8f; arccosh[?j
1(Ap
- = — =, 5.28
Oy F ( ; j (5.28)
if; arccosh[ffj
vy =— /. (P—P(—d—pj (5.29)
9fl Fh dx
where
F), =sinh| arccosh (ij +isinh 3arccosh [ij ; (5.30)
fi)] 9 Ji
— for the capillary tube
Ap = ho! F, (5.31)
rcrfarccosh[r"J
7
4 |: [ro ]:|
nr, | arccos| > LA
7;
0= —[—"j, (532)
H LAY
4 {arccosh[;’"ﬂ
V.
v, = s @—P(—d—pj (5.33)
w; £\ dt
where
F = 3arccosh{r0 J + ZSlnhl:Zarccosh E—”ﬂ + ésmhl}larccosh [—Oﬂ . (5.34)
7 1 1

6. Flows through cosine curve capillaries

For capillaries of cosine curve profile, shown in Fig.5, where the capillary length / spans one
complete wavelength, the current capillary thickness or radius are given by
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X
fe(x) =aFbcos(kx)  where —£Sx£+i (6.1)
. (x) 2
where
Jit/, ifi —/fo
a=i 2, p=l 2 and  k=2F (6.2)
vt =7, [
+
2 2
yTr
y=d +bcos(fy )
1 k) i
: Y=ag-bcos( I
hin S
{ filn | 3
R 12

Fig.5. Schematic representation of the thickness or radius of converging-diverging and diverging-

converging capillaries with a cosine curve profile.

Introducing formulae (6.1) and (6.2) into Egs (2.5) or (2.6) we will obtain (see formulae

(A.32)+(A.36) in the Appendix):
— for the capillary fissure

1
ml

Ap {(m”)“Qf

" Im(F, 4 ),
2 } 2nf2m (fifo)j/z m( Ifh)

or

where

Im(FJﬂl):Im g —i,i;i;l—i;l,f# :
m 2 2 m fo

— for the capillary tube

(6.3)

6.4)

(6.5)
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1
(m + 3)},th }m ml
Ap= Im( ), (6.6)
= )
or
N
t = pood .
m" (m+3)u - [1m(Fy,)]
where
311 3
Im(F, Im{ F)| ——;—;—; 1 ——; 1, | . 6.8
(Fin) = {{mZZ - ro:l} (6.8)
Here , F[...] is the Appell hypergeometric function and Im(F}) is the imaginary part of this function.
The minimal flow velocities through the thin porous layer will be
m,_m mj2 m
2 (G e (L
Uf = " 5 . _E . (69)
m"™ (m+2)p {Im(F]fh)}
m_m mj2 m
3 - (r
o, = Tfm’”l (r7,) Pp m(_d_P) . (6.10)
m" (m+3)p {Im(FIzh)} dx
For the flows of Newtonian fluids (m =1 ) we have (see formulae (A.37)+(A.40) in the Appendix):
— for the capillary fissure
3uQ /1
=My ©6.11)
4
4 1 (Ap
, 6.12
Oy = W ( ; j (6.12)
2 )
v, z_@_P[__P) (6.13)
T3 L dx
where
3fP 211, + 31
(fifs)
— for the capillary tube
2
ap=222r (6.15)

T
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n I (Ap
=—— |22 6.16
0 ZMTC( l] (6.16)
v, = ]ZQ_P(_d_pj (6.17)
2wy T\ dx

where

r+r, 51;.2 = 2rr, +5r02
T, =( )( 77 ) (6.18)
(r75)

7. Conclusions

In this paper, an approximate mathematical method for obtaining analytical relations between the
pressure drop and the volumetric flow rate in symmetrically corrugated fissures and tubes is presented and
applied to the flow of Newtonian and power-law fluids.

The method is illustrated by five examples of capillary fissures or tubes with converging-diverging
or diverging-converging shape. The results presented for the flows in the wedge or cone geometries were
compared with the results of an earlier study yielded by another method; this comparison indicates a good
agreement between both the results for the geometry of small convergence or divergence.

For the flow velocities (in the thin layers) it may be concluded that any corrugation or complexity of
the capillary geometry leads to the diminution of these velocities with respect to the flow velocities in the
simple capillaries of constant cross-section.

Appendix

In this Appendix we will derive analytical expressions for the integrals appearing in the previous
sections of the present paper.
The first of them, for rectilinear capillaries of variable cross-sections, is:
— for the convergent-divergent capillary

”|J:%:+if2L=Jn,0 s +/2 A1)
-1/2 (a+b|x|)n 2 2l
where
o % a1 i |0_ I b
" 1/2;[2(abx)n(”])b(abx)nl‘l/z(”])b[a _(aJr?) ],
(A.2)

+1/2

“j2 a1 1 . “I_n_(“ﬂJH
0 0 (a+bx)n (n—1)b (a+bx)n_1‘0 (n=1)b 2 ’

n

and
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y: 2 b\
J | = a7 a+— ; A3
ol (n_l)b[ ( 2} ] (A3)
— for the divergent-convergent capillary
"y 2 A
Jﬂﬁ = f - P b{(d——) —a]‘"} (A.4)
_1/2(a—b|x|) (n=1) 2
here
mt2 for a fissure 3
n= ’"3 . if m=1 then n={4. (A.5)
me for a tube
m
The second one, for parabolic capillaries, is as follows
2
J, =I—dx X p| Ll (A.6)
( a+ bl )" a |2 2 a
where F [] is a hypergeometric function [22,23] defined by the Gauss series [24]
2 (a) (b +1)b(b+1
F[a,b;c;z]zzmz‘q =1+a—bz+a(a ) ( )22+ (A.7)
pa (c)ss! c c(c+1)2!

here, for convenience, we used the Pochhammer symbol notation for the shifted factorial

(), = {a(a +1)..(a+s-1) T {1,2,...,

1 0.

Accordingly, we have

which is used as a definition for the shifted factorial in the case when s is not necessarily a nonnegative

integer.
Introducing in (A.6) the limits of integration we will obtain

2
1|13 b

J +l/2:_F LR i '
L2 21272 G

For the Newtonian flows we have, respectively

(A.8)
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P L —— (A9)
(axbx®) dafatb’) 8 (axbx?) Sa
and
+1)2 [ 3l 3 +)2
J3| 2 5+ e +8a21(+)|_1/2, (A.10)
4a[a+le 8612 (ai}
7 4
J4=J- dx = d =+ o =+ 35x vt 531(i) (A.11)
(aibxz) 6a(aibx2) 24a2(aibx2) 16a (aibx ) 16a
and
12 l 51 51 5 +)2
4|i1/z - 3T 7T T3 I(i)|— (A-12)
/ b2 b2 s b7 16a 2
6al at— 24a° | at— 16a”| at—-
4 T4 4
arctan 2 arctan bl
I(+ :J* dx \/_ \/_ I(+)|+l/2 _ \/E 2\/5 (A.13)
- (a +bx ) 2 bl
arctanh — ——arctanh——
J_ J_ Jab 2Jab
The third integral, for hyperbolic capillaries, is given by the following expression
Jn:J' dx - x2F1n3 bx (A.14)
(aibxz)”/ a’? 27227 a
and
2
W2t pln3 bl
J, |—1/2 /21{2’2’2""61 5 (A.15)
For the Newtonian flows we have
dx X
Js=] 77 = 7 (A.16)
(a bxz) a(a X )
and
l
AE (A.17)

or
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1
Ji=]| dx S=————— (%) (A.18)
(aibxz) Za(aibx ) 2a
and
+/2 / 1 +1)2
Jollyo = o +o ()5 (A.19)
2alat—
4
The fourth and fifth integrals, for hyperbolic cosine capillaries, are as follows:
— the forth one
dx —isech™™ (bx) 1 1-n 3-n 5
1= = - F{—, =" cosh (bx)} (A.20)
[acosh(bx)} (n—1)a"b 2 2 2
where: i =+/~1, and the real value of the definite integral .J " [Zj is equal to
2sech”™ (bzlj 11-n3 bl
U —A PN 0 —,;n;;n;coshzi—j : (A21)
42 (n—1)a"b 2 2 2 2
here Im(F []) is the real value of the imaginary part of the hypergeometric function F [] ;
for the Newtonian flows we have
sinh (b
J;= Lj = % #)2 +Larctan [ sinh(bx) ] (A.22)
[a cosh(bx):l ab 2[cosh(bx)1 2
and
' J sinh (b;) b
+1/2 .
J3 |_l/2 = =5 ﬁ + arctan{smh [7ﬂ (A.23)
{cosh —
2
or
2
tanh (bx
dx y [tanh(b) ] tanh (bx) (A.24)

J=1— -
! [acosh(bx)T a’b

and
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2
p {tanh [Zlﬂ »
+/2 .

J4|_Z/2 = 1- 3 tanh[—j ; (A.25)

— the fifth one
. hn+1
J = dx _ _icos (l:x)F[i,1+n;3+n;cosh2(bx)}, (A.26)
[ acosh(bx)] (n=1)a™"> L2 2 2

and the real value of the definite integral J, |t% is equal to

2cosh™! (blj

Jn|+§/§=—21m F{i,[Jr—n;m;cosh2 (ﬂﬂ . (A.27)
W2 (n+1)a b 22 2 2

For the Newtonian flows we have

J;= I[a cosh(bx)T dx = E[sinh(bx) +lsinh(3bx)} (A.28)
4b 9
and
w2 3a7 . (bl 1. (3bl
= (5 g "
or
4
J, = I[a cosh (bx)T dx = :—b[ﬂ)x + 2sinh (2bx) +§sinh(4bx)} (A.30)
and
L0 =472b[37bl+Zsinh(2b1)+§sinh(2bl)} : (A31)

The last integral, for cosine curve capillaries, is given by the following expression [22, 23]

p B
J, = al - : —F[.] (A32)

" [a?bcos(kx)]n (n—])k\/az -’ [aibcos(kx)]

where F; [] is the Appell hypergeometric function described here by the formula

F,[...]:FI[1_,1;1,1;2_,,;ﬂbcos(/oc)’amcos(;a) |
22 ath aib

(A.33)

Generally, the Appell hypergeometric function Fj(x, y) is defined by the following double hypergeometric
series [24]
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2 S (a b b
Fylasbybyesx,y]= Z( )’("c*;( ’l’;’,if by, (A34)
m=0n=0 m+n T

It is easy to see that it is a bivariate generalization of the Gauss hypergeometric series defined by formula
(A.7). Introducing in (A.20) the limits of integration we will obtain

+/2

2
-2~ n—
(n—])k a’ —b’ {aibcos[ljﬂ

aibcos(klj aibcos(klj
2 2
;2—n;

I ~Im(F;[..]) (A.35)

where

11
Im(F|...])=Im| F;| ] —n;—,— ; A.
m( il ]) e n,2,2 atbh ’ aFb ’ (A-30)
Here, Im(F] []) is the imaginary part of the Appell hypergeometric function F; [] .
For the Newtonian flows we have
dx 1 +bsin (kx)
J3 = 3 = > > 2 +
[aibcos(kx)] 2k(d -b ) [aibcos(kx)]
7 2 kx (A.37)
3¢ thsin(ky) 247 +H 2 @b tan( 2)
+ + arctan
(aZ_bz)[aibcos(lcx)J (a2_b2),/a2_b2 axb
and
ibsm(lj ibsm(j
J3|+l§2 _ 1 2 + 3a 4
-1/2 2 2 2 2 2
k( b ) [a+bcos(klﬂ (a b ){aibCOS(H
2 (A.38)
2 2 Kl
240 2 ar=b tan[ 4)
(aZ_b2) ,a2_b2 a+b ’
or
dx ] +bsin (kx) S5a +bsin (kx)
Sy = _ . 2 2 _ 3T 72 o\F _ 77T
[a+bcos(kx)] 3k(a -b ) [a+bcos(kx)} (a -b )[a+bcos(kx)}
7 2 hex (A.39)
11&% +4b>  tbsin(ky) 64’ +9ab® 1 ar=b tan( 2 j
+ arctan

2(a2—b2)2 [a+bcos(kx)]+(a2_b2)2 \/aZ_bz aFh
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and
b sin(klj thsin (klj
|+1/2 _ 2 2 N Sa 2 N
e 3k(a” =b7) [ K] (a7 -57) kKT
aibcos(ﬂ {aibcos(ﬂ
2 2 (A.40)
. [ Kl 2 .2 kl
11a° + 4 ibsm[zj 64> +9ab® 1 a b tan(J
+ 2 + > arctan — )
2(02—52) {aibcos(klﬂ (az—bz) a’ - b’ a¥b
2
Nomenclature
a,b — auxiliary constants in the formula describing a converging-diverging capillary
F —hypergeometric function
F; — Appell hypergeometric function
F,,. — correction factor for a capillary fissure
Jf. —half thickness of a capillary fissure
f; —inlet half thickness of a capillary fissure
f, — middle half thickness of a capillary fissure
i=~-1
[ — capillary length
m  — flow behaviour index for power-law fluid
n —auxiliary in integrals and hypergeometric functions
p —pressure
Ap —pressure drop
Q - volumetric flow rate
O — volumetric flow rate through the unity width of a capillary fissure
Q, —volumetric flow rate through a capillary tube
r. —radius of a capillary tube
1 —inlet radius of a capillary tube
r, —middle radius of a capillary tube
T,,. — correction factor for capillary tube
v, — flow velocity through a thin porous layer modelled by capillary fissures
v, — flow velocity through a thin porous layer modelled by capillary tubes
¢, —porosity of a porous layer
p  — fluid viscosity
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