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In this paper, an investigation is made to analyze the effects of radiation on an MHD boundary layer flow and 
heat transfer over a nonlinear stretching surface with variable wall temperature and non-uniform heat source/sink. 
A suitable similarity transformation is used to transform the governing nonlinear partial differential equations into 
a system of nonlinear ordinary differential equations by using the Nachtsheim Swigert shooting iteration 
technique together with the fourth order Runge Kutta method. The effects of various physical parameters over a 
dimensionless velocity and dimensionless temperature are presented graphically. The numerical results for the 
skin friction co-efficient and non- dimensional rate of heat transfer are presented and discussed for several sets of 
values of the parameters. Comparisons of numerical results are made with the earlier published results under 
limiting cases. 
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1. Introduction 

 
 The study of a boundary layer flow over a stretching sheet has gained considerable attention in the 

contemporary world of fast technological applications such as extrusion processes, wire and fiber coating, 
polymer processing, manufacturing process of artificial films, artificial fibers, dilute polymer solution and 
design of various heat exchangers. The analysis of momentum and thermal transports within the fluid on a 
continuously stretching surface is important for gaining some fundamental understanding of such processes. 
Sakiadis [1, 2] initiated the study of the boundary layer flow over a continuous stretching surface. Later, 
Crane [3] obtained closed-form similarity solutions for a steady two-dimensional incompressible boundary 
layer flow caused by a stretching sheet with linear velocity. Further, many investigations over a stretching 
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sheet were carried out under various physical situations. Banks [4] obtained a power law velocity variation 
over the flow field of a stretching wall for different values of the velocity exponent. Kumaran and 
Ramanaiah [5] considered the quadratic stretching on the viscous fluid flow over a stretching surface and 
obtained the closed form solutions.  

 The study of the laminar boundary layer flow and heat transfer over a nonlinearly stretching sheet 
has gained great interest of several authors due to its enormous applications in industries. Soundalgekar and 
Murty [6] investigated the power law temperature variation with constant surface. Carragher and Crane [7] 
discussed the heat transfer in a two dimensional flow past a stretching sheet when the temperature difference 
between the surface and the ambient fluid is proportional to a power of distance from the fixed point. Grubka 
and Bobba [8] examined the temperature field in the flow over a stretching surface. But they restricted their 
research to analyze the heat transfer and flow characteristics in the absence of a magnetic field. The effect of 
non-uniform surface temperature over nonlinearly stretching surface was studied by Noor Afzal [9].  

 The power law velocity and temperature distribution at the surface was discussed by Ali [10]. 
Vajravelu [11] investigated the flow and heat transfer characteristic over a nonlinearly stretching sheet. 
Cortell [12] focused on heat transfer over a nonlinearly stretching sheet. The flow and heat transfer over a 
nonlinear stretching sheet was studied by Akyildiz and Siginer [13]. 

 The study of a magneto-hydrodynamic (MHD) flow of an electrically conducting fluid is of 
considerable interest in modern metallurgical and metal-working processes. In metallurgical processes, the 
rate of cooling and stretching of the strips can be controlled by drawing the strip in an electrically conducting 
fluid subject to a magnetic field, so that a final product of desired characteristics can be achieved. Due to 
these applications, Chakrabarti and Gupta [14] obtained an analytical solution for the linear stretching 
problem with hydromagnetic effect. Andersson [15] carried out an exact solution of the Navier–Stokes 
equations for the magneto hydrodynamic flow. Chiam [16] presented an analytical and numerical solution of 
an MHD flow and heat transfer over a non- linear stretching surface with power law velocity by using the 
Runge–Kutta shooting algorithm with Newton iteration. Anjali Devi and Thiyagarajan [17] discussed the 
steady nonlinear MHD flow and heat transfer over a stretching surface with variable temperature. Anjali 
Devi and David Maxim Gururaj [18] studied the effects of variable viscosity on the nonlinear MHD flow and 
heat transfer over a stretching surface with power law velocity. 

  In several practical applications, there exist significant temperature differences between the surface 
and the ambient fluid. This necessitates the consideration of temperature-dependent heat sources or sinks 
which may exert a strong influence on the heat transfer characteristics. The study on heat generation or 
absorption effect is important in view of several physical problems of such fluids undergoing exothermic or 
endothermic chemical reactions. Although exact modeling of internal heat generation or absorption is quite 
difficult, some simple mathematical models can express its average behavior for most physical situations. 
Vajravelu and Rollins [19] investigated heat transfer characteristics in an electrically conducting fluid over a 
stretching sheet with internal heat source/sink. Elbashbeshy and Bazid [20] examined the heat transfer over a 
stretching surface with internal heat generation. Abo-Eldahab and El Aziz [21] considered the 
blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously 
stretching surface with internal heat generation/absorption, but the work considered both the space and 
temperature dependent heat source/sink, in a viscous flow. Heat transfer in a viscoelastic boundary layer 
flow over a stretching sheet with non-uniform heat source/sink was studied by Abel et al. [22]. 
Nandeppanavar et al. [23] investigated the heat transfer of a viscoelastic fluid flow due to nonlinear 
stretching sheet with internal heat source. 

 All the above investigations were restricted to MHD flows and heat transfer problems. However, of 
late, the radiation effects on the MHD flow and heat transfer problem has become more important in the 
engineering field. Many processes in engineering occur at high temperature and the full understanding of the 
effects of radiation on the rate of heat transfer is necessary in the design of equipment. The radiative flow of 
an electrically conducting fluid with high temperature in the presence of a magnetic field are encountered in 
electrical power generation, astrophysical flows, solar power technology, space vehicle re-entry, nuclear 
engineering applications and in other industrial areas. Viskanta and Grosh [24] analysed a boundary layer 
flow in thermal radiation for absorbing and emitting media by using the Rosseland approximation. 
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Raptis and Massales [25] discussed the MHD flow over a flat plate in the presence of radiation. 
Raptis et al. [26] investigated the first numerical solution of the flow field with the influence of both the 
magnetic field and radiation. Bataller [27] investigated the effects of thermal radiation on the Blasius flow. 
Recently, the hydromagnetic boundary layer flow over a stretching surface with thermal radiation has been 
examined by Siti et al. [28]. Yahaya and Daniel [29] analysed the theoretical influence of buoyancy and 
thermal radiation on the MHD flow over a stretching porous sheet. Mahantesh et al. [30] obtained an optimal 
homotopy asymptotic method for a fluid flow and heat transfer over a nonlinear stretching sheet. 

 So far no attempt has been made to analyse the radiation effects on a viscous boundary layer forced 
convective flow over a nonlinear stretching surface with non-uniform heat source/sink and variable wall 
temperature in the presence of a magnetic field and hence the present work is focused on this. The equations 
of continuity, momentum and energy, which govern the flow field, are solved numerically using the 
Nachtsheim Swigert shooting iteration scheme together with the fourth order Runge Kutta integration 
method. In this analysis, estimation of the skin friction co-efficient and the non-dimensional rate of heat 
transfer which are considered significant from the industrial applications perspective are also made. In the 
absence of the variable magnetic field and radiation, the results obtained are in good agreement with these of 
Ali [10] and Cortell [12]. 
 
2. Mathematical formulation 

 
A steady, two-dimensional laminar boundary layer flow of a viscous, incompressible, electrically 

conducting and radiating fluid over a nonlinear stretching surface with variable temperature in the presence 
of a variable magnetic field and non-uniform heat source/sink has been considered. Two equal and opposite 
forces are introduced along the x-axis so that the surface is stretched keeping the origin as fixed. The x-axis 
is taken along the stretching surface y=0 in a direction of motion and the y-axis is perpendicular to the 
surface in the outward direction. The surface is considered to be nonlinearly stretching along the x-axis with 
the distance xn. The variable magnetic field of strength ( )xB  is applied in the normal direction to the surface. 
The flow configuration and the coordinate system are shown in Fig.1.    
 

 
 

Fig.1. Schematic diagram of the problem. 
 
 The magnetic Reynolds number is assumed to be small so that the induced magnetic field is assumed 
to be negligible in comparison to that of the applied magnetic field. Since the induced magnetic field is 
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assumed to be negligible and ( )xB  is independent of time, curl E = 0 also div E = 0 in the absence of surface 
charge density. Hence E = 0 and it is also assumed that the electric field due to the polarization of charge is 
negligible. The pressure gradient, body forces, viscous dissipation and Joule heating effects are assumed to 
be negligible. The temperature of the plate surface is held uniform at Tw which is higher than the ambient 
temperature T . The fluid is considered to be a gray, absorbing, emitting radiation but non scattering 
medium. The Rosseland approximation is used in the energy equation to describe the radiative heat flux. The 
radiative heat flux in the x-direction is considered to be negligible when compared to that in the y-direction 
and the boundary layer approximations are made. 
 Under these assumptions, the governing boundary layer equations for conservation of mass, 
momentum and thermal energy in the presence of the magnetic field, non-uniform heat source/sink and 
radiation are given below. 
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where u and v are the velocity components of the fluid in the x and y direction respectively. σ is the electrical 

conductivity of the fluid,  
n 1

2
0B x B x



 is the applied variable magnetic field, ρ is the fluid density of 

the fluid, 
k

C p
 


 

is the thermal diffusivity, B0 is a constant, 





 is the kinematic viscosity, μ is the 

viscosity of the fluid, T is the temperature of the fluid, k is the thermal conductivity of the fluid, pC
 
is the 

specific heat at constant pressure, qr is the radiative heat flux and q   is non-uniform heat source/sink 
defined as [21]  
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where   n
wu x b x  is the stretching velocity, b is the constant, n is a parameter related to the stretching 

surface, A* and B* are parameters of space and temperature dependent internal heat source/sink. Tw is the 
temperature of the surface and T  is the constant temperature far away from the surface. For an optically 
thick fluid, the radiative heat flux qr [26], can be approximated by the Rosseland approximation as   
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where *  and *k  are the Stephan-Boltzman constant and mean absorption coefficient respectively. 
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We assume that the temperature difference between the fluid within the boundary layer region is 
very small so that T4 can be expressed as a linear function of temperature T. Thus, expanding T4 in Taylor 
series about T∞ and neglecting the second and higher order terms, we obtain 

 

 
4 3 4T 4T T 3T   ,                (2.6) 

 
using Eqs (2.5) and (2.6), Eq.(2.3) can be reduced as  
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The associated boundary conditions are  
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where λ is the temperature parameter. 
 
3. Similarity analysis 
 
 The velocity components u and v are defined as  
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 Introducing the similarity variable η and the dimensionless variable θ as 
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the velocity components are obtained as  
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 Equations (2.2) and (2.3) can be written as 
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with the appropriate boundary conditions  
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 The important physical quantities of interest in this problem are the skin friction coefficient and the 
local Nusselt number which are defined as  
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where R e
υ
w

x
u x

  is the local Reynolds number, the surface shear stress τw  and the surface heat flux wq

are given by 
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4. Numerical solution of the problem 

 
 The set of nonlinear differential Eqs (3.4) and (3.5) along with the boundary conditions (3.6) 

constitute a nonlinear boundary value problem. The analytical solution of these equations is very difficult to 
obtain, and hence the solution is obtained numerically by reducing the nonlinear boundary value problem to 
an initial value problem using the Nachtsheim-Swigert shooting iteration scheme. The reduced initial value 
problem is solved utilizing the fourth order Runge-Kutta method.   

 The boundary value problem consisting of the nonlinear differential equations are solved with initial 
guesses for ( )f 0  and ( )0 . The initial guesses are made for ( )f 0  and ( )0  using the Nachtsheim 
Swigert shooting iteration technique. The numerical solutions are obtained using the fourth order Runge-
Kutta method for different values of the physical parameters over the flow field and dimensionless 
temperature distribution. Numerical values of the dimensionless skin friction coefficient and the local 
Nusselt number are obtained and tabulated. 
 
5. Results and discussion 

 
 Radiation effects on the MHD boundary layer flow and heat transfer over a nonlinear stretching 

surface with variable wall temperature in the presence of non-uniform heat source/sink have been 
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investigated. Numerical solutions of the problem are obtained using the Nachtsheim Swigert shooting 
iteration technique together with the fourth order Runge Kutta integration method for various values of the 
physical parameters such as the magnetic interaction parameter M2, power-law index n, radiation parameter 
Rd, Prandtl number Pr, temperature parameter λ, space dependent heat source/sink parameter A* and 
temperature dependent heat source/sink parameter B*. The dimensionless velocity and dimensionless 
temperature distributions are demonstrated graphically. 

 In the absence of the magnetic field, a comparative study has been made for different values of n 
with the results of Cortell [12]. It is obvious that the numerical values of - ( )f 0  are in excellent agreement 
with the results of Cortell [12] which are presented in Tab.1. In the case when 1/Rd =0, M2=0, A*=0, B*=0, 
the results of temperature gradient are excellent with these of Ali [10] which are depicted in Tab.2. Table 3 
depicts the non-dimensional rate of heat transfer for various physical parameters. From this table, it can be 
seen that the effect of the magnetic interaction parameter, radiation parameter Rd, space dependent heat 
source/sink parameter A* and the temperature dependent heat source/sink parameter B* are all similar so as to 
reduce the non-dimensional rate of heat transfer while the influence of power law index parameter n, Prandtl 
number Pr and the wall temperature parameter λ is to enhance the non-dimensional rate of heat transfer. 
Figure 2 displays a comparison graph of dimensionless temperature for different values of Pr. In the absence 
of non-uniform heat source/sink, Magnetic field and the radiation effects, the results are in good agreement 
with that of Ali [10] when λ=0. 

 
Table 1. Comparison of the values of velocity gradient at the wall ( )f 0  for various values of n. 

 

n ( )f 0  

Cortell [12] Author’s result 
0.5 0.889477 0.889843 

0.75 0.953786 0.954524 
1.0 1.000000 1.000046 
1.5 1.061587 1.061610 
3.0 1.148588 1.148593 
7.0 1.216847 1.216851 

10.0 1.234875 1.234875 
20.0 1.257418 1.257424 

100.0 1.276768 1.276774 
 
Table 2. Comparison of the values of temperature gradient -  (0) for various values of Pr. 

 

 

 

 

 

 

 

n λ 

-  (0) 

Ali [10] Author’s result 

Pr = 0.72 Pr = 1.0 Pr = 3.0 Pr = 0.72 Pr = 1.0 Pr = 3.0 

3.0 0.0 0.4469 0.5633 --1.1373 0.44789 0.56466 1.14227 
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Table 3. Variation of non-dimensional rate of heat transfer for various values of  Pr, M2, λ, n, Rd, A
*,B* 

 

M2 Pr λ n Rd A* B* 
( )

d

4
0 1

3 R

 
  

 
( )

d

n 1 4
0 1

2 3 R

   
 

 

0.0 7.0 6.0 3.0 2.0 0.1 0.1 10.55199 14.92263 

1.0       10.38386 14.68485 

1.5       10.31304 14.58470 

2.0         10.24774   14.49235 

1.5 1.0 6.0 3.0 2.0 0.1 0.1 4.265219 6.031872 

 1.5      4.692994 6.636822 

 2.3      5.527927 7.817595 

 7.0      10.31304 14.58470 

1.5 7.0 2.0 3.0 2.0 0.1 0.1 5.914202 8.363860 

  4.0     8.379818 11.85074 

  6.0     10.31304 14.58470 

  8.0     11.95542 16.90736 

1.5 7.0 6.0 1.0 2.0 0.1 0.1 13.96460 13.96460 

   2.0    11.49728 14.08118 

   3.0    10.31304 14.58470 

   4.0    9.767345 15.44315 

1.5 7.0 6.0 3.0 2.0 0.1 0.1 11.13249 15.74356 

    3.0   10.06845 14.23880 

    5.0   10.28157 14.54020 

    109   8.117460 11.47971 

1.5 7.0 6.0 3.0 2.0 -0.2 0.1 10.39749 14.70413 

     -0.1  10.36934 14.66432 

     0.1  10.31304 14.58470 

     0.2  10.28489 14.54489 

1.5 7.0 6.0 3.0 2.0 0.1 -0.2 10.35681 14.64660 

      -0.1 10.34224 14.62600 

      0.1 10.31304 14.58470 

      0.2 10.29839 14.56398 
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Fig.2. Temperature profiles for various values of Pr. 
 

 The influence of the magnetic field over the dimensionless velocity is demonstrated in Fig.3. 
Increasing values of the magnetic interaction parameter is found to retard the velocity at all points of the 
flow field. It is because that the application of the transverse magnetic field will result in a resistive type 
force (Lorentz force) similar to drag force which tends to resist the fluid flow and thus reducing its velocity. 
The dimensionless velocity distribution for different values of the power law index parameter n is shown in 
Fig.4. For increasing values of the power law index n the velocity gets decelerated and further it is noted that 
the effect of n over the velocity is less significant.  

 

 
 

Fig.3. Dimensionless velocity profiles for different values of M2. 
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Fig.4. Dimensionless velocity profiles for different values of n. 
 

 The influence of the magnetic interaction parameter on the temperature distribution is disclosed 
through Fig.5. It reveals that the induced Lorentz force suppressed the flow motion. This causes the 
enhancement in the temperature and simultaneously the thermal boundary layer also gets thicker. 

 

 
 

Fig.5. Temperature distribution for different values of M2. 
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 The temperature distribution for various values of the power law index n is illustrated in Fig.6. It is 
noted that temperature distribution increases with the increase of the power-law index n. The effect of 
radiation Rd on the temperature distribution in the boundary layer region is in Fig.7. When the value of the 
radiation parameter is amplified, the temperature declines, consequently the thermal boundary layer 
thickness becomes smaller. Since Rd decreases for k and T∞, the Rosselend mean absorption co-efficient k* 

also decreases, as k* decreases rq

y




increases which exhibits the fact that the rate of heat transfer increases.  

 

 
 

Fig.6. Effect of n over the temperature distribution. 
 

 
 

Fig.7. Temperature distribution for different values of Rd. 
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 Figure 8 depicts the effect of the Prandtl number Pr over the temperature distribution. It can be noted 

that the dimensionless temperature distribution decreases continuously within the boundary layer for 
increasing values of Pr. Thus, the higher Prandtl number reduces thermal boundary layer thickness. 

 Figure 9 shows the behavior of the temperature distribution for different values of the temperature 
parameter λ. It is noted that the increasing effect of λ is to suppress the thickness of the thermal boundary 
layer. The influence of the space-dependent heat source/sink parameter A* over temperature distribution is 
shown in Fig.10. Physically, the presence of A* > 0 has a tendency to increase the fluid temperature. Hence 
the thermal boundary layer thickness increases. In case of the space- dependent heat sink A*<0, the thermal 
boundary absorbs energy.  

 The effect of temperature dependent heat source/sink parameter B* on the temperature distribution is 
shown in Fig.11. The energy is created in the boundary layer for increasing values of the temperature 
dependent heat source parameter B* (B* > 0). Hence the thermal boundary layer thickness rises. While in the 
presence of heat sink B* < 0, energy is being absorb for increasing values of B*. Hence, the thermal boundary 
layer thickness as well as the temperature decreases. However, this effect is not prominent. 

 Figure 12 displays the variation of the skin friction coefficient against the magnetic interaction 
parameter M2 for different values of the power-law index n. It is seen that the skin friction coefficient 
decreases with an increase of the power-law index n and it increases for increasing values of the magnetic 
interaction parameter M2. 

 

 
 

Fig.8. Temperature distribution for different values of Pr. 
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Fig.9. Temperature distribution for different values of λ. 
 

 
 

Fig.10. Effect of A* over temperature distribution. 
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Fig.11. Temperature distribution for different values of B*. 
 

 
 

Fig.12. Skin friction coefficient for different n. 
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6. Conclusion 

 
 The present study gives the numerical solution for the MHD boundary layer flow with heat transfer 

over a nonlinear stretching sheet subjected to variable wall temperature in the presence of radiation and non-
uniform heat source/sink. The governing equations were transformed to a set of ordinary differential 
equations and are solved numerically using the shooting technique such as the Nachtsheim-Swigert iteration 
method along with the fourth order Runge Kutta integration method. The effects of various non-dimensional 
parameters on dimensionless velocity and temperature distribution are discussed and presented through 
graphs. Also, the effect of physical parameters on the friction factor and Nusselt number are analysed. 
Comparisons with previous published results are presented in the absence of the magnetic field and radiation. 
The main findings of this investigation are as follows: 

 The effect of the transverse magnetic field M2 on a viscous fluid flow is to suppress the velocity of 
the fluid which in turn causes the enhancement of the temperature field.  

 Increasing values of the power law index n decreases the dimensionless velocity and local skin 
friction coefficient whereas it increases the dimensionless temperature as well as the non-dimensional 
rate of heat transfer. 

 The effect of the radiation parameter Rd is to reduce the temperature distribution and non- 
dimensional rate of heat transfer for its increasing values. 

 The effect of the Prandtl number Pr and temperature parameter λ decrease the thermal boundary layer 
thickness and enhance the non-dimensional rate of heat transfer at the wall. 

 The space dependent heat source parameter A* (A * > 0) and temperature dependent heat source 
parameter B* (B*>0) enhance the thermal boundary layer thickness as well as the temperature while 
the space dependent heat sink (A*<0) and temperature dependent heat sink (B*<0) curtails both the 
temperature and thermal boundary layer thickness. It is also noted that the dimensionless rate of heat 
transfer decreases with the heat source parameter and enhances with increasing values of the heat sink 
parameter. 

 
Nomenclature 
 
 A*   space dependent heat source/sink parameter 
 B*   temperature dependent heat  source/sink parameter 
 B0   magnetic field strength 
 b  stretching rate 
 Cf   skin friction coefficient 
 Cp   specific heat at constant pressure 
 f   dimensionless stream function 
 k  thermal conductivity of the fluid 
 k*   Rosseland mean absorption  coefficient 
 M2   magnetic interaction  parameter 
 Nux   local Nusselt number 
 n  power-law index 
 Pr   Prandtl number 
 Rd   radiation parameter 
 Rex   local Reynolds number 
 T   temperature of the fluid 
 Tw   temperature at the wall 
 T∞  temperature of the free stream fluid 
 u  velocity in the x direction 
 uw  velocity of the stretching surface 
 qr   radiative heat flux 
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 qw  heat flux at the surface 
 q    non-uniform heat source/sink 

 v   velocity in the y direction 
 x   horizontal coordinate 
 y   vertical coordinate 
 α   thermal diffusivity of the fluid 
 η   similarity variable 
 θ   dimensionless temperature 
 λ  temperature parameter 
 µ   viscosity of the fluid 
 ν   kinematic viscosity of the fluid 
 ρ  density of the fluid 
 σ  electrical conductivity of the fluid 
 σ*  Stefan Boltzmann constant 
 τw  shear stress at the wall 
 χ  stream function 
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