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The objective of this investigation is to study the influence of thermal radiation and radiation absorption 
parameter on a mixed convection flow over a continuously moving porous vertical plate under the action of 
transverse applied magnetic field taking into account the induced magnetic field with convective boundary. 
Under certain assumptions, the solutions for the velocity field, temperature distribution and induced magnetic 
field are obtained. The influences of various parameters on the velocity, temperature fields and on induced 
magnetic fields are studied graphically. It is also found that the dimensionless Prandtl number, Grashof number, 
Schmidt number and magnetic parameter have an appreciable influence on the  independent variables. 
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1. Introduction 
 
 The convective heat and mass transfer processes with phase change include evaporation of a liquid at 
the interface between a gas and a liquid or  sublimation at a gas-solid interface. They can be described using 
the method for convective heat and mass transfer. In many engineering applications, heat and mass transfer 
processes in fluids condensing or boiling at a solid surface play a decisive role. Magneto-hydrodynamics is 
the branch of continuum mechanics, which deals with the flow of electrically conducting fluids in electric 
and magnetic fields. The study of forced and free convection flow and heat transfer for electrically 
conducting fluids past a semi infinite porous plate under the influence of a magnetic field has attracted the 
interest of many investigators. MHD free convection flows have great significance for the application in the 
field of satellite and planetary magnetospheres, aeronautics and chemical engineering. 
 This subject has been investigated by many researchers. Soundalgekar [1, 2] studied the MHD free 
convection flow past a vertical porous plate. Kafousias [3] investigated the MHD free convection effects on 
Stokes problem for an incompressible viscous fluid flowing past an infinite vertical limiting surface. Raptis 
and Kafoussias [4] studied magnetohydrodynamic free convection flow and mass transfer through a porous 
medium bounded by an infinite vertical porous plate with constant suction. Mass transfer effects on an 
unsteady free convective flow past an infinite vertical porous plate with variable suction was analyzed by 
Ramana Kumari and Bhaskara Reddy [5]. Elbashbeshy [6] studied the mixed convection along a vertical 
plate embedded in  a non-Darcian porous medium with suction and injection. Makinde [7] investigated a free 
convection flow with thermal radiation and mass transfer past a moving vertical porous plate. A transient 
magnetohydrodynamic free convective heat and mass transfer flow with thermophoresis past a radiate 
inclined permeable plate in the presence of variable chemical reaction and temperature dependent viscosity 
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was studied by Alam et al. [8]. Ahmed Sahin [9] investigated a free and forced convective MHD oscillatory 
flow over an infinite porous surface in an oscillatory free stream. Gireesh Kumar and Satyanarayana [10] 
analyzed the mass transfer effect on MHD unsteady free convective Walters’s memory flow with constant 
suction and heat sink. 
 The above studies have generally assumed a very small magnetic field Reynolds numbers, allowing 
magnetic induction effect to be neglected. The influence of the induced magnetic field on  various problems 
has been examined. Megakhed [11] examined the effect of the induced magnetic field and heat transfer on a 
non stationary magnetohydrodynamic flow around a porous plate. Chaudhary and Bhupendra [12] examined 
the combined heat and mass transfer by laminar mixed convection flow from a vertical surface with the 
induced magnetic field. Alom et al. [13, 14] investigated similarity solutions for a hydromagnetic free 
convective heat and mass transfer flow along a semi-infinite permeable inclined flat plate with heat 
generation and thermophoresis. Bég et al. [15, 16]  analyzed a non- similar, laminar, steady, electrically-
conducting forced convection liquid metal boundary layer flow with the induced magnetic field. Ahmed [17, 
18] studied the  induced radiating fluid flow past  a porous vertical plate. 
  In recent investigations, several researchers have shown interest in obtaining solutions of boundary 
layer flows over flat surfaces with convective boundary conditions. Batler [19] investigated radiation effects 
for the Blassius and Sakiadis flows with a convective surface boundary condition. Makinde and Aziz [20] 
studied MHD mixed convection from a vertical plate embedded in a porous medium with a convective 
boundary condition. Heat transfer of a generalized stretching/shrinking wall problem with convective 
boundary conditions was examined by Yao and Zhong [21]. Sivraj and Rushi kumar [22] studied a 
chemically reacting dusty viscoelastic fluid flow in an irregular channel with convective boundary. 
 Radiative convective flows are encountered in countless industrial and environmental processes, e.g. 
nuclear power plants, gas turbines heating and cooling chambers, fossil fuel combustion and various propulsion 
devices for air crafts, missiles and space vehicles. Hossain and Takhar [23] studied the radiation effect on 
mixed convection along a vertical plate with uniform surface temperature. Raptis and Massalas [24] analyzed a 
magnetohydrodynamic flow past a plate in the presence of radiation. Raptis and Perdikis [25] studied thermal 
radiation of an optically thin gray gas. Effects of radiation in an optically thin gray gas flowing past a vertical 
infinite plate in the presence of a magnetic field were analyzed by Raptis et al. [26, 27]. Ahmed and Tridip [28] 
investigated thermal radiation and magnetohydrodynamic effects on heat and mass transfer of a chemically 
reacting fluid with periodic suction. Prasad et al. [29] studied thermal radiation effects on 
magnetohydrodynamic free convection heat and mass transfer from a sphere in a variable porosity regime. 
  In recent years, the convective flow with simultaneous heat and mass transfer under the influence of 
a magnetic field and chemical reaction, has attracted considerable attention of researchers. These processes 
are widely used in many industrial applications such as food processing, manufacturing of ceramics polymer 
production, drying evaporation at the surface of a water body and electric power industry. Takhar et al. [30] 
investigated the flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive 
species. Muthucumarswamy and Ganesan [31, 32] studied, the first order chemical reaction on flow past an 
impulsively started vertical plate with uniform heat and mass flux. Chemical reaction, heat and mass transfer 
on an MHD flow over a vertical stretching surface with heat source and thermal stratification effects were 
studied by Kandasamy et al. [33]. Ibrahim et al. [34] investigated the effect of chemical reaction and 
radiation absorption on the unsteady MHD free convection flow past a semi infinite vertical permeable 
moving plate with heat source and suction. Prakash et al. [35] analyzed the influence of chemical reaction on  
an unsteady MHD mixed convective flow over a moving vertical porous plate. Combined effects of Joule 
heating and chemical reaction on unsteady magnetohydrodynamic mixed convection of a viscous dissipating 
fluid over a vertical plate in porous media with thermal radiation were studied by Pal and Talukdar [36]. 
 The aim of this paper is to investigate the thermal radiation effect, radiation absorption effect on  a 
combined heat and mass transfer of a steady laminar mixed free-forced convective flow of a viscous 
incompressible electrically conducting fluid above a semi-infinite vertical porous surface under the influence 
of an induced magnetic field and convective boundary. The perturbation technique is used to solve the 
problem. The results for the Nusselt number, Sharewood number and skin friction are obtained and discussed 
graphically. 
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2. Formulation of the problem 
 
 The steady mixed convection heat and mass transfer flow of a viscous, incompressible, electrically 
conducting fluid past a continuously moving infinite vertical porous plate under the influence of a 
transversely applied magnetic field is considered. Following the Cartesian coordinate system, the flow is 
assumed to be in the x- direction, which is taken along the vertical plate in the upward direction, whereas the 

y – direction is normal to the plate. The magnetic field is of the form  , ,x yH H H 0 . The equation of 

conservation of the electric charge is .J 0  , where  , ,x y zJ J J J . Since the direction of propagation of 

the electric charge is along the y-axis and the plate is electrically non-conducting, yJ 0  everywhere within 

the flow. It is also assumed that the Joule heating effect is small enough and divergence equation for the 
magnetic field .H 0   is of the form y 0H H . The schematic diagram of the flow configuration and the 

coordinate system of the problem are shown in the figure below. 
 Further, as the plate is of infinite length, all physical variables depend on y only. and therefore the 
equation of continuity is given by 
 
  /dv dy 0 .                                                                                         (2.1) 
 
 0v V   where V0 is the constant velocity of suction normal to the plate and the negative sign indicates 
that the suction velocity is directed towards the plate surface. 
 

 
 

Fig.1. Physical model and coordinate system. 
 
  In accordance with the above assumptions and under usual Boussinesq’s approximation, the basic 
equations related to the problem and generalized Ohm’s law can be put in the following form: 
Momentum equation 
 

     */ /2 2 e 0 x
0

H dH
V du dy g T T g C C d u dy

dy 


         


.                 (2.2) 
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 The induced magnetic field  
  

  / /
2

x
0 x 0 2

e

d H1
V dH dy H du dy

dy
  


.                                                            (2.3) 

 
Energy equation 
 

   
2 22

x C
0 W2

p p p P P

dH QdT k d T du 1 1 dq
V C C

dy C C dy C dy C dy Cdy


   
               

.          (2.4) 

 
Concentration equation 
 

  ( )
2

0 W2

dC d C
V D C C

dy dy
     .                                                                  (2.5) 

 
 The relevant boundary conditions on the vertical surface and in the uniform stream are defined as 
follows 
 

  

 , , , at ,

, , , when .

0 f x w

x

dT dC m
u U k h T T H H y 0

dy dy D

u 0 T T C C H 0 y



 

        

    
               (2.6) 

                                                                                                                             
 The radiative heat flux is given by 
   

  '( ) , ' 1
1

b
1 W 1

0

eq
4 T T I I K d

y T




 


   
   

 
where g is the acceleration due to gravity,   is the coefficient of thermal expansion, T denotes the fluid 

temperature, C is the concentration of species, T  and C  are the temperature and species concentration of 

the uniform flow, *  is the concentration expansion coefficient,   is the Newtonian kinematic viscosity of 

the fluid,  e  is the magnetic permeability, 0H  is the applied constant magnetic field, xH  is the induced 
magnetic field,   is the density of fluid,   is the electrical conductivity, k is the thermal conductivity, D is 

the chemical molecular diffusivity, pC  is the specific heat capacity of the fluid at constant temperature, sC  

is the concentration susceptibility, Tk  is the thermal diffusion ratio, 0U  is the uniform velocity, Q is the 

constant heat flux per unit area, m is the constant mass flux per unit area and wH  is the induced magnetic 
field at the wall, respectively. In order to simplify a numerical solution, we introduce the following 
transformations, viz 
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 (2.7) 

  
and define the following dimensionless parameters 
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'
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where wC  is the concentration on the plate wall. 
 Therefore, substituting Eqs (2.7) in Eqs (2.2)-(2.5) with boundary conditions (2.6) and introducing 
the above non- dimensional quantities and ignoring the asterisk (*), we obtain 
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  Gr Gm
2

2

d u dH du
M C

dy dydy
      ,                                                                    (2.8) 

 

  
2

2
m

1 d H du dH
M 0

P dy dydy
   ,                                                                          (2.9) 

 

  Pr Pr Ec
2 22

c2
m

d d du 1 dH
F C

dy dy P dydy

                 
     

,                              (2.10) 

 

  
Sc

2

2

1 d C dC
C 0

dydy
    .                                                                                          (2.11) 

 
 With transformed boundary conditions 
 

  

: , ( ), , ,

: , , ,

i
d dC

y 0 u U B 1 1 H h
dy dy

y u 0 0 C 0 H 0


       

     
                                          (2.12) 

 

where   is the dimensionless temperature and U is the velocity of the moving plate and w

0

H M
h

H
 . 

 
3. Solution of the problem 
 
 To obtain a complete solution of the coupled nonlinear system of Eqs (2.8) –(2.10) under boundary 
conditions (2.12), we introduce the perturbation approximation. Since the dependent variables u, H and   
mostly dependent on y only and the fluid is purely incompressible one, we expand the dependent variables in 

powers of the Eckert number Ec which is small enough such that the terms in 2
cE  and their higher order 

powers 2
cE  can be neglected. Thus, we assume 

 

  

 

 

 

( ) ( ) Ec ( ) ...............,

( ) ( ) Ec ( ) ...............,

( ) ( ) Ec ( ) ...............

2
1 2 c

2
1 2 c

2
1 2 c

u y u y u y O E

H y H y H y O E

y y y O E

   

   

      

                                                     (3.1) 

 

 Now substituting (3.1) into Eqs (2.8) – (2.10), neglecting the terms of 2
cE  and higher order powers 

and equating the coefficient of like powers of Ec, we obtain the equations of first and second order 
approximations as given below: 

Coefficient of (Ec)0  



Laminar mixed convection flow from a vertical surface … 313 
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Gr 1
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d u dH du
M e

dy dy mdy
      ,                                                            (3.2) 

 

  

2
1 1 1

m m2

d H dH du
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dy dydy
   ,                                                                         (3.3)        

 

  
Pr

2
1 1

C2

d d
F C

dydy

 
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with boundary conditions 
 

  

: , ( ), ,

: , , .
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1 0 i 1

1 1 1

d
y 0 u U B 1 H h

dy

y u 0 0 H 0


     
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Coefficient of (Ec)1   
 

  Gr 1
2

m y2 2 2
22

1

d u dH du 1
M e

dy dy mdy
      ,                                                         (3.6) 
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d H dH du
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dy dydy
   ,                                                                    (3.7)        
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r
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2
2 21 1

1 12

d d
F u H
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 
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with boundary conditions 
 

  

: , , ,

: , , .

2
2 i 2 1

2 2 2

d
y 0 u 0 B H 0

dy

y u 0 0 H 0


    
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 (3.9) 

 
 Thus, solving the above Eqs (3.2) – (3.4) under boundary conditions (3.5), we obtain 
 

  
2 1m y m y

1 1 2A e A e    ,       3 1 2m y m y m y
1 6 3 4H A e A e A e     , 

 

  
3 1 2m y m y m yy

1 10 9 8 7u A e A e A e A e      .                              
 
 Similarly, solving Eqs (3.6) – (3.8) with boundary conditions (3.9), we get 
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 The current density (J) is given by 
 

  
H

J
y

 
   

. 

 The shearing stress at the plate is given by 1 2

y 0 y 0 y 0

u uu

y y y  

      
             

.            

Heat flux (Nu) =-
y 0

T

y 

 
  

.                                     

 
4. Result and discussion 
 
 The formulation of the effect of the thermal radiation, radiation absorption parameter, convective and 
the dimensionless thermo physical parameters boundary conditions on a free convection heat and mass 
transfer flow of a viscous incompressible electrically conducting fluid along a semi-infinite vertical plate, 
under the action of a transverse applied magnetic field taking into account the induced magnetic field has 
been given in the preceding sections. This enables us to carry out the numerical calculations for distributions 
of the velocity field, temperature field, induced magnetic field, rate of heat transfer, skin friction and electric 
current density at the plate. In the present study, the physical parameters are taken as (Prandtl number) 
Pr=.71, Gr (Grashof number)=2, (magnetic diffusivity) Pm=1, (Eckert number) Ec=.001, (magnetic field) 
M=1, (radiation absorption parameter) αc =1, (chemical reaction parameter) λ=4, U0=1, (radiation 
parameter) F=1, (Schmidt number) Sc=.33, (modified Grashof number) Gm=3, (Biot number) Bi=.5. 
 Figures 1and 2 depict the velocity profiles and induced magnetic profiles for Pr=.71 (air at 200 C) for 
different values of the Biot number (Bi), chemical reaction parameter (λ) and heat absorption parameter (αc ). 
We can see that the velocity profile notably decreases for  higher values of the Biot number, it is also noticed 
that an increase in the chemical reaction parameter and radiation absorption parameter leads to the  increase 
in velocity. A distinct velocity escalation occurs near the wall after which profiles decay smoothly to the 
stationary value in free stream. Chemical reaction therefore boosts momentum transfer i.e., accelerates the 
flow. Further, Fig.2 shows that an increase in the  Biot number parameter leads to a decrease in the induced 
magnetic field whereas an increase in the radiation absorption parameter and chemical reaction parameter 
leads to an increase in the induced magnetic field. 
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Fig.1. Effect of Bi, λ and αc on velocity. 

 
Fig.2. Effect of Bi, λ and αc on induced magnetic 

field. 
 
 Figures 3 and 4 are plotted to show the influence of the Schmidt number (Sc) on velocity and the 
induced magnetic field. It can be seen that both profiles show a similar variation that is larger for helium 
(Sc=.30 at temperature 250 and 1 atmosphere pressure) than ammonia (Sc=.78), at temperature 250 C and 1 
atmosphere pressure). As might be expected, the velocity profiles increase gradually near the plate, become 
the highest in the vicinity of the plate, and then decrease slowly away from the plate. The velocity profile and 
induced magnetic field profile in Figs 5 and 6 are drawn for cooling Newtonian fluid (Gr>0). It shows that an 
increase in the Grashof number increases the velocity which is taking place through the application of a 
pressure gradient but a  reverse effect is observed for the induced magnetic field. Figure 7 shows  that the 
velocity profile notably decreases for higher values of the  thermal radiation parameter, whereas in Fig.8 the 
induced magnetic field shows slight increments. Figures 9 and 10 represent the profiles of velocity and the 
induced magnetic field for  the Prandtl number for air (Pr=.71) and water(Pr=7). It shows that velocity 
decreases as Pr increases while the induced magnetic field shows an adverse effect. The variations of the 
velocity profile and induced magnetic profile for different values of the magnetic field (M) are shown in Figs 
11 and 12.With an increase in M the flow is decelerated, i.e., velocity decreases. The behavior of M shows 
that the applied magnetic field H0, is therefore effectively moving with the free stream. On the other hand, in 
all the cases, the  induced magnetic field  decreased for increasing values of M.  
 

 
Fig.3. Effect of Sc on velocity. 

 

 
Fig.4. Effect of Sc on induced magnetic field. 

 
 
 
 

 
 
 
 

0

0,5

1

1,5

2

2,5

0 2 4

Bi=.5,λ=4,αc=1

Bi=.2,λ=4,αc=1

Bi=.5,λ=5,αc=1

Bi=.5,λ=4,αc=2u

y

0

2

4

6

8

0 2 4 6

Bi=.5,λ=1,αc=
1
Bi=1,λ=1,αc=1

bi=1,λ=2,αc=1

bi=1,λ=1,αc=2H

y

0

0,5

1

1,5

2

0 2 4

Sc=.78

Sc=.66

Sc=.33

u

y
0

2

4

6

8

10

0 2 4 6

Sc=.33

Sc=.6

Sc=.78
H

y



316  K.Chaudhary, A.K.Jha and A.Sharma 

 
Fig.5. Effect of Gr on velocity. 

 

 
Fig.6. Effect of Gr on induced magnetic field. 

 

 
Fig.7. Effect of F on velocity. 

 
Fig.8. Effect of radiation F on induced magnetic field. 

 

 
Fig.9. Effect of Pr on velocity. 

 

 
Fig.10. Effect of Pr on induced magnetic field. 
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Fig.11. Effect Hartmann number M on velocity. 
 

 
Fig.12. Effect of M on induced magnetic field. 

 Figures 13 and 14 show the effect of various parameters on H and u , when thermal radiation and 
radiation absorption are not taken into account. It is observed that the results are in good agreement with 
those of Chaudhary and Sharma [12]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.13. Effect of M, Gr and Sc on H when F=0, λ=0, αc =0. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.14. Effect of M, Gr and Sc on u when F=0, λ=0, αc =0.
 

0

5

10

15

20

0 0,5 1 1,5 2 2,5 3 3,5 4

u

y

M=1.5,2,2.5

0

1

2

3

4

5

6

7

8

0 2 4

M=2

M=2.5

M=1.5

y

H

0

2

4

6

8

10

12

14

16

0 2 4 6 8

M=2,Gr=3,Sc=.3

M=5,Gr=3,Sc=.3

M=2,Gr=5,Sc=.3

M=2,Gr=3,Sc=.78

M=2,Gr=-3,Sc=.3

M=5,Gr=-3,Sc=.3

M=2,Gr=-5,Sc=.3

M=2,Gr=-3,Sc=.78

H

-20

-15

-10

-5

0

5

10

15

20

0 1 2 3 4 5 6 7 8

M=2,Gr=3,Sc=.3

M=2,Gr=5,Sc=.3

M=2,Gr=3,Sc=.78

M=5,Gr=3,Sc=.3

M=5,Gr=-3,Sc=.3

M=2,Gr=-5,Sc=.3

u



318  K.Chaudhary, A.K.Jha and A.Sharma 

  Figures 15-21 represent the effect of Bi, λ, αc, Pr, Sc, Gr, F and M on temperature distributions. It is 
clear from Fig.15 that an increase in the  radiation absorption parameter, increases the heat transfer. The Biot 
number is the ratio of internal thermal resistance of the channel to the boundary layer thermal resistance. 
When Bi = 0 (i.e., without the Biot number) the inside of the channel with the hot fluid is totally insulated, 
the internal thermal resistance of the channel is extremely high and no convective heat transfer to the cold 
fluid on the outside of the channel takes place. Moreover, it is noted that the fluid temperature decreases for 
increasing the Biot number, since as Bi increases, the thermal resistance of the plate decreases and 
convective heat transfer to the fluid increases. Figures 16, 17 show the influence of the Prandtl number and 
Schmidt number on temperature. It is noticed that for higher values of Pr and Sc temperature falls to the 
boundary layer and tends to zero. The reason is that smaller values of Pr are equivalent to increasing the 
thermal conductivities, and therefore heat is able to diffuse away from the heated plate more rapidly than for 
higher values of Pr. Figure 18 shows that temperature increases as the thermal Grashof number increases. 
Figures 19, 20, 21 show the impact of λ, M and F on the temperature field, respectively. Figure 21 represents 
that an increase in the radiation parameter decreases the temperature distribution because large values of the 
radiation parameter enhance the conduction over radiation, thereby the thickness of the thermal boundary 
layer is decreased. It is observed from Fig.22 that we obtain a destructive type concentration profile for the 
chemical reaction because the concentration decreases by increasing the chemical reaction parameter which 
indicates that the diffusion rates can be changed by the chemical reaction parameter. Figure 23 elucidates 
that an increase in the Schmidt number increases the conduction which decreases the mass transfer. 
Moreover, as compared to the case of no chemical reaction (λ=0), the concentration profile we get for the 
Schmidt number as expected by Chaudhary and Bhupendra [12]. 
 

 
Fig.15. Effect of Biot number Bi on temperature. 
 

 
Fig.16. Effect of Pr on temperature. 

 
Fig.17. Effect of Sc on temperature. 

 

 
Fig.18. Effect of Gr on temperature. 
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Fig.19. Effect of λ on temperature. 

 
Fig.20. Effect of M on temperature. 

 

 
Fig.21. Effect of F on temperature. 

 

 
Fig.22. Effect of λ on concentration 

 
Fig.23. Effect of Sc on concentration. 

 

 
Fig.24. Effect of Sc on concentration when λ=0. 
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rate of heat transfer. Further the effect of the Biot number on skin friction is shown in Fig.30. It can be 
seen that skin friction decreases as Bi increases. 
 

 

 
Fig.25. Effect of F and Sc on current density. 

 

 
Fig.26. Effect of Pr, αc and λ on current density. 

 
Fig.27. Effect of Pm, h and M on current density. 

 

 
Fig.28. Effect of Bi on current density. 

 
Fig.29. Effect of F on Nusselt number. 

 
Fig.30. Effect of Bi on skin friction. 
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Nomenclature 
 
 Β  coefficient of volume expansion for heat transfer 
 Bi  Biot number 
 CP  specific heat at constant pressure  
 Ec  Eckert number/dissipative heat  
 F  radiation parameter  
 G  acceleration due to gravity  
 Gr  thermal Grashof number  
 H  induced magnetic field  
 H0  uniform magnetic field  
 Hx  induced magnetic field along x-direction  
 J  current density  
 M  Hartmann number  
 Ν  kinematic viscosity 
 Ρ  density 
 Pm  magnetic Prandtl number  
 Pr  Prandtl number  
 T  temperature  
 TW  fluid temperature at the surface 
 T   fluid temperature in the free stream 

 U  velocity component in x-direction 
 U0  dimensionless free stream velocity 
 QC  radiation absorption parameter 
 qr  radiative heat flux  
 V0  suction velocity 
 αc  radiation absorption parameter 
 Θ  dimensionless fluid temperature 
    thermal conductivity 
 0   magnetic diffusivity 

 Σ  Stefan-Boltzmann constant  
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